

Information Processing Letters 75 (2000) 265-273

www.elsevier.com/locate/ipl

On the performance of the first-fit coloring algorithm on permutation graphs

Stavros D. Nikolopoulos*, Charis Papadopoulos

Department of Computer Science, University of Ioannina, P.O. Box 1186, GR-45110 Ioannina, Greece

Received 6 July 1999; received in revised form 19 April 2000 Communicated by A. Tarlecki

Abstract

In this paper we study the performance of a particular on-line coloring algorithm, the First-Fit or Greedy algorithm, on a class of perfect graphs namely the permutation graphs. We prove that the largest number of colors $\chi_{FF}(G)$ that the First-Fit coloring algorithm (FF) needs on permutation graphs of chromatic number $\chi(G) = \chi$ when taken over all possible vertex orderings is not linearly bounded in terms of the off-line optimum, if χ is a fixed positive integer. Specifically, we prove that for any integers $\chi > 0$ and $k \ge 0$, there exists a permutation graph *G* on *n* vertices such that $\chi(G) = \chi$ and $\chi_{FF}(G) \ge \frac{1}{2}((\chi^2 + \chi) + k(\chi^2 - \chi))$, for sufficiently large *n*. Our result shows that the class of permutation graphs \mathcal{P} is not First-Fit χ -bounded; that is, there exists no function *f* such that for all graphs $G \in \mathcal{P}$, $\chi_{FF}(G) \le f(\omega(G))$. Recall that for perfect graphs $\omega(G) = \chi(G)$, where $\omega(G)$ denotes the clique number of *G*. © 2000 Elsevier Science B.V. All rights reserved.

Keywords: On-line coloring; First-Fit algorithm; Algorithms; Permutation graphs; Perfect graphs; Combinatorial problems

1. Introduction

A *coloring* (or proper coloring) of a graph *G* is an assignment of positive integers called "colors" to its vertices so that no two adjacent vertices have the same color. The *coloring problem* is to color a graph with as few colors as possible; that is, to minimize the number of colors (see Jensen and Toft [4]). An *on-line coloring* of a graph *G* is a procedure that immediately colors the vertices of *G* taken from a list without looking ahead or changing the colors already assigned. More precisely, an on-line coloring of *G* is an algorithm that properly colors *G* by receiving its vertices in some order v_1, v_2, \ldots, v_n . The color of v_i is assigned by

only looking at the subgraph of *G* induced by the set $\{v_1, v_2, \ldots, v_i\}$, and the color of v_i never changes thereafter.

Let *G* be a graph with an ordering $v_1 < v_2 < \cdots < v_n$ of its vertices and let *A* be an on-line coloring algorithm with input (G, <). Over all such possible orderings <, let $\chi_A(G)$ denote the maximum number of colors used by *A* to color *G*. Clearly, $\chi_A(G)$ measures the worst-case behaviour of *A* on *G*. The minimum number of colors required to color *G* offline is called chromatic number of *G*, and is denoted by $\chi(G)$.

The simplest on-line coloring is the *First-Fit algorithm* (also sometimes called "the Greedy algorithm"); we will refer to it by the abbreviation FF throughout the paper. Given (G, <) as input, FF works by receiving the vertices of the graph *G* one vertex at time

^{*} Corresponding author.

E-mail addresses: stavros@cs.uoi.gr (S.D. Nikolopoulos), charis@cs.uoi.gr (C. Papadopoulos).

in the given order $v_1 < v_2 < \cdots < v_n$ and assigning the smallest possible integer from \mathbb{Z}^+ as the color to vertex v_i $(1 \leq i \leq n)$; that is, the smallest color not yet assigned to any vertex adjacent to v_i among the previously colored vertices. We note that if the vertices of *G* are considered in an ideal sequence then $\chi_{FF}(G) = \chi(G)$; to construct such a sequence first find an optimal coloring of *G* and then put all vertices with the same color in consecutive positions in the sequence.

Our objective is to study the performance of the coloring algorithm FF on permutation graphs, a well-known class of perfect graphs. A graph G = (V, E) is a *permutation graph* if and only if there exists a permutation $\pi = (\pi_1, \pi_2, ..., \pi_n)$ on vertex set $V = \{1, 2, ..., n\}$ such that $(i, j) \in E$ if and only if $(i - j)(\pi^{-1}(i) - \pi^{-1}(j)) < 0$, for all $i, j \in V$, where $\pi^{-1}(i)$ is the index of the element i in π [1,8,9].

Many researchers have extensively studied on-line coloring algorithms [2–5]. Most of their work is devoted to the proof of upper bounds for the $\chi_{FF}(G)$; that is, the worst-case behaviour of the coloring algorithm FF [2,4]. We mention here some of them in the case of subfamilies of perfect graphs: $\chi_{FF}(G) \leq$ $\omega(G) + 1$ if G is a split graph; $\chi_{FF}(G) \leq \frac{3}{2}\omega(G)$ if G is the complement of a bipartite graph; $\chi_{FF}(G) \leq$ $2\omega(G) - 1$ if G is the complement of a chordal graph; $\chi_{\rm FF}(G) \leq 40\omega(G)$ if G is an interval graph [5], where $\omega(G)$ denotes the clique number of G. (Kierstead and Trotter [7] presented an on-line algorithm for coloring an interval graph G with at most $3\omega(G) - 2$ colors and showed that no on-line algorithm could do better; their algorithm was almost, but not quite, the FF algorithm.) These results say that the on-line coloring algorithm FF can color all these subfamilies of perfect graphs by a number of colors that is linearly bounded in respect to the off-line optimum. It is well known that for perfect graphs $\chi(G) = \omega(G)$; hereafter $\chi(G) = \chi$.

The main result of this paper is summarized in the following theorem:

Theorem 1. For any integers $\chi > 0$ and $k \ge 0$, there exists a permutation graph G such that the chromatic number of G is equal to χ and the on-line First-Fit coloring algorithm uses

$$c_{\rm FF}(G) = \frac{\chi(\chi+1)}{2} + k \frac{\chi(\chi-1)}{2}$$

colors to color G.

A class of graphs \mathcal{G} is First-Fit χ -bounded (or, FF χ -bounded) if there exists a function f such that for all graphs $G \in \mathcal{G}$, $\chi_{FF}(G) \leq f(\omega(G))$ [4,6]. In this paper we show that, contrary to known results for other graph classes, the class of permutation graphs is not FF χ -bounded. In Theorem 1, k may be any function of χ . Thus, we obtain:

Corollary 1. The class of permutation graphs is not *FF* χ -bounded; that is, there exists no function *f* such that for all permutation graphs *G*, $\chi_{FF}(G) \leq f(\chi(G))$.

2. A(n) and B(n) permutations

In this section we define two types of permutations A(m) and B(n) of lengths m and n, respectively, which we shall use as tools for constructing a permutation graph G on which $\chi_{FF}(G)$ is greater than or equal to the values given in Theorem 1. We represent a permutation of length n as a rearrangement of $N_n = (1, 2, ..., n)$.

Moreover, we define two operations on permutations which we call *x*-insertion and *y*-insertion. Each of these operations is applied on two permutations, say, *A* and *B* of lengths *m* and *n*, respectively, and produces a permutation of length m + n, by inserting the permutation *B* into *A* in a specific manner.

2.1. Construction of A(n) and B(n)

Let $A = (a_1, a_2, ..., a_n)$ and $B = (b_1, b_2, ..., b_m)$ be two sequences of lengths *n* and *m*, respectively, whose elements are drawn from a linearly ordered set *S*. We shall use the notation C = [A, B] to denote the sequence $C = (a_1, a_2, ..., a_n, b_1, b_2, ..., b_m)$.

We construct *n* sequences A_1, A_2, \ldots, A_n of lengths $n, 2(n-1), 3(n-2), \ldots, n$, respectively. Let

$$A_{1} = [A_{11}, A_{12}, \dots, A_{1(n-1)}, A_{1n}],$$

$$A_{2} = [A_{21}, A_{22}, \dots, A_{2(n-1)}],$$

$$\vdots$$

$$A_{n} = [A_{n1}]$$

be these sequences, where A_{ij} is a sequence of length $i, 1 \leq i \leq n$. The elements of A_{ij} are denoted

by a_{ij}^k , where k = 1, 2, ..., i; that is, $A_{ij} = (a_{ij}^1, a_{ij}^2, ..., a_{ij}^i)$.

First, we compute the sequence $A_1 = [A_{11}, A_{12}, \dots, A_{1(n-1)}, A_{1n}]$, whose elements are sequences of length 1 each; that is $A_1 = (a_{11}^1, a_{12}^1, \dots, a_{1n}^1)$, where $A_{1j} = (a_{1j}^1)$. The elements of the sequence A_1 are defined as follows:

 $a_{11}^1 = n$

and

$$a_{1j}^{1} = (n - j + 1) + \frac{1}{2} \sum_{i=0..j-2} (n - i)(n - i + 1), j = 2, 3, ..., n.$$

Next we compute the sequence $A_i = [A_{i1}, A_{i2}, ..., A_{(n-i+1)}]$, for i = 2, 3, ..., n. The elements of the sequence $A_{ij} = (a_{ij}^1, a_{ij}^2, ..., a_{ij}^i), 1 \le j \le n - i + 1$, are defined as follows:

$$a_{ij}^1 = a_{1j}^1 - i + 1$$

and

$$a_{ij}^k = a_{ij}^{k-1} + (n-j+1) - (k-2),$$

 $k = 2, 3, \dots, i.$

Having computed the sequences A_1, A_2, \ldots, A_n , let us now define the following three sequences:

$$A(n) = \begin{bmatrix} A_{11}, A_{12}, \dots, A_{1(n-1)}, A_{1n}, \\ A_{21}, A_{22}, \dots, A_{2(n-1)}, \dots, A_{n1} \end{bmatrix},$$

$$A^*(n) = \begin{bmatrix} A_{1n}, A_{2(n-1)}, \dots, A_{n1} \end{bmatrix},$$

$$B(n) = (1, 2, \dots, n).$$

It follows from the definitions that the sequences A(n)and $A^*(n)$ contain m = n(n + 1)(n + 2)/6 and $m^* = n(n + 1)/2$ elements, respectively. Moreover, by construction the sequence A(n) is a permutation on N_m . For example, let us consider the sequences A(3)and $A^*(3)$. By definition $A(3) = [A_1, A_2, A_3]$ and $A^*(3) = [A_{13}, A_{22}, A_{31}]$, where $A_1 = [A_{11}, A_{12}, A_{13}]$, $A_2 = [A_{21}, A_{22}]$ and $A_3 = [A_{31}]$. It is easy to see that, $A_{11} = (3)$, $A_{12} = (8)$, $A_{13} = (10)$, $A_{21} =$ (2, 5), $A_{22} = (7, 9)$, $A_{31} = (1, 4, 6)$, and therefore $A_1 = (3, 8, 10), A_2 = (2, 5, 7, 9), A_3 = (1, 4, 6)$. Thus, A(3) = (3, 8, 10, 2, 5, 7, 9, 1, 4, 6) and $A^*(3) = (10, 7, 9, 1, 4, 6)$.

2.2. Insertion operations

Let $A = (a_1, a_2, ..., a^*, ..., a_n)$ and $B = (b_1, b_2, ..., b_m)$ be two permutations on N_n and N_m , respectively. We define an operation on A and B which produces a permutation A_x on N_{n+m} as follows:

 $A_x = (a'_1, a'_2, \dots, a'_n, b'_1, b'_2, \dots, b'_m),$ where (i) $a'_1 = a_1$ for all $a \leq a^*$

- (i) $a'_i = a_i$ for all $a_i \leq a^*$,
- (ii) $a'_{i} = a_{i} + m$ for all $a_{i} > a^{*}$,
- (iii) $b'_i = a^* + i$, $1 \leq i \leq m$.

The above operation is called *x*-insertion and denoted by *x*-insert(A; a^* , B). The element a^* is called a *pivot*. Additionally, we define the *y*-insertion operation on A and B, denoted by *y*-insert(A; a^* , B), which produces a permutation A_y on N_{n+m} as follows:

$$A_{y} = (a_{1}, a_{2}, \dots, a_{i}, b'_{1}, b'_{2}, \dots, b'_{m}, a_{i+1}, a_{i+2}, \dots, a_{n}),$$

where

(i) $a_i = a^*$, (ii) $b'_i = n + i$, $1 \leq i \leq m$.

Let *A* be a permutation on N_n , and let $A^* = (a_1^*, a_2^*, \ldots, a_m^*)$ and $B = (b_1, b_2, \ldots, b_m)$ be two sequences such that $A^* \subseteq A$, and $||A^*|| = ||B||$. In such a case, we shall use the notation *x*-insert(*A*; *A*^{*}, *B*) to denote the sequence of operations *x*-insert(*A*; *a_i^**, (1)), for $i = 1, 2, \ldots, m$; recall that, (1) is a permutation on N_1 . In a similar manner, we shall use the notation *y*-insert(*A*; *A*^{*}, *B*).

3. The input (G, <) of the FF algorithm

In this section we construct a permutation graph G and an ordering < of its vertices such that the algorithm FF with input (G, <) uses $c_{FF}(G)$ colors to color G, where $c_{FF}(G)$ equals the values given in Theorem 1. We first describe a strategy which transforms a permutation π of length n into a geometric scheme, which is a set of n planar points with specific x- and y-coordinates, and then we show how a permutation graph is defined by such a scheme.

3.1. Permutations and schemes

A set *P* of *n* points $\{p_1, p_2, ..., p_n\}$ in the plane such that $x(p_i) \neq x(p_j)$ and $y(p_i) \neq y(p_j)$ for every

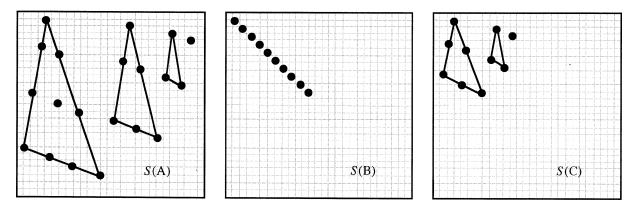


Fig. 1. The three basic schemes A(4)-scheme, B(10)-scheme and A(3)-scheme.

 $p_i, p_j \in P$ $(1 \le i, j \le n \text{ and } i \ne j)$, is called *scheme* and denoted by S(P). Let S(P) and S(Q) be two schemes of n and m points, respectively, such that $x(p_i) \ne x(q_j)$ and $y(p_i) \ne y(q_j)$ for every $p_i \in P$ and $q_j \in Q$ $(1 \le i \le n \text{ and } 1 \le j \le m)$. The *union* of the schemes S(P) and S(Q) is defined to be the scheme $S(P \cup Q)$ of n + m points. The number of points in a scheme, say, S(P), is denoted by |S(P)|. A point $p_i \in S(P)$ is said to be *dominated* by $p_j \in$ S(P) (or p_j *dominates* p_i) if $x(p_i) < x(p_j)$ and $y(p_i) < y(p_j)$.

Let π be a permutation on N_n . A π -scheme (or *permutation scheme*) is defined to be a scheme of n points $\{p_1, p_2, ..., p_n\}$ such that $(x(p_i), y(p_i)) = (i, -\pi^{-1}(i)), 1 \le i \le n$.

The A(n)-scheme and the B(n)-scheme are called basic schemes, where A(n) and B(n) are the two permutations which we defined in Section 2. Recall that, A(n) and B(n) are permutations of lengths n(n + 1)(n + 2)/6 and n(n + 1)/2, respectively. The parameter n of the A(n)-scheme (respectively B(n)scheme) is called *degree* of the A(n)-scheme (respectively B(n)-scheme). For notation convenience we shall omit the parameter n of the basic scheme A(n)scheme (respectively B(n)-scheme) and we shall denote it by S(A) (respectively S(B)).

In Fig. 1 there are three basic schemes: an S(A) scheme of degree 4, an S(B) scheme of degree 10 and an S(A) scheme of degree 3; that is, an A(4)-scheme, a B(10)-scheme and an A(3)-scheme.

We next show how a permutation graph is defined by a π -scheme. Let π be a permutation on N_n and let *G* be a graph with $V(G) = \{1, 2, ..., n\}$ and $(i, j) \in E(G)$ if and only if $(i - j)(\pi^{-1}(i) - \pi^{-1}(j)) < 0$. Let $S(\pi) = \{p_1, p_2, ..., p_n\}$ be the π -scheme of the permutation π . Then, we define the graph $G[\pi]$ as follows:

$$V(G[\pi]) = \{p_1, p_2, \dots, p_n\},$$
 and

 $(p_i, p_j) \in E(G[\pi])$ if and only if p_i dominates p_j .

By definition *G* is a permutation graph and $G[\pi] = G$. Thus, given a permutation π on N_n , the combinatorial object $G[\pi]$ and the geometric object $S(\pi)$ are in one-to-one correspondence; by definition π and $G[\pi]$ are also in one-to-one correspondence.

3.2. Construction of $G[\pi_{\text{FF}}]$

Let us now construct a permutation scheme, say, $S_{\text{FF}} := S(\pi_{\text{FF}})$, and an ordering < of its points (we shall define it in Section 3.3) such that the algorithm FF with input (G, <) uses $c_{\text{FF}}(G)$ colors to color G, where $G = G[\pi_{\text{FF}}]$. Recall that the graph $G[\pi_{\text{FF}}]$ and the permutation scheme $S(\pi_{\text{FF}})$ are in one-to-one correspondence.

Given an integer $\chi > 0$, we first construct the basic schemes S(A), S(B) and S(C) by using the permutations $A(\chi)$, $B(\chi(\chi + 1)/2)$ and $A(\chi - 1)$, respectively. Then we construct the scheme $S(A \cup B \cup C)$ of Fig. 2. This construction can be done by first *y*-inserting the scheme S(B) into S(A) using $A^*(\chi)$ as pivot; that is, *y*-insert(A; $A^*(\chi)$, B), and then *x*-inserting the scheme S(C) into $S(A \cup B)$ with pivot

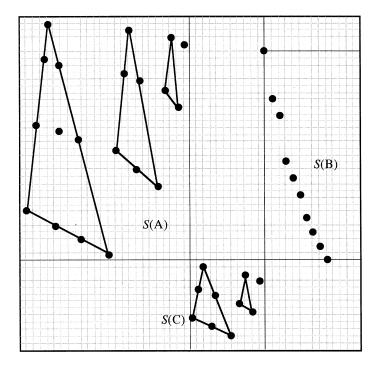


Fig. 2. The permutation scheme $S(A \cup B \cup C)$.

the first element a_1^* of $A^*(\chi)$; that is, x-insert($A \cup B$; a_1^*, C).

We next show the way we can extend the scheme $S(A \cup B \cup C)$, by creating and inserting various basic schemes into $S(A \cup B \cup C)$, so that the resulting scheme is S_{FF}. In order to do that we first set $S_{\text{FF}} := S(A \cup B_0 \cup C_0)$, where $B_0 = B$ and $C_0 =$ C. Then, we construct the scheme $S(B'_i)$ by using the permutation B(b) of length $b = |B_i|$ and x-insert it into the scheme S_{FF} using B_i as pivot, $i \ge 0$. The result of the x-insertion operation is an updated scheme S_{FF} which is the union of S_{FF} with $S(B'_i)$. Next, we construct the scheme $S(B_{i+1})$ by using the permutations B(b), where $b = |C_i^* \cup B_i'|$, and y-insert it into the scheme S_{FF} using $C_i^* \cup B_i'$ as pivot. Now, the result of the y-insertion operation is an updated scheme S_{FF} which is the union of S_{FF} with $S(B_{i+1})$. Finally, we construct the scheme $S(C_{i+1})$ by using the permutation $A(\chi - 1)$ and x-insert this scheme into the scheme $S_{\rm FF}$ with pivot the point b'_i , where b'_i is a point of the scheme $S(B'_i)$ such that $x(b'_i) =$ $|S_{\text{FF}}| + |S(B_{i+1})|$ and $y(b'_i) = |S_{\text{FF}}|$. The resulting permutation scheme S_{FF} is the union of S_{FF} with $S(C_{i+1})$.

Clearly, we can extend the permutation scheme S_{FF} by repeatedly applying the above construction process for i = 1, 2, ..., k - 1 (see Fig. 3). Again, the resulting scheme S_{FF} and the graph $G[\pi_{\text{FF}}]$ are in one-to-one correspondence.

We are now in a position to give a formal description of the way we can construct a permutation scheme S_{FF} for which we shall define an ordering < such that the algorithm FF with input (G, <) uses $c_{\text{FF}}(G)$ colors to color G, where $G = G[\pi_{\text{FF}}]$. In the proposed algorithm we shall use the notation "*x*-insert(A; B, C) \Rightarrow S(Q)" to denote that the scheme S(Q) is produced by *x*-inserting the permutation C into A using B as pivot. The construction algorithm is formally presented (see Algorithm Scheme_SFF).

By construction, the geometric object S_{FF} consists of the three basic schemes S(A), S(B) and S(C)of degrees χ , $\chi(\chi + 1)/2$ and $\chi - 1$, respectively, and some number of basic schemes $S(B'_i)$, $S(B_i)$ and $S(C_i)$ of various degrees, where χ is a fixed positive

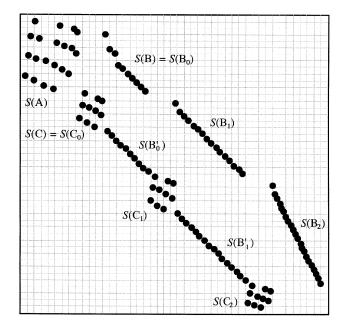


Fig. 3. The geometric object S_{FF} , where π is a permutation on N_{131} .

Algorithm Scheme_SFF:

- **Step 1.** Construct the scheme S(A) by using the permutations $A(\chi)$;
- Step 2. Construct the scheme $S(B) = S(B_0)$ by using the permutations B(b) where $b = \chi(\chi + 1)/2$, and apply the operation *y*-insert(*A*; $A^*(\chi), B_0$) $\Rightarrow S(A \cup B_0)$;
- Construct the scheme $S(C) = S(C_0)$ by using the permutation $A(\chi 1)$, and Step 3. apply the operation *x*-insert($A \cup B$; a_1^*, C_0) $\Rightarrow S(A \cup B_0 \cup C_0)$; Set $S_{\text{FF}} := S(A \cup B_0 \cup C_0);$
- **Step 4.** for i = 0, 1, ..., k 2
 - 4.1 Construct the scheme $S(B'_i)$ by using the permutation B(b) where $b = |B_i|$, and apply *x*-insert(S_{FF} ; B_i, B'_i) $\Rightarrow S^1_{FF}$; Construct the scheme $S(B_{i+1})$ by using the permutations B(b) where $b = |C_i^* \cup B'_i|$, and
 - 4.2
 - apply y-insert(S_{FF}^1 ; $C_i^* \cup B_i', B_{i+1}$) $\Rightarrow S_{\text{FF}}^2$; Construct the scheme $S(C_{i+1})$ by using the permutation $A(\chi 1)$, select the point b_i' from B_i' such that $x(b_i') = |S_{\text{FF}}| + |S(B_{i+1})|$ and $y(b_i') = |S_{\text{FF}}|$, and apply x-insert(S_{FF}^2 ; b_i', C_{i+1}) $\Rightarrow S_{\text{FF}}^3$; Set $S_{\text{FF}} := S_{\text{FF}}^3$; 4.3 4.4 end;

end

integer and $i \ge 0$. The schemes S(A) and $S(C_i)$ are constructed by using the permutation A, while the schemes $S(B'_i)$ and $S(B_i)$ are constructed by using the permutation B (see Section 2). We say that the schemes S(A), $S(C_i)$, $S(B'_i)$ and $S(B_i)$ are of Atype, C-type, B'-type and B-type, respectively. The geometric object of Fig. 3 is produced by Algorithm

Scheme_SFF after two iterations of Step 4; that is, for k = 3.

3.3. An ordering of $V(G[\pi_{\rm FF}])$

We are interested in finding an ordering < of the *n* points of the scheme S_{FF} ; that is, $p_1 < p_2 < \cdots < p_n$

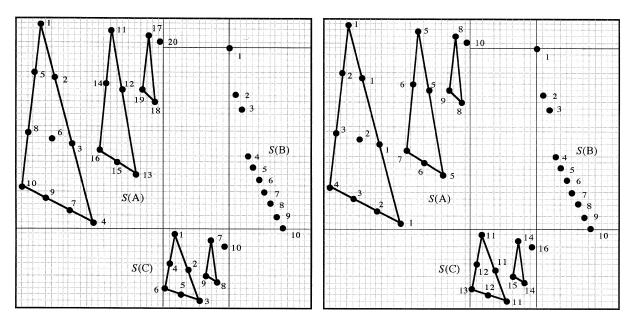


Fig. 4. The orderings of the points of the three basic schemes S(A), S(B) and S(C), and the FF coloring of the scheme $S(A \cup B \cup C)$.

such that the coloring algorithm FF with input (G, <)uses $c_{\text{FF}}(G)$ colors to color G, where $G = G[\pi_{\text{FF}}]$ and $c_{\text{FF}}(G) = \frac{1}{2}((\chi^2 + \chi) + k(\chi^2 - \chi))$. To this end, we order the points of the two basic schemes as shown in Fig. 4; that is, we order the points of the scheme $S(C_i)$ in the same way as S(C), since $S(C_i)$ and S(C) have the same structure, i > 0. Finally, the points of the scheme $S(B'_i)$ (respectively $S(B_i)$) are ordered such that $p_i < p_j$ if and only if $x(p_i) < x(p_j)$ for every $p_i, p_j \in S(B'_i)$ (respectively $S(B_i)$).

Having defined an ordering of the points of each individual scheme of the geometric object S_{FF} (see Fig. 4), let us now define an ordering $<_s$ on its schemes. Suppose that S_{FF} consists of an *A*-type scheme, *k C*-type schemes, *k B*-type schemes and k - 1 *B'*-type schemes. The ordering $<_s$ on the components of S_{FF} (i.e., $S(A), S(B_i), S(B'_i)$ and $S(C_i), 0 \le i \le k - 1$) is defined as follows:

- (i) $S(A) <_{s} S(B_0) <_{s} S(C_0);$
- (ii) $S(C_i) <_s S(B'_i) <_s S(B_{i+1}) <_s S(C_{i+1}), i = 0,$ 1,..., k - 1.

Let S(P), S(Q) be two schemes of S_{FF} and let p, q be two points such that $p \in S(P)$ and $q \in S(Q)$. Then, p < q if and only if $S(P) <_s S(Q)$. Thus, we have defined an ordering < on the points of S_{FF} . In Fig. 4 we show the orderings of the points of the basic schemes S(A), S(B) and S(C); left figure, and the FF coloring of the scheme $S(A \cup B \cup C)$; right figure. We note that, $S(A) <_s S(B) <_s S(C)$.

4. The performance of the FF algorithm

Let S_{FF} be a permutation scheme of degree *n* constructed by Algorithm Scheme_SFF. Let χ be the degree of the basic scheme S(A) of S_{FF} and let *k* be the number of schemes $S(C_0), S(C_1), \ldots, S(C_{k-1})$ in S_{FF} . Consider the permutation graph $G[\pi_{\text{FF}}]$ which corresponds to the permutation scheme S_{FF} and let $(G[\pi_{\text{FF}}], <)$ be the input of the algorithm FF, where < is the ordering constructed in Section 2. Then, the following statements hold:

- (i) $\chi(\chi + 1)/2$ colors are assigned to scheme S(A);
- (ii) zero new colors are assigned to scheme S(B); the scheme S(B) is colored with the $\chi(\chi + 1)/2$ colors of S(A);
- (iii) $\chi(\chi 1)/2$ new colors are assigned to scheme $S(C_i), i = 0, 1, ..., k 1;$

- (iv) zero new colors are assigned to scheme $S(B'_i)$; the scheme $S(B'_i)$ is colored with the colors of $S(B_i)$, i = 0, 1, ..., k - 2;
- (v) zero new colors are assigned to scheme S(B_i); the scheme S(B_i) is colored with the colors of S(C_{i−1} ∪ B'_{i−1}), i = 0, 1, ..., k − 1;

Thus, $c_{\text{FF}}(G[\pi_{\text{FF}}]) = \chi(\chi + 1)/2 + k\chi(\chi - 1)/2$, where $\chi = \chi(G[\pi_{\text{FF}}])$. Thus, Theorem 1 is proved.

We now compute the number $n = n(\chi, k)$ of vertices of the graph $G[\pi_{FF}]$ as a function of χ and k, where χ is the chromatic number of the graph $G[\pi_{FF}]$ (or, equivalently, the degree of the scheme S(A) of S_{FF}) and k is the number of schemes of C-type in the permutation scheme S_{FF} .

Let

$$\chi_{\rm FF}^i = \frac{\chi(\chi+1)}{2} + \frac{i\chi(\chi-1)}{2}, \quad 0 \leqslant i \leqslant k.$$

Notice that χ_{FF}^i is the number of colors of the scheme $S(A \cup B_0 \cup C_1 \cup \cdots \cup C_{i-1}), 1 \leq i \leq k$. Recall that n_a, n_b and n_c denote the number of points in the schemes S(A), S(B) and S(C), respectively. Then, it is easy to see that the minimum number n_0 of vertices of a graph $G[\pi_{FF}]$ on which FF uses χ_{FF}^0 colors is $n_0 = n_a$ (we note that the algorithm FF with input $(S_{FF}, <)$ also uses χ_{FF}^0 colors to color the scheme $S(C \cup B)$ which consists of $n_a + n_b > n_0$ points); the minimum number n_1 of vertices of $G[\pi_{FF}]$ on which FF uses χ_{FF}^1 colors is $n_1 = n_0 + n_b + n_c$; the minimum number n_2 of vertices of $G[\pi_{FF}]$ on which FF uses χ_{FF}^2 colors is $n_2 = n_1 + \chi_{FF}^0 + \chi_{FF}^1 + n_c$; and so on. Thus,

$$n_{1} = n_{a} + n_{b} + n_{c},$$

$$n_{2} = n_{1} + \chi_{FF}^{0} + \chi_{FF}^{1} + n_{c},$$

$$\vdots$$

$$n_{k} = n_{k-1} + \chi_{FF}^{k-2} + \chi_{FF}^{k-1} + n_{c}.$$

Then we have,

$$n_{k} = n_{a} + n_{b} + n_{c}$$

$$+ (\chi_{FF}^{0} + \chi_{FF}^{1} + \dots + \chi_{FF}^{k-2})$$

$$+ (\chi_{FF}^{1} + \chi_{FF}^{2} + \dots + \chi_{FF}^{k-1})$$

$$+ (k - 1)n_{c}$$

$$= n_{a} + n_{b} + kn_{c} + 2(k - 1)\chi(\chi + 1)/2$$

$$+ (k - 1)^{2}\chi(\chi - 1)/2.$$

We have shown that the scheme S(A) consists of $n_a = \chi(\chi + 1)(\chi + 2)/6$ points, the scheme S(B) consists of $n_b = \chi(\chi + 1)/2$ points and the scheme S(C) consists of $n_c = n_a - \chi(\chi + 1)/2$ points. Thus,

$$n(\chi, k) = \begin{cases} (k+1)n_a + (k-1)(k\chi - k + 2)\chi/2, \\ \text{for } k \ge 1, \\ n_a, \quad \text{for } k = 0, \end{cases}$$

where $n_a = \chi(\chi + 1)(\chi + 2)/6$.

Thus, we have proved that the largest number of colors $\chi_{FF}(G)$ that the on-line coloring algorithm FF needs on permutation graphs *G* with *n* vertices and chromatic number χ when taken over all possible vertex orderings is no less than $\frac{1}{2}((\chi^2 + \chi) + k(\chi^2 - \chi))$, where *k* is a nonnegative integer. The graph we constructed for which the algorithm FF uses that many colors has $n = n(\chi, k) \ge \chi(\chi + 1)(\chi + 1)/6$ vertices.

5. Conclusions

In this paper we studied the behaviour of the online coloring algorithm FF on the class of permutation graphs. We used a simple graphical representation of such graphs in the plane which makes possible intuitive description of the construction of the "bad" permutation graph $G[\pi_{\text{FF}}]$. Based on this graph, we showed that the class of permutation graphs is not FF χ -bounded: for any integers $\chi > 0$ and $k \ge 0$, there exists a permutation graph *G* on *n* vertices such that $\chi(G) = \chi$ and $\chi_{\text{FF}}(G) \ge \frac{1}{2}((\chi^2 + \chi) + k(\chi^2 - \chi))$, for sufficiently large *n*. Recall that, a class of perfect graphs \mathcal{P} is FF χ -bounded if there exists a function *f* such that for all graphs $G \in \mathcal{P}$, $\chi_{\text{FF}}(G) \le f(\chi(G))$.

Acknowledgement

The authors thank the referees for comments which improved the presentation of this paper.

References

- M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, Inc., New York, 1980.
- [2] A. Gyárfás, J. Lehel, On-line and first fit colorings of graphs, J. Graph Theory 12 (1988) 217–227.
- [3] S. Irani, Coloring inductive graphs on-line, Algorithmica 11 (1994) 53–72.
- [4] T.R. Jensen, B. Toft, Graph Coloring Problems, John Wiley & Sons, Inc., New York, 1995.

- [5] H.A. Kierstead, The linearity of first-fit coloring of interval graphs, SIAM J. Discrete Math. 1 (1988) 526–530.
- [6] H.A. Kierstead, Coloring graphs on-line, in: A. Fiat, G. Woeginger (Eds.), On-line Algorithms: The State of the Art, Lecture Notes in Comput. Sci., Vol. 1442, Springer, Berlin, 1998, pp. 281–305.
- [7] H.A. Kierstead, W.T. Trotter, An extremal problem in recursive combinatorics, Congr. Numer. 33 (1971) 416–423.
- [8] A. Pnueli, A. Lempel, S. Even, Transitive orientation of graphs and identification of permutation graphs, Canadian J. Math. 23 (1971) 160–175.
- [9] J. Spinrad, On comparability and permutation graphs, SIAM J. Comput. 14 (1985) 658–670.