
J@3 -- -- I!!!!
ElSEVIER Journal of Systems Architecture 42 (1996/97) 74X-760

$W?W?;k OF

ARCHITECTURE

Sub-optimal solutions to track detection problem using graph
theoretic concepts

Stavros D. Nikolopoulos * , George Samaras

Abstract

This paper demonstrates how the problem of tracking targets, which appear as either straight or curved lines in
two-dimensional display images (or data images) can be formulated in terms of a directed weighted graph model and how
dynamic programming techniques can be efficiently applied to reach an optimal or sub-optimal solution. In general, track
detection algorithms providing optimal solutions have good detective ability, but most of them suffer from the inability to
detect discontinuous lines or to resolve efficiently pairs of crossing lines. A sub-optimal solution is provided that efficiently
overcomes these weaknesses. We focus on modeling the track detection problem in terms of a graph, formulating fast
sequential/parallel sub-optimal track detection algorithms and testing them on simulated data in order to show their
detective ability. Moreover. we specify the conditions under which sub-optimal algorithms can perform at least as well as
their corresponding optimal algorithms. This is significant for the track detection problem where fast, accurate and real-time
detection is considered a necessity.

Kry~~rds: Track detection: Display images: Graph modelin g; Shortest paths: Dynamic programming: Parallel implementation

1. introduction have been published in the literature looking at this

An important topic in diverse fields (radar, sonar,
radio-astronomy, etc.) is the detection of targets,
which appear as either straight or curved lines in
two-dimensional display images or data images. The
track detection problem is simply one of trying to
locate particular line patterns embedded in a noisy
background in display images. Several algorithms

problem from different points of view
[2,4,1 1,12,16.18,20]. Recently. a number of papers
have been published on this subject using graph
theoretic approaches [5,10,13,21,22].

It is well-known that, any problem that can be
expressed in terms of a graph can be solved using
graph theoretic techniques. In signal images, one
available aspect is the intensity of each pixel. There-

- Corresponding author. Email, stavros@cs.uoi.gr

fore. an obvious straightforward way to represent an
image by a graph is as follows: the information of

l383-7621/0165-6074/97/Sl7.00 Copyright 0 1997 Elsevier Science B.V. All rights reserved

PI1 S 1383-762 1(96)00074-4

time history records are mapped onto a weighted
graph such that the vertices of the graph would
correspond to the individual pixels of the display
image. Specifically, each pixel of the image becomes
a vertex in the graph with edges between adjacent
pixels. Under this formulation, the problem of detec-
tion tracks is reduced to the problem of finding a set
of vertices in the graph which minimizes some cost
function.

In this paper the track detection problem is formu-
lated in the above mentioned way. The key to the
solution is that any path through the graph. i.e., any
set of vertices, optimizing some cost function gener-
ates a line. First, based on a well-known dynamic
programming solution to this problem (Viterbi algo-
rithm [3,4,16]), we developed a line detection algo-
rithm, which we call OSP (Optimal Survivor Paths),
for finding the k best completely unmerged paths
through a graph. Both algorithms. Viterbi and OSP,
are characterized by global optimality with respect to
the cost function used. In general, the complete
globally optimal algorithms based on the dynamic
programming approach have good detective ability,
but most of them suffer from the inability to detect
discontinuous tracks or to resolve efficiently pairs of
crossing tracks [21]. In these cases, instead of a
complete globally optimal solution, a sub-optimal
solution which may overcome the above weakness is
preferable. Based on this fact, we formulate sub-opti-
mal algorithms for the track detection problem and
we show their detective ability by testing them on
simulated data.

Besides detective ability we are also interested in
time efficiency as well. The sub-optimal algorithms,
in practice, provide better time efficiency than the
globally optimal ones. Our sub-optimal formulation
offers itself nicely to parallelism. Thus, parallel im-
plementations are also shown for the sub-optimal
and optimal detection algorithms under both the
CREW and CRCW computational PRAM models
[1.9,15,17.191.

The remainder of the paper is organized as fol-

lows: Section 2 describes the track detection prob-
lem, the formulation of the problem and the pro-
posed solution approaches. Section 3 presents the
appropriate graph model and provides an introduc-
tion to graph theoretic tools used throughout the
paper. Section 4 gives the graph transformation of
the problem and the cost function used. The descrip-
tion of two optimal algorithms for single and multi-
ple track detection is cited in Section 5 and Section
6, respectively. Sub-optimal solutions are given in
Section 7. Section 8 shows that our graph theoretic
approach to the track detection problem is ideally
suited for parallel computation, and provides parallel
implementations of the proposed optimal and sub-op-
timal detection algorithms. Section 9 gives a clear
indication of the detective ability of the proposed
algorithms by testing them on the same set of simu-
lated data. It also shows the conditions under which
the optimal and sub-optimal algorithms may detect
identically. Finally, Section IO concludes the paper.

2. Track detection problem, formulation and solu-
tions

In broader terms the problem we consider is that
of image-processing/feature-extraction. Such a
problem has applications in the area of automated
target detection and tracking; an area quite signifi-
cant and evident in systems such as radar, sonar,
radio-astronomy. etc. It is well-known that in such
systems, operators are in danger of being over-
whelmed by display data. This is indeed a real
problem considering the size and complexity of these
systems. Thus, there is obviously a need for track
detection algorithms that support not only automatic
but also a fast and accurate detection of tracks to
assist operators in their task. They usually see noisy
images. while what they actually need is their noise-
less representation, that is. they prefer the image of
Fig. l(b) instead of that of Fig. I(a).

We have referred to the track detection problem

~.

(a) (b)

Fig. I. (a) A noisy display image. (b) Its noiseless representation.

--

as one of trying to locate particular line patterns In order to identify tracks in display images using
embedded in a very noisy background. The tracks graph theoretic concepts, the original image must be
represented by this patterns, usually appear as roughly mapped onto a weighted graph. Such a graph is
vertical lines although they can also appear as carve composed of a set of vertices connected to each
or discontinuous lines. Moreover, considering those other by edges where the vertices and edges have
types of lines, a display image might contain parallel values associated with them. An obvious mapping is
or crossing line patterns (see Fig. 5 and Fig. 6). In to map each pixel onto a vertex of the graph in a
general, the goal of a track detection algorithm is to one-to-one relationship with the pixel intensity as-
extract line patterns of interest from display images signed to the vertex weight. If the edge weights are
that tend to be noisy and of low contrast. Conven- defined as a function of the weights of the vertices
tional image processing techniques are not appropri- that they join, then the edge weight is a measure of
ate because they have been developed for a different similarity between the two vertices, and hence be-
type of images that are characterized by relatively tween the two corresponding pixel intensities. For
high contrast and possess a two-dimensional shape representational purposes, Fig. 2 shows the mapping
and object information. Graph theoretic techniques of a display (data) image onto a graph; actually a
might be more suitable in this context. K-trellis graph (see Section 3) [13,141.

Fig. 2. Transformation of a display Image (artificial) onto a K-trellis graph.

146 S.D. Nikolopnulo.~. G. Samura.~ /Jourd ofSy.srrms Archirwturr 42 (1996/97J 743-760

Having transformed an image onto a graph, we
can view a track as a path through the graph which
has particular values for its vertices and edges.
Specifically, we can define such a path to be one that
minimizes or maximizes a specified cost function.
Thus, we can easily transfer the track detection
problem to the problem of finding the shortest path
through a graph, provided that appropriate values
have been assigned to the edges of the graph (pro-
vided that a “good” cost function is available). The
problem of finding a shortest path trough a graph can
be handled in many ways; a popular one is that of
dynamic programming. We point out that the idea
behind a dynamic programming solution is that small
problems are solved and combined to form a larger
solution, ideal in our case, considering the structure
and the graph representational form of our problem.
However, our goal is not just to find a graph repre-
sentation, but to find one that fits the characteristics
of the problem and in a way simulates its structure. It
is obvious that, a vertex could be linked to any other
vertex, but in our case (see the type of tracks) we
observe that it is only necessary to be linked to its
nearest specific neighbors. These neighbors can not
represent part of the previous or same history line,
and as a matter of that they can represent only a
specific part of the next history line; they should
represent only the closures neighbors of the next
history line. This is a valid claim considering the
nature of the tracks in the problem we deal with.
Formulating our problem in this way leads to a graph
representational form of type trellis. Specifically, an
appropriate trellis variation that we call K-trellis (see
Fig. 3) and which we define in the next section.

Based on the above formulation, we are in a
position to say that even for a display image with k
tracks on it, the problem of detecting these k tracks
in the image can be converted into the problem of
finding k shortest paths (we call them optimal sur-
vivor paths) through a K-trellis. This approach gives
an optimal solution with respect to a cost function
used.

Fig. 3. A K-trellis graph with T = 3, M = 4 and K = 3.

The optimal approach has a major weakness, that
is, its inability to detect a pair of crossing or discon-
tinuous lines in the image. A way to overcome these
weaknesses is to consider sub-optimal solutions. In
this case, the question we should answer is how well
the lines selected by a sub-optimal algorithm fit the
trajectory models (type of lines in the image) that are
given. The algorithms we propose determine local
optimal paths through a K-trellis graph, and there-
fore, the solution given is obviously sub-optimal.
Experimental results, show how “near” to the opti-
mal solution (i.e., to the optimal path given by the
optimal algorithm), the sub-optimal solution is.

Furthermore, in real systems we are interested in
having algorithms that support not only automatic,
but also a very fast detection of line patterns. For
example, if N is a function of the size of the original
graph and its connectivity, then, an O(N ‘) complex-
ity algorithm is nowhere near the real-time through-
put rate and therefore such an algorithm is practi-
cally unable to process more than a limited set of
data. A natural way to increase the speed of the
detection process is to use an ensemble of proces-

S.D. Nikolopoulo.\. G. Sumuru.s /Journal of‘Sy.stems Architecture 42 (1996/ 971 743-760 747

sors. Our graph theoretic approach to the track detec-
tion problem is ideally suited for parallel computa-
tion.

To give a feeling of the difference in time effi-
ciency of the previously described approaches, i.e.,
optimal, sub-optimal and parallel, let us summarize
the asymptotic time and processor complexity of the
algorithms materializing these approaches. More de-
tailed analysis can be found in later sections. Let
T. M be the number of vertices of a K-trellis graph,
where K = 3. The overall asymptotic time complex-
ity of the optimal algorithm which detect one track is
O(K.T.M), while it becomes O(K.T.M*) when
it detects more than one tracks. The overall asymp-
totic time complexity of the sub-optimal algorithms
is O(K. T. M*). In real-time processing the time
complexity is reduced to O(K. L M*), where L is
small enough (in our case L = 6). The overall time
and processor complexities of the parallel optimal
algorithm are O(T . log K + log M 1 and M 2 respec-
tively, 3 I K I M, when it is executed on a CREW-
PRAM. As far as the model CRCW-PRAM is con-
cerned, this algorithm can be executed either in time
O(T + M) with max{ K* . M, M*] processors or in
time O(T) with M3 processors. Finally, the parallel
sub-optimal algorithms can be executed in time O(L
. log K + log M) with T/L. M* processors on a
CREW-PRAM model. When a CRCW-PRAM com-
putational model is available, these algorithms re-
quire O(L + M > time and max{T/.L K * M, T/L .
M *) processors or O(L> time and T/L . M 3 proces-
sors.

3. Graph modeling

In this section, we introduce some graph theoretic
concepts and we establish the notation and terminol-
ogy we shall use throughout this paper, and apply
these concepts in the track direction problem.

3.1. Trellis and K-trellis graphs

A directed graph G = (V, E) is a structure con-
sisting of a finite set of vertices V = (u,, v2, . . . , un)
and a finite set of edges E = {(vi, uj> I ui, uj E V and
u, + u,), where each edge is an ordered pair.

We define a trellis as a directed graph G = (V,
E) with vertices and directed edges that satisfies the
following conditions:

(i) The vertex set V is partitioned into T (mutually
disjoint) subsets V,, V,, . . . , V,, such that IV,1 =
IV,1 = M, 1 I i, j I T.

(ii) Edges connect vertices only of consecutive sub-
sets V, and V, + , , i.e., if (u,, uI) E E, then vi E V,
and v,EV,+,, 1 <HT.

The magnitude T we shall call depth of the
trellis. A K-trellis is a trellis graph with two addi-
tional properties:

(i) It has two more vertices s E V, and r E V,, ,,
such that (s, u,) E E, for every ui E V, and (uj,
r)EE,forevery ui=V,, 1 Ii, j<M.

(ii)The vertex u, of the set V, is connected (where
possible) with K = 2g + 1 vertices (u;-s, . . . ,
u ,7 . ..1 u,,g) of the set V,,,, where 1 <i<M,
llt<Tandg=l,2, (M-1)/2.

The depth of a K-trellis graph will be equal to
T + 2. Fig. 3 presents a K-trellis with T = 4, M = 4
and K = 3. Let G = (V, E) be a K-trellis graph with
IV I = TX M. We shall denote by V,, ,! the union of
t’ - t + 1 consecutive vertex subsets V,, V,, , , . . ,
V,. of the graph, i.e.,

v,.,, = v, u v,, , u . u v,, ,

O<t<t’<T.
Given a subset V , , ,, G V of vertices, we define the

subgraph induced by V,, ,, to be G(V,, ,,) = (V,, ,,,
E(V,, ,,I>, where E(V,, ,,> = {(ui, oj> I(u;, uj) E E and
ui, uj E V,. ,,I. Based on this definition, if G = (V, E)
is a K-trellis graph with IV1 = T. M, then G(V,, T) is
a trellis graph.

A walk in a K-trellis is an alternating sequence of
vertices and edges, i.e.. P = [v,, (v,, v,), u2, . . . ,

(Vk- 1, v,), okI. The lengrh L(P) of a walk is the
number of edges in it. A par/r is a walk in which all
vertices are distinct. For simplicity, we shall denote
the path P by P = (u,. vs. . . ., va} and we shall
refer to U, and vii as firsr and lasr vertices of P,
respectively.

3.2. Weights and metrics

In each vertex v, E V, of a K-trellis graph we
associate two numbers, which we call vertex weighr
and vertex metric and we denote by:

b,(v,) : vertex weight,

Q,(vi) : vertex metric,

where 1 I I I T. Sometimes we shall denote the
vertex weight of b,(v,) by b,(i) or b(i). In a similar
way, in each edge (v,, u,) E E, vi E V, and v, E V,, ,,
we associate two numbers, which we call edge
weight and edge metric and we denote by

w,(vi, vj) : edge weight,

D,(ui , vi) : edge metric,

where 1 I I I T, 1 I i, j I M. As with vertices, in
some cases we shall denote the edge weight w,(u;,
vi> by w,(i, j> or w(i, j> or w;,.

Given a path P in a K-trellis, we define the path
metric F(P) to be the sum of the vertex weights in
the path P, i.e.,

F(P) = c b(v;).
u, E P

where v, E V, and 1 < i i T.

3.3. Edge and path cost

In addition to the above defined edge weights and
metrics, in each edge (v,, vj) E E of a K-trellis,
v,EV, and v,EV,+,, we associate a third number,

which we call edge cost and denote by c,(v,, vj) or
c,(i,j)orc(i,j),l<t_<Tandl<i,j<M.Inthis
paper the cost of each edge is given by

VV~EV, and~(u;,vj) EE. (1)

I= 1,2. . ..) T, where Q and D will be computed in
Section 9. We state here that, in all cases the vertex
metrics of vertices s E V, and r E V,, ,, as well as
the edge metrics of edges (s, vI) E E and (vj, r) E E
are 0, V vi E V, and V vi E V,, i.e.,

Q(s) =Q(r) =O,

D(s,v,)=D(v,,r)=O ~v;EV, andVu,EV,.

Let P={v,, v2, vk} be a path in a K-trellis
graph. The cosr c(P) of a path P through the
K-trellis is defined as

(l./)EP

where c(vi, vj> is the cost of edge (i, j) E E. The
shorfesr path from the vertex vi to vertex v, is a
path P = {vi, vi+ ,, . , vj} with minimum cost.

4. Problem transformation

Each pixel of the display image is mapped onto a
vertex of the K-trellis (except vertices s and r) in a
one-to-one relationship with the pixel intensity as-
signed to the vertex weight b,(v,), for every ui E E.
It is obvious that the problem of track detection is
reduced to the problem of finding a set of vertices in
the K-trellis which minimizes some cost function. It
is important to point out that the quality of the
detection process significantly depends on the cost
function used.

Taking the above into consideration, we define a
line in an image to be any vertex sequence {v,, v2,

S.D. Nikolopoulos. G. Samurcrs / Journd of Systems Architecture 42 (1996 / 97) 743-760 749

. . . , u,} which (8 forms a path P = (u,, u2, . . . , u,},
and (ii) minimizes the following cost function

c(P) = c+;,uj)>

i= I

where ui E V, and 2 I t 5 T.
We formulate the track detection problem as a

graph theoretic, shortest path, problem with a well-
know dynamic programming solution.

5. Single line detection - Dynamic programming

As stated earlier, a K-trellis diagram will be the
graphical representation of a display image. The aim
is to find a path P = (s, u,, u2, . . . , ur, T} through
the K-trellis (from s E V, to vertex r E V,, , >, which
minimizes the cost function defined in Section 4, i.e.,

c(P) =c(s,u,) + ~C(UpU,) +c(u,,r),
i- I

where ui E V, and 1 I i I T.
We define P,, 1 to be the shortest path from vertex

s E V, to vertex u, E V,, with cost c(P,. i), where
t=O, 1, T+ 1. Starting at time t= 1 by

C(P,.r) = b,(u,)

we have

Thus, a new extended path to vertex u, E V, has
cost, that is, the sum of the shortest path from s to
vertex u, E V,_ ,, plus the cost of the edge (u,,
uj) E E.

Recall that the cost c(u,, u,> of the edge (u,,
uj) E E (see Eq. (1 I>, is given by

C(Ui,Uj) =Q(i)-D(ui,uj),

VU,EV, andV(i,j) EE.

t= 1,2. T, where Q and D will be computed in
Section 9, and

Q(s) =Q(r) =O,
D(s.u,)=D(u,,r)=O Vui~V,andVu,~VT.

Thus,

c(p)= ~c(u~;u~)=T~‘C(u~~u~)+{Q~(uj)}

,= I i= I

=Q,(Uj>+ ${Q(‘J;I--D(u,,uI)).
i= 2

From the last equation we have

~(Pt.,)=Qt<u,) +minj-,q<ts,+,e

(4L.J -W,J,))

which is the key equation for updating the shortest
path from t - 1 to t, 1 I t < T. For each j, the
smallest index i for which the minimum is attained,
is given by the argmin function

Yr(U,)=argminj~,~.,.,+,~{c(P,-,.,)-~(ui,uj)}.

The method described above provides a complete
globally optimum track detection in the sense that
the path from vertex s E V,, to vertex r E VT+,
through a K-trellis graph determined is an optimum
solution, 7’2 2. The algorithm which implements the
above method is listed below.

Algorithm DP
1. for j= 1 to M do Ccl, j)=Q(I, j>; A(1,

j) = arbitrary end;
2. for t=2toTdo

forj=l to Mdo
C(t, j) = Q(t, j> + minjen s ;< j+,{C(t -

1, i) - Hi, j)};
Act, j>=argminj_,.i.,+,{C(t- 1, i>-

D(i. j));
end;

end;
3. P(T) = argmin

for t = iI-- * ;o;;t$c;~9 j));

P(t)=A(t+ 1, P(t+ 1))end;
end.

750 S.D. Nikolopou1o.s. G. Sumuru.~ /Journul oj’Systrm,s Architrcrurr 42 (1996/ 97) 743-760

It is easy to see that Step 1 of the algorithm is
executed in time O(M). Step 2 has time complexity
O(K. T. Ml, where 1 I K I M. Clearly Step 3 takes
time O(T). Thus, the overall asymptotic time com-
plexity of the algorithm is O(K. T. M).

6. Optimal survivor paths

Let G(V,, r) be a trellis graph with [VI= T.M.

Two paths Pi = {u,, u2, . . . , Us} and P, = {u’,, u>,

. . I u’,} are said to be mutually exclusive or un-
merged if U, # u’, for all t = 1, 2, . . . , T; otherwise,
they are said to be merged. Similarly, two lines in a
display image are said to be mutually exclusive or
unmerged if they can be represented by two mutu-
ally exclusive paths in a trellis graph.

Bellman’s optimality principle for Dynamic Pro-
gramming [3] states that if a shortest path from
vertex U, E V, to vertex uj E V,, passes through
vertex w E V,, 1 < r < T, then the subpaths from U;
to w and from w to u,, must also be shortest paths.
Based on this principle, we can also state that if P, is
the shortest path from vertex U, = u, E V, to vertex
r E V,, ,, i.e.,

a trellis graph G(V,, r>, contains more than one
un-merged lines. It is then obvious that, if the opti-
mal paths P,, P,, . . , P,, in the graph G(V,, r> are
such that P, n P, n . . . n P, # 0, then the path with
minimum cost, say Pi, is more likely to lie along a
line in the image. We call a path with the previous
property optimal survivor path, i.e.,

c(P,)=min(c(P,)Ij= 1,2 ,..., 4).

Based on the above definition, we can claim that two
optimal survivor paths P, and P,, i.e., P, n P, # 0,
with minimum cost among all optimal survivor paths

in G(V, T), are more likely to lie along two un-
merged lines in the image.

Given a display image with k lines on it, the
problem of detecting the k lines in the image can be
converted into the problem of finding k optimal
survivor paths P,, P,, . . . , Pk, through a trellis
which minimizes the total cost

J= ic(P;).
*= I

P,={u,,u, ,..., u,-]>W,U,. I,..., u,,r>

and is P,’ the shortest path from vertex u’, E V, to
vertex UJ E V,, i.e.,

P/! = (u’,) u; , . . .) w}

We are interested in formulating an algorithm for
finding all possible survivor paths in a trellis graph.
We can do this by using the optimal DP algorithm.
Below we describe an algorithm, which we call OSP
(Optimal Survivor Paths), for computation of all
possible optimal survivor paths of length T - 1 in a
trellis graph G(V,, T).

Algorithm OSP
then the path 1. Find the set S of the M optimal paths P,, P,,

Pj=(u’,,u; ,..., w,u,+ ,,..., +,r}

is the shortest path from vertex u’, E V, to vertex

“EVTT+I7 where ui # us, 1 I i I I - 1 and 1 < t < T.
It follows that, if Pi and Pj are two merged optimal
paths in graph G(V,, 7), i.e.,

Pi n P, z 0

then, paths P, and Pj have the same last vertex.
We suppose that a display image, represented by

. . .) P,, through a trellis G(V,,
r> using optimal algorithm DP,
such that:

(i) path P, has length T - 1, and
(ii) path Pi has first vertex vi E V,, 1 Q i < M.

2. Partition set S into q subsets S,, S,, . . . , S,,
1 I q I M, such that:

(i) S = S, U S, U . . . U S,, 1 < q I M, and
(ii) set Sj contains all optimal paths which

have the same last vertex, 1 I i I

3. Compute the
q.
optimal survivor path from each
subsets S,, .Sz, S,,, l<q<
M.

4, Select the k best optimal survivor path P,. P2,

end.
. , P,, I I ksq.

Let us now compute the time complexity of algo-
rithm OSP (Optimal Survival Paths). It is easy to see
that Step 1 can be executed in time O(K . T. M’)
(see optimal solution of algorithm DP). where 1 I I(
I M. Obviously. the computation of the sets S,, S,.
. . , S,. 1 5 9 I M, has time complexity O(M’>. In
a sequential machine. the operation of finding the
minimum of II numbers required time proportional
to n. Therefore, Step 3 of the algorithm requires
IS,/ + IS,1 + . . . +IS,I = ISI comparison steps, 1 52 q
5 M. Thus, the overall asymptotic time complexity
of the algorithm is O(K. T I M2>.

7. Multiple line detection - Sub-optimal solution

Apart from the fact that algorithm OSP takes a
considerable amount of computing time since T be-
comes very large in some applications, it also has a
major weakness, that is, its inability to detect a pair
of crossing or discontinuous lines in the image. The
reason is obvious, looking at the definition of the
optimal survivor paths and taking into consideration
that algorithm OSP computes the optimal survivor
paths of the whole trellis graph, i.e., paths of length
T. Our objective here is to study methods for the
track detection problem, which overcome this weak-
ness.

7.1. Sub-optimal approach

A way to overcome the above mentioned weak-
nesses is to consider sub-optimal solutions. By the
term “sub-optimal solution” we simply mean that,
instead of finding all optimal survivor paths of length
T in the whole trellis graph, we find all optimal

survivor paths of length L in graphs G(V,, L). G(V,,
zL), _. . . G(V,-,~. rl. In this case, the question we
should answer is how well the lines selected by a
sub-optimal algorithm fit the trajectory models (type
of lines in the image) that are given.

Let G(V,, r) be a trellis graph, and P an optimal
path in graph G(V,, i> which fits a given line in an
image represented by the trellis graph G(V,, T). Let
P, and P, be two optimal paths in graphs G(V,. ,>
and GCV,, ,, ,>, respectively. Suppose that the ver-
tices of the optimal paths P, and P, lie along P. It
is likely that the positions of the vertices of the
optimal path P in G(V,, j) will be close to those in
the set P, U P,. Therefore, we can compute a sub-
optimal path {u,. . . u,) in graph G(V,. i), i <j, by
computing first an optimal path (ui, . . . , w,) in G(V,.
,I. and then an optimal path (wz, . . . , uj} in graph

Cc”,+ 1. ; 1, where i<t<t+ 1 and (w,, w,)EE.
Consequently, we can compute a sub-optimal path
from s E V, to r E VT+, through a K-trellis by
computing the optimal paths {s, . . . , u,}, {u,+ ,, . . . ,
u,). (II/+ ,, . . . , ~~1, . . , {uI-, . . . , ~1 in graphs G(VO,
0, G(V,+,, ,I, G(V,+,~ & G(V,, r+,), revec-
tively.

7.2. Sub-optimal detection algorithms

This approach leads us to formulate sub-optimal
algorithms which have the potential ability to detect
a pair of crossing lines even in the region of the
crossing. Additionally, it is obvious that such an
algorithm is also able to detect discontinued lines.

Let us now focus on a sub-optimal solution of the
track detection problem in order to detect crossing or
discontinuous lines in the image. Given a trellis
graph G(V,. r> with T. M vertices, we partition its
vertex set V,. T into T/L subsets V, L, V, 2L, . . . ,
V r- L, r, each with (L + 1). M vertices (except the
first vertex set V,. L, and possible the last one). We
assume that T/L = [T/L].

Using algorithm OSP, we can find all possible
optimal survivor paths P,, P,, . . . , P, of each

graph G(V,, L), G(V, zL), . . . , G(V,-,, r), i.e., all
paths of each graph with the property

P,nP,z0,

where 1 <q<M. 1 Ii, jlM and i#j.
There are two possible ways to extract lines from

the image:

(1) Using a fixed number of extracting lines.
(2) Using a threshold to extract lines.

These approaches lead us to formulate two differ-
ent track detection sub-optimal algorithms.

Algorithm SuhOSP-k
For each graph G(V,, L), G(VL, zL). . . .

GO’- L ,T). do
1. Compute all possible optimal survivor

paths.
2. Extract the k best optimal survivor paths.

end.

Algorithm SuhOSP-h
For each graph G(V,, L), G(V,, zL), . ,

GO’-, r>, do
1. Compute all possible optimal survivor

paths.
2. Extract all optimal survivor paths, whose

cost metric does not exceed a
threshold determined experi-
mentally.

end.

Both algorithms determine local optimal paths
through a trellis graph, and therefore, the solution
given is obviously sub-optimal. Experimental results,
presented in Section 9, show how “near” to the
optimal solution, i.e., to the optimal path. given by
algorithm OSP, the sub-optimal solution given by the
described algorithms SubOSP-k and SubOSP-h is.

We should comment in advance that algorithm
SubOSP-k is preferable when the number of tracks is
known, as well as when the tracks are represented by

continuous lines. On the other hand. algorithm Sub-
OSP-h is preferable when the number of lines is
unknown, or when the lines are represented by dis-
continuous lines. The cost paid for the SubOSP-h
algorithm’s ability is (i) the a priori determination of
a threshold, and (ii) the unclear processed image.

8. Parallel implementation

In most applications we are interested in design-
ing algorithms that support not only automatic, but
also a very fast detection of line patterns in display
images (i.e., lofargrams). A natural way to increase
the speed of the detection process is to use an
ensemble of processors [4,15]. Obviously, our graph
theoretic approach to the track detection problem is
ideally suited for parallel computation. Therefore, we
turn our attention to the parallel implementation of
the optimal and sub-optimal detection algorithms
proposed in the previous sections.

8. I. Algorithm OSP

We fist describe a parallel implementation of the
optimal algorithm OSP, which hereinafter referred to
as Par-OSP.

Algorithm OSP consists of four steps. In Step 1 it
computes M optimal paths P,, P,, . . . P,w, through
a trellis. This computation can be done by using
algorithm DP to find M optimal path P, from vertex
u,EV, tovertex rEV,+,,i=l,2, M.Letus
consider algorithm DP. Obviously, Step 1 can be
executed in parallel. As far as Step 2 is concerned,
we observe that the computation of C(t, j) depends
on the value of C(t - 1, j), 1 I j I M. On the other
hand, for each t = 2, 3 3 .--7 T, the computation of
the M values C(r, l>, C(t, 21, . . . , C(t. M) can be
executed independently, and therefore, in parallel.
Obviously, the last step of algorithm DP cannot be
executed faster, since different iterations of the for-
loop cannot be performed in parallel. Let us now

implement Step 2 and Step 3 of the algorithm OPS.
We define an M X M matrix L as follows:

if v, is the last vertex of P,

otherwise.

j= 1. 2, M. (Actually. vertex v, is the last but
one vertex of P,; the last is the vertex r.) Obviously,
path P,,,, 1 I m I M, is an optimal survivor path if
and only if

(i) m = argmin{L[i. I], L[i, 21. L[i. MI), and
(ii) L[i, m] + a . 1 I i I M.

Let pow be the set of all Optimal Survivor Paths
computed in Step 3 of algorithm OSP. This basic
operation (find the smallest element in the array L[i,
1 . M 1, 1 I i I M) can be performed in parallel
[6.17]. Finally, in Step 4 the algorithm OSP selects k
best optimal survivor paths of the set Posp. This,
obviously, is equivalent to the problem of selecting
the k-th smallest out of 1 Pospl elements. For this
operation. we invoke a parallel algorithm proposed
by Cole [6].

In order to evaluate the overall complexity of
algorithm Par-OSP, let us compute the complexity of
each step separately. As a model of parallel computa-
tion, we use both the concurrent-read, exclusive-write
(CREW-PRAM) and the concurrent-read, concur-
rent-write (CRCW-PRAM) parallel RAMS [1,9.19].

Sfep I: It is easy to verify that algorithm DP,
which is used by OPS in Step I, can be implemented
on a CREW-PRAM in time O(T. log K) with K. M
processors, where 1 < K I M. Moreover. if we use
an CRCW-PRAM it is also easy to verify that it runs
in time O(T) with O(K’ M) processors, when a
constant time algorithm for finding the minimum on
a CRCW-PRAM is used.

Steps 2 and 3: The operations performed in Steps
2 and 3 can be executed in O(log M) time with M2
processors on a CREW-PRAM model. The same
operations required O(l) time and O(M j> proces-

sors or O(M > time and O(M *) processors, when an
CRCW-PRAM computational model is used.

Srep 4: As we have mentioned, Step 4 selects the
lst, 2nd, k-th best out of 4 optimal survivor
paths. As we have mentioned, we can use the algo-
rithm of Cole [6] which selects the k-th smallest out
of n elements on a EREW-PRAM in time O(log n
log. n) by using n/(log n log 1 n) processors, where
log ̂ n is the least i such that the i-th iterate of the
logarithm function, i.e., log(‘)n. is less that or equal
to 2. Therefore, this step can be executed in time
O(log 4 log * 9) with k. q/clog 9 log * 4) processors
on both, ERCW-PRAM and CRCW-PRAM models,
where 1 < q I M.

Thus, the overall time and processor complexities
of algorithm Par-OSP are OCT. log K + log M > and

M2 respectively, 3 I K I M, when it is executed on
a CREW-PRAM. As far as the model CRCW-PRAM
is concerned, algorithm Par-OSP can be executed
either in time O(T + M) with max(K*. M, M2}
processors or in time O(T) with M’ processors.

X.2. Parallel multiple line detection - Sub-optimal

solution

Despite algorithm Par-OSP behaves linearly with
T (the depth of the K-trellis minus l), it can take a
considerable amount of computing time since T be-
comes very large in some applications. In these
cases, as we have seen in Section 7, instead of a
complete globally optimum solution, a quick sub-op-
timal solution is preferable.

Let us now focus on a parallel sub-optimal solu-
tion to the problem of finding line patterns in a
display image in order to reduce the computational
time needed for this operation. We consider parallel
implementations of the sub-optimal algorithms Sub-
OSP-k and SubOSP-h, described in Section 7. Here-
after, these implementations will be referred to as
Par-SubOSP-k and Par-SubOSP-h, respectively.

Having a parallel implementation of algorithm

OSP, i.e., parallel algorithm Par-OSP. the parallel
implementations of algorithms SubOSP-k and Sub-
OSP-h are straightforward. We recall that. given a
trellis graph G(V,, T > with T * M vertices, algorithm
SubOSP-k extract the k best optimal survivor paths
from T/L graphs G(V,. r>, G(V,. 2L), G(V,-,.
r), each with (L + 1) . M vertices, while algorithm
SubOSP-h extracts all optimal survivor paths whose
cost metric does not exceed a threshold determined
experimentally. Therefore, take into consideration
the time and processor complexities of the algorithm
Par-OSP. we conclude that algorithms Par-SubOSP-k
and Par-SubOSP-h can be executed in time O(L .
log K + log M) with T/L. M2 on a CREW-PRAM
model. When a CRCW-PRAM computational model
is available, these algorithms require O(L + M) time
and max{T/L . K ’ . M, T/L M2} processors or
O(L) time and T/L. M3 processors.

Without a doubt, the previous sub-optimal parallel
algorithms have the benefit to be very fast - they
can operate in almost constant time since L can be
considered small enough - but. they have a disad-
vantage, that is, their unknown detective ability; this
is because the optimal algorithm OSP has unknown
detective ability. Therefore, we are interested in
testing algorithms OSP, SubOSP-k and SubOSP-h on
simulated data in order to determine, first, how well
algorithm OSP detects line patterns in a display
image, next, any significant difference in the perfor-
mance of the optimal algorithm OSP and sub-opti-
mal algorithms SubOSP-k and SubOSP-h, and. fi-
nally, the conditions (e.g., range of values for L and
K) under which sub-optimal algorithms detect at
least as well as an optimal algorithm.

9. Testing the algorithms on simulated data

The performance of the optimal and sub-optimal
algorithms, i.e.. OSP, SubOSP-k and SubOSP-h, is
evaluated by an application to simulated data. The

advantage of simulated data over real data is that the
tracks in the image are precisely known, thus we are
able to assess the algorithms’ performance.

The main points of this section are (i) to show the
detective ability of the proposed algorithms by test-
ing them under various conditions, and (ii) to find
the possible conditions under which the optimal al-
gorithm OSP and the sub-optimal SubOSP-k may
detect identically.

9.1. Simulated data

Display images are generated by cross-correlating
the output of two sensors that each receive a signal,
r,(t) and r2(t) respectively, given by

r,(t) =s(t) +n,(t).

‘z(t) =s(t-d) +n2(t),

where s(t). n,(t) and n2(t) are uncorrelated Gauss-
ian random processes which are observed for a total
time of T seconds and d is the time delay r7.81. The
peaks of the correlograms form particular line pat-
terns in the image.

Four images generated in this way are shown in
Fig. 5(a) and Fig. 5(b) and Fig. 6(a) and Fig. 6(b).
These images have been specially chosen because
they combine all types of line patterns (straight,
curve. unmerged. crossed, continuous and discontin-
uous lines). We have chosen to present display im-
ages with SNR = - 4 and SNR = - 5, since these
images are adequate in showing the directive ability
of the proposed algorithms.

9.2. Computation of vertex and edge metrics

Let us now compute the cost of each edge in a
given K-trellis. As mentioned in Section 3, in this
paper the cost of edges is given as a function of the
metrics Q end D. Let us consider the computation of

S.D. Nikoiopou1o.s. G. Scrmurus / Journd of Sy.\rem.s Architrcrure 42 (1996 / 971 743-760 755

Q and D. The vertex metric Q,(u,) for the vertex
u~EV,, 11i<M, l~r<T,iscomputedby

Q,(i) = (max{ B,) - b,(i))‘, (2)

where B, = Ib,(u,), b,(u,), b,(u,)j.
The edge metric D,(ui, u,) for the edge (u,,

u~)EE, u~EV, and u,EV,+,, 1 <i<M and 1 <t
I T. is computed as follows:

D,(i,i-g) =~~,~~,+,(~-g) +Y&+~(~-g)

+“,,4+*(i-g- 1),

D,(i,j) = ~~~06,+,(i) +~~~b,+~(j), (3)

D,(i,j+j)=MXb,+,(j+g) +~~,~o~r+2(~+g)

+w,,h+2(i+g+1)y

where

w,~=~*‘,(i,i-g)=~,(i,i+g),

w 0 = w,(i,i),

W $!I = W,+,(i-g*i-g- 1)

=w,+,(i+g,i+g+ I),

WxO = w,+,(i-g,i-g) =w!+,(i+g,i+g).

w@J = w,- I (i,i).

Y ” Y 1’ \’
1-g-1 1-Y I j+‘C 1+g+ i

Fig. 4. Edge wetghts wO, wv, lvOO. wee. wc, used in the computa-
tion of the edge metrics D,(I, i- ,y). D,(i. i) and D,(i, i+ g).

Moreover, the edge weights wo, bvy, woo, wpo,

flJg , satisfy the following conditions:

M’,vO + w,p I = w R’

“‘,qo/wx, = we/w, >

w0 = woo *

where j=i-g, i. i+g and I= 1,2,
T (see Fig. 4). Thus, the cost of each edge (i, j) E E
in the K-trellis is given by the formula

c(i,j)=Q(i)-D(i,j), V(i,j)eE,

where Q(i) and D(i, j) are given by Eq. (2) and Eq.
(31, respectively.

9.3. Test conditions

We are interested in testing the sub-optimal algo-
rithms’ performance as a function of signal-to-noise
ratio (SNR) and cost function. For this purpose,
display images were generated with SNR values of
0. -1, - 7 dB. Furthermore, one image has
been generated with only noise. As mentioned ear-
lier, the cost c(i, j) of each edge (i, j> E E is given
as a function of vertex and edge weights. For the
needs of the test, five different sets of edge weights
have been generated as follows.

Let U, be a vertex of the set V,, t = I, 2, . . . ,
T - 1. By definition the vertex u, is connected with
vertices{u,m,q, u,, ~,+,~}oftheset V,,,. We
initially set

w,(i:i) = 1

and, we compute the weights bvi, ,_ p and w,, i+R
using the formula

w,(i.i-g)=w,(i,i+g)=&, ,’

where x is a real number in the interval (0, I) and
g = 1. 2, 3, . . . , A4 - 1. The five sets of edge
weights, called W,, Wz. IV,. are generated using

756 S.D. Nikolopoulos. G. Sumaru.s /Journd c$Sysrems Archirecrurr 42 (I996 / 97) 743-760

values of x = 0.8, 0.6, 0.5, 0.4, 0.2 respectively, i.e.,

w, = (1,0.8,0.40, . ..}

W,= (1,0.6,0.30, . ..)

w,={1,0.5,0.25 ,...I

W,= (1,0.4,0.20, . ..)

w, = (1,0.2,0.10, . ..}

According to these weights, five sets of edge costs,
referred to as S,, S,, . . . , S,, are generated using Eq.
(2) and Eq. (3).

9.4. Experiments

As mentioned above, eight images have been
generated with SNR = 0. - 1, . . . , - 7 dB and one
image with noise only. Both sub-optimal algorithms
were tested in each image with K = 3 and L = 6,
where L is the length of the paths computed by each
algorithm. In all cases, tests were done for each edge
set S,, S,, . . . , S,.

Apart from testing the performance of the sub-op-
timal algorithms SubOSP-k and SubOSP-h, we are
also interested in testing the difference in the perfor-
mance between the optimal algorithm OSP and the
sub-optimal SubOSP-k. For this purpose the gener-
ated display images have only one line presented as
a continuous curved line. The path metric F(P).
defined in Section 3, has been chosen as criterion to

Table I
Optimal algorithm OSP

SNR S, s2 .L $4 S? ~~~~
P ‘TP UCL *P UP ff

0 864.3 8.5 864.3 8.5 864.3 8.5 864.3 8.5 864.3 8.5

-3 216.2 4.9 216.2 4.9 316.2 4.9 216.2 4.9 216.2 4.9
-4 136.5 4.5 136.5 4.5 136.5 4.5 136.5 4.5 136.5 4.5
-5 89.0 4.0 88.3 4.0 88.0 4.0 87.6 4.0 87.1 4.2
-6 60.1 3.2 59.5 3.2 59.1 3.2 58.6 3.3 57.7 3.3
-7 50.9 2.5 50.4 2.5 49.9 2.5 49.4 2.5 48.3 2.6
Noise 44.2 1.4 43.9 I.5 43.6 1.5 43.1 1.6 42.1 1.7

Table 2

Sub-optimal algorithm SubOSP-k; k = I, L = 6

SNR S, SZ s3 s4 s5 ~___

0 864.3 8.5 864.3 8.5 864.3 8.5 864.3 8.5 864.3 8.5

-3 216.2 4.9 216.2 4.9 216.2 4.9 216.2 4.9 216.2 4.9
-4 136.5 4.5 136.5 4.5 136.5 4.5 136.5 4.5 136.5 4.5

-5 88.5 4.2 87.9 4.2 87.7 4.2 87.4 4.2 86.9 4.2
-6 58.2 4.2 57.7 4.4 57.6 4.4 57.7 4.3 56.6 4.1

-7 47.8 3.2 47.8 3.2 47.3 3.1 47.0 3.2 46.3 3.2
Noise 40.8 1.7 40.5 1.8 40.2 1.8 40.0 I.7 36.1 1.8

evaluate the algorithms’ performance. For each value
of SNR. 100 display images were used, each gener-
ated with a different seed. The path metrics for each
sample are given by

u!={F(P,‘)ISNR=i),

a6 = {F(Pi) (noise only},

where P,’ is the path taken by the tested algorithm in
the j-th sample in the image and P,’ is the path
taken in the image with noise only, i = 0, - 1, - 2,
. . . . - 7 and j = 1, 2, 100. Since algorithm
SubOSP-k always computes paths of length L = 6 (it
computes T/L paths of length L = 6), we take F(P,‘)
to be the sum of the path metric of each path.

The values of the path metrics are taken for each
algorithm, i.e., OSP and SubOSP-k, and for each
combination of SNR = 0, - 1. - 2 7 -7 and S,,
i = 1, 2, . . , 5. The mean and standard deviation of
each normal curve (100 sample values of each case)
taken by the algorithm OSP are given in Table 1, and
by the algorithm SubOSP-k are given in Table 2.

9.5. Results

The graphical results show that there is no signifi-
cant difference in the performance of the optimal
algorithm OSP and the sub-optimal algorithm Sub-
OSP-k, when SNR (in dB) belongs to the interval

S.D. Nikolopouio.s. G. Sumuru.s / Jourmd c$Systems Architecture 42 (1996 / 971 743-760 757

[- 4, 0] and L = 6 (see Fig. 5(c)). In other words,
both algorithms have the same detective ability with
K = 3, edge set S,, i = 1, 2, . . . , 5 and SNR = 0,
- 1, - 2, - 3, - 4, when local optimal paths of
length 6 are used to construct sub-optimal paths.
Moreover, in order to verify the graphical results an
approximation of the standard normal distribution
was used. As with the graphical results, these results
showed no difference between the algorithms under
the same conditions, i.e., with K = 3, L = 6, edge
set S;, i=l,2, 5 and SNR=O, -1, -2, -3,
-4. The ability of the sub-optimal algorithms Sub-
OSP-k and SubOSP-h to detect multiple lines is

shown in Fig. .5(c) and Fig. 5(d) and Fig. 6(c) and
Fig. 6(d), respectively.

Algorithm SubOSP-h computes paths of length 6
and accepts these paths whose metric does not ex-
teed a threshold. The algorithm extracts the three
middle vertices of each accepted path. In real appli-
cations the threshold can be determined experimen-
tally in a variety of ways. In this paper, a pre-
processing of data was performed in order to deter-
mine the minimum and maximum value of the path
metric in the sub-images. The results showed in Fig.
6(c) and Fig. 6(d) have been taken with values of a
threshold in the interval [min, max]. Further, we

Algorithm SubOSP-k

(a) A display unage with four conlinuous
tracks: SNR = -4 dB.

(b) A dlsplny mm@ wth four cont~““““s
tracks. SNR = -5 dB.

Cc) Extracted tracks from display imnge,
generared wth SNR = 0. -I. -2. -3. -4 dB

Cdl Extracted tracks from ndlsplay image
generated with SNR = -5 dB. 1.e. (b).

i

Fig. 5. (a) and (b) Display images containin p four continuous tracks. Cc) and Cd) Graphical results (extracted tracks) taken by algorithm

SubOSP-k, with k = 4 Note that the results presented in (c) arc the same for all display images generated with SNR in the range [- 4, 01.

758 S.D. Nikolopoulos, G. Sumuru.s /Journcrl of Systems Architecture 42 (1996/97) 743-760

Algorithm SubOSP-h

(a) A display unage wth crossed and
dwontinuous tracks; SNR = -4 dB

(b) A display image with crossed and
dtscontinuous tracks; SNR = -5 dB

(c) Extracted tracks from a display image
generated with SNR = -4 dF3. 1.e :a).

(d) Extracted tracks from a display image
generated with SNR = -5 dB. i.e. (b)

Fig. 6. (a) and (b) Display images containing four crossed and discontinuous :rachs. (c) and Cd) Graphical results (extracted tracks) taken by

algorithm SubOSP-h. with h = IS and h = 9 respectively.

should point out that some of the tracks extracted
from these images by algorithm SubOSP-h actually
represent false detection. These tracks can potentially
be eliminated through further post-processing. Fi-
nally, we point out that the experimental results
verify the theoretical results reported by Ianniello

[7,81.

10. Conclusions

This paper has given a formulation of the track
detection problem in terms of a directed weighted

graph, and has proposed algorithms for optimal and
sub-optimal solutions based on graph theoretic tech-
niques. The experimental results have shown the
ability of the proposed sub-optimal algorithms to
detect multiple, crossing and discontinuous lines in a
display image. Moreover. the results indicate that the
sub-optimal algorithms can perform at least as well
as a globally optimal algorithm when simulated data
are used. However, work with real data is required
before any definite statements can be made as to
their applicability to target detection.

In closing, it should be mentioned that the sub-op-

S.D. Nikoloppoulo.s. G. Sumuro.s /.I ournul oj‘.Sysrems Archlrecrure 42 (1996 / 971 743-760 759

timal approach to the track detection problem leads
us to formulate sub-optimal parallel algorithms whose
computational times are negligible compared with
global optimal algorithms or even with sub-optimal
ones. As shown, both sub-optimal algorithms pro-
posed in this paper have such features that can easily
be implemented in a parallel process environment.

Acknowledgements

The first author wishes to thank Dr. J. Ianniello of
SACLANT Undersea Research Center for his assis-
tance with various parts of this work and Dr. R.
Strait of Naval Underwater System Center for en-
lightening conversations on this subject.

References

[I] P. Beame and J. Hastad, Optimal bounds for decision prob-

lems on the CRCW PRAM, J. Assoc. Comput. Much. 36

(1989) 643-670.

[2] D.P. Atherton, E. GUI, A. Kountzeris and M.M. Kharbouch,
Tracking multiple targets using parallel processing, IEE Pro-

ceeding.\ 137 (I 990) 225-234.

[3] R.E. Bellman and S.E. Dreyfus, Applred Dynamic Prop-urn-

minx (Princeton University Press, Princeton. 1962).

[4] W.G. Bliss and L.L. Scharf, Algorithms and architectures for
dynamic programming on Markov chains, IEEE Truns. ASSP

37 (1989) m-912.
[5] D. Castanon, Efficient algorithms for finding the K best

paths through a trellis, 1EEE Truns. AES 26 (1990) 405-410.
[6] R. Cole and U. Vishkin. Deterministic coin tossing and

accelerating cascades: Micro and macro techniques for de-
signing parallel algorithms, Proce.wng of’ rhr 18th Annud

ACM Symposium on Theory of’ Compuriq, Berkeley, Cali-
fomta (1986) 206-2 19.

[7] J.P. lanniello, Time delay estimation via cross-correlation in
the presence of large estimation error, /EEE Truns. ASSP 30

(1982) 9981003.
[8] J.P. lanniello, Threshold effects in time delay estimation,

ACSSC 21 (1988) 88-92.

[9] L. Kucera, Parallel computation and conflicts in memory

access, Inf: Process. Lrtt. I4 (I 982) 93-96.
[IO] T.A. Lanfear and A.G. Constantinidis, Graph partitioning

with applications to signal processing, TRI I IO, Imperial

College, Signal Processing Section, 1986.

[I I] H.F. Li. D. Pao and R. Jayakumar, Improvements and sys-

tolic implementation of the hough transformation for straight
line detection, Purrt~m Recr+tion 22 (1989) 697-706.

[121 C.L. Morefield, Application of O-l integer programming to

multitarget tracking problems, IEEE Truns. AC 22 (1977)
302-3 12.

[131 SD. Nikolopoulos and G. Samaras, Sub-optimal approach to

track detection for real-time systems, 2lsr Euromicro Con-

jkncr on Design of Hurdwure und Sojfwum Sysrrms, IEEE

/ CS, Como, Italy (I 995) 230-240.

[141 S.D. Nikolopoulos and A. Pitsillides, Towards network sur-
vivability by finding the K-best paths through a trellis graph,
ICT’96: Internutionul Cor$trence on Tel~cnmmunicutions,

Istanbul, Turkey (1996) 817-821.

[151 C. Savage and .I. Ja’Ja, Fast, efficient parallel algorithms for
some graph problems, SIAM J. Compur. IO (I98 I) 682-691.

[161 L.L. Scharf and H. Elliott, Aspects of dynamic programming
in signal and image processing, fEEE Trans. AC 26 (1981)

1018-1029.
[171 Y. Shiloach and U. Vishkin. Finding the maximum, merging,

and sorting in a parallel computation model, J. Alp-irhms 2

(1981) 88-102.
[181 R.L. Streit and R.F. Barret, Frequency line tracking using

hidden Markov models, IEEE Truns. ASSP 38 (1990) 584-
598.

[I91 U. Vishkin, Implementation of simultaneous memory address
access m model that forbid it, J. Afgorifhms 4 (1983) 45-50.

[20] A. Washburn, On not losing track, IEEE Truns. AC 35

(1990) 852-855.
[2l] J.K. Wolf, A.M. Viterbi and G.S. Dixon, Finding the best set

of K paths through a trellis with applications to multitarget

tracking, /EEE Trans. AES 25 (I 989) 287-296.
[22] L.J. Wu and T.E. Curtis, Practical graph partitioning algo-

rithms for SONAR. Underwater Acoustic Data Processing
(1989) 637-643 (1989).

Stavros D. Nikolopoulos received his
B.Sc. degree (with Honours) in Mathe-
matics from the University of loannina,
Greece, in 1982, his M.Sc. degree in
Computer Science from the University
of Dundee, Scotland, in 1985, and his
Ph.D. degree in Computer Science from
the University of loannina in 1991. He
has worked as researcher at the
SACLANT Undersea Research Centre,
Signal Processing Group, Italy (Re-
search Assistant) and has taught at the
Hellenic Airforce Academy, Greece

(Visiting Professor). He is currently a Faculty member (Lecturer)
in the Computer Science Department at the University of Cyprus,
Cyprus, and an Assistant Professor in the Computer Science
Department at the University of loannina, Greece. His current
research interests focus on graph theory. graph and distributed
algorithms, combinatorial mathematics, parallel and distributed
computation, and distributed transaction processing.

760 S.D. Nikolopoulr~.~. G. Sumurcr.~ / Journul of Syiysrems Architecrure 42 f 1996 / 97) 743-760

He also served on sew
committees.

George Samaras received his Ph.D. in
Computer Science from Rensselaer
Polytechnic Institute. USA. He is cur-
rently an Assistant Professor in the
Computer Science Department of the
University of Cyprus, Cyprus. He was
previously at IBM Research Triangle
Park, USA. He served as the lead archi-
tect of IBM’s distributed commit archi-
tecture (LU6.2 Sync Point). His research
interests include transaction processing,
databases, mobile computing, object-on-
ented technology and real-time systems.

,a1 of IBM’s internal international standard

