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Abstract 

This paper demonstrates how the problem of tracking targets, which appear as either straight or curved lines in 
two-dimensional display images (or data images) can be formulated in terms of a directed weighted graph model and how 
dynamic programming techniques can be efficiently applied to reach an optimal or sub-optimal solution. In general, track 
detection algorithms providing optimal solutions have good detective ability, but most of them suffer from the inability to 
detect discontinuous lines or to resolve efficiently pairs of crossing lines. A sub-optimal solution is provided that efficiently 
overcomes these weaknesses. We focus on modeling the track detection problem in terms of a graph, formulating fast 
sequential/parallel sub-optimal track detection algorithms and testing them on simulated data in order to show their 
detective ability. Moreover. we specify the conditions under which sub-optimal algorithms can perform at least as well as 
their corresponding optimal algorithms. This is significant for the track detection problem where fast, accurate and real-time 
detection is considered a necessity. 

Kry~~rds: Track detection: Display images: Graph modelin g; Shortest paths: Dynamic programming: Parallel implementation 

1. introduction have been published in the literature looking at this 

An important topic in diverse fields (radar, sonar, 
radio-astronomy, etc.) is the detection of targets, 
which appear as either straight or curved lines in 
two-dimensional display images or data images. The 
track detection problem is simply one of trying to 
locate particular line patterns embedded in a noisy 
background in display images. Several algorithms 

problem from different points of view 
[2,4,1 1,12,16.18,20]. Recently. a number of papers 
have been published on this subject using graph 
theoretic approaches [5,10,13,21,22]. 

It is well-known that, any problem that can be 
expressed in terms of a graph can be solved using 
graph theoretic techniques. In signal images, one 
available aspect is the intensity of each pixel. There- 
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fore. an obvious straightforward way to represent an 
image by a graph is as follows: the information of 
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time history records are mapped onto a weighted 
graph such that the vertices of the graph would 
correspond to the individual pixels of the display 
image. Specifically, each pixel of the image becomes 
a vertex in the graph with edges between adjacent 
pixels. Under this formulation, the problem of detec- 
tion tracks is reduced to the problem of finding a set 
of vertices in the graph which minimizes some cost 
function. 

In this paper the track detection problem is formu- 
lated in the above mentioned way. The key to the 
solution is that any path through the graph. i.e., any 
set of vertices, optimizing some cost function gener- 
ates a line. First, based on a well-known dynamic 
programming solution to this problem (Viterbi algo- 
rithm [3,4,16]), we developed a line detection algo- 
rithm, which we call OSP (Optimal Survivor Paths), 
for finding the k best completely unmerged paths 
through a graph. Both algorithms. Viterbi and OSP, 
are characterized by global optimality with respect to 
the cost function used. In general, the complete 
globally optimal algorithms based on the dynamic 
programming approach have good detective ability, 
but most of them suffer from the inability to detect 
discontinuous tracks or to resolve efficiently pairs of 
crossing tracks [21]. In these cases, instead of a 
complete globally optimal solution, a sub-optimal 
solution which may overcome the above weakness is 
preferable. Based on this fact, we formulate sub-opti- 
mal algorithms for the track detection problem and 
we show their detective ability by testing them on 
simulated data. 

Besides detective ability we are also interested in 
time efficiency as well. The sub-optimal algorithms, 
in practice, provide better time efficiency than the 
globally optimal ones. Our sub-optimal formulation 
offers itself nicely to parallelism. Thus, parallel im- 
plementations are also shown for the sub-optimal 
and optimal detection algorithms under both the 
CREW and CRCW computational PRAM models 
[1.9,15,17.191. 

The remainder of the paper is organized as fol- 

lows: Section 2 describes the track detection prob- 
lem, the formulation of the problem and the pro- 
posed solution approaches. Section 3 presents the 
appropriate graph model and provides an introduc- 
tion to graph theoretic tools used throughout the 
paper. Section 4 gives the graph transformation of 
the problem and the cost function used. The descrip- 
tion of two optimal algorithms for single and multi- 
ple track detection is cited in Section 5 and Section 
6, respectively. Sub-optimal solutions are given in 
Section 7. Section 8 shows that our graph theoretic 
approach to the track detection problem is ideally 
suited for parallel computation, and provides parallel 
implementations of the proposed optimal and sub-op- 
timal detection algorithms. Section 9 gives a clear 
indication of the detective ability of the proposed 
algorithms by testing them on the same set of simu- 
lated data. It also shows the conditions under which 
the optimal and sub-optimal algorithms may detect 
identically. Finally, Section IO concludes the paper. 

2. Track detection problem, formulation and solu- 
tions 

In broader terms the problem we consider is that 
of image-processing/feature-extraction. Such a 
problem has applications in the area of automated 
target detection and tracking; an area quite signifi- 
cant and evident in systems such as radar, sonar, 
radio-astronomy. etc. It is well-known that in such 
systems, operators are in danger of being over- 
whelmed by display data. This is indeed a real 
problem considering the size and complexity of these 
systems. Thus, there is obviously a need for track 
detection algorithms that support not only automatic 
but also a fast and accurate detection of tracks to 
assist operators in their task. They usually see noisy 
images. while what they actually need is their noise- 
less representation, that is. they prefer the image of 
Fig. l(b) instead of that of Fig. I(a). 

We have referred to the track detection problem 



~. 

(a) (b) 

Fig. I. (a) A noisy display image. (b) Its noiseless representation. 

-- 

as one of trying to locate particular line patterns In order to identify tracks in display images using 
embedded in a very noisy background. The tracks graph theoretic concepts, the original image must be 
represented by this patterns, usually appear as roughly mapped onto a weighted graph. Such a graph is 
vertical lines although they can also appear as carve composed of a set of vertices connected to each 
or discontinuous lines. Moreover, considering those other by edges where the vertices and edges have 
types of lines, a display image might contain parallel values associated with them. An obvious mapping is 
or crossing line patterns (see Fig. 5 and Fig. 6). In to map each pixel onto a vertex of the graph in a 
general, the goal of a track detection algorithm is to one-to-one relationship with the pixel intensity as- 
extract line patterns of interest from display images signed to the vertex weight. If the edge weights are 
that tend to be noisy and of low contrast. Conven- defined as a function of the weights of the vertices 
tional image processing techniques are not appropri- that they join, then the edge weight is a measure of 
ate because they have been developed for a different similarity between the two vertices, and hence be- 
type of images that are characterized by relatively tween the two corresponding pixel intensities. For 
high contrast and possess a two-dimensional shape representational purposes, Fig. 2 shows the mapping 
and object information. Graph theoretic techniques of a display (data) image onto a graph; actually a 
might be more suitable in this context. K-trellis graph (see Section 3) [ 13,141. 

Fig. 2. Transformation of a display Image (artificial) onto a K-trellis graph. 
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Having transformed an image onto a graph, we 
can view a track as a path through the graph which 
has particular values for its vertices and edges. 
Specifically, we can define such a path to be one that 
minimizes or maximizes a specified cost function. 
Thus, we can easily transfer the track detection 
problem to the problem of finding the shortest path 
through a graph, provided that appropriate values 
have been assigned to the edges of the graph (pro- 
vided that a “good” cost function is available). The 
problem of finding a shortest path trough a graph can 
be handled in many ways; a popular one is that of 
dynamic programming. We point out that the idea 
behind a dynamic programming solution is that small 
problems are solved and combined to form a larger 
solution, ideal in our case, considering the structure 
and the graph representational form of our problem. 
However, our goal is not just to find a graph repre- 
sentation, but to find one that fits the characteristics 
of the problem and in a way simulates its structure. It 
is obvious that, a vertex could be linked to any other 
vertex, but in our case (see the type of tracks) we 
observe that it is only necessary to be linked to its 
nearest specific neighbors. These neighbors can not 
represent part of the previous or same history line, 
and as a matter of that they can represent only a 
specific part of the next history line; they should 
represent only the closures neighbors of the next 
history line. This is a valid claim considering the 
nature of the tracks in the problem we deal with. 
Formulating our problem in this way leads to a graph 
representational form of type trellis. Specifically, an 
appropriate trellis variation that we call K-trellis (see 
Fig. 3) and which we define in the next section. 

Based on the above formulation, we are in a 
position to say that even for a display image with k 
tracks on it, the problem of detecting these k tracks 
in the image can be converted into the problem of 
finding k shortest paths (we call them optimal sur- 
vivor paths) through a K-trellis. This approach gives 
an optimal solution with respect to a cost function 
used. 

Fig. 3. A K-trellis graph with T = 3, M = 4 and K = 3. 

The optimal approach has a major weakness, that 
is, its inability to detect a pair of crossing or discon- 
tinuous lines in the image. A way to overcome these 
weaknesses is to consider sub-optimal solutions. In 
this case, the question we should answer is how well 
the lines selected by a sub-optimal algorithm fit the 
trajectory models (type of lines in the image) that are 
given. The algorithms we propose determine local 
optimal paths through a K-trellis graph, and there- 
fore, the solution given is obviously sub-optimal. 
Experimental results, show how “near” to the opti- 
mal solution (i.e., to the optimal path given by the 
optimal algorithm), the sub-optimal solution is. 

Furthermore, in real systems we are interested in 
having algorithms that support not only automatic, 
but also a very fast detection of line patterns. For 
example, if N is a function of the size of the original 
graph and its connectivity, then, an O( N ‘) complex- 
ity algorithm is nowhere near the real-time through- 
put rate and therefore such an algorithm is practi- 
cally unable to process more than a limited set of 
data. A natural way to increase the speed of the 
detection process is to use an ensemble of proces- 
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sors. Our graph theoretic approach to the track detec- 
tion problem is ideally suited for parallel computa- 
tion. 

To give a feeling of the difference in time effi- 
ciency of the previously described approaches, i.e., 
optimal, sub-optimal and parallel, let us summarize 
the asymptotic time and processor complexity of the 
algorithms materializing these approaches. More de- 
tailed analysis can be found in later sections. Let 
T. M be the number of vertices of a K-trellis graph, 
where K = 3. The overall asymptotic time complex- 
ity of the optimal algorithm which detect one track is 
O(K.T.M), while it becomes O(K.T.M*) when 
it detects more than one tracks. The overall asymp- 
totic time complexity of the sub-optimal algorithms 
is O( K. T. M*). In real-time processing the time 
complexity is reduced to O( K. L M*), where L is 
small enough (in our case L = 6). The overall time 
and processor complexities of the parallel optimal 
algorithm are O(T . log K + log M 1 and M 2 respec- 
tively, 3 I K I M, when it is executed on a CREW- 
PRAM. As far as the model CRCW-PRAM is con- 
cerned, this algorithm can be executed either in time 
O(T + M) with max{ K* . M, M*] processors or in 
time O(T) with M3 processors. Finally, the parallel 
sub-optimal algorithms can be executed in time O(L 
. log K + log M) with T/L. M* processors on a 
CREW-PRAM model. When a CRCW-PRAM com- 
putational model is available, these algorithms re- 
quire O(L + M > time and max{T/.L K * M, T/L . 
M *) processors or O( L> time and T/L . M 3 proces- 
sors. 

3. Graph modeling 

In this section, we introduce some graph theoretic 
concepts and we establish the notation and terminol- 
ogy we shall use throughout this paper, and apply 
these concepts in the track direction problem. 

3.1. Trellis and K-trellis graphs 

A directed graph G = (V, E) is a structure con- 
sisting of a finite set of vertices V = (u,, v2, . . . , un) 
and a finite set of edges E = {(vi, uj> I ui, uj E V and 
u, + u,), where each edge is an ordered pair. 

We define a trellis as a directed graph G = (V, 
E) with vertices and directed edges that satisfies the 
following conditions: 

(i) The vertex set V is partitioned into T (mutually 
disjoint) subsets V,, V,, . . . , V,, such that IV,1 = 
IV,1 = M, 1 I i, j I T. 

(ii) Edges connect vertices only of consecutive sub- 
sets V, and V, + , , i.e., if (u,, uI) E E, then vi E V, 
and v,EV,+,, 1 <HT. 

The magnitude T we shall call depth of the 
trellis. A K-trellis is a trellis graph with two addi- 
tional properties: 

(i) It has two more vertices s E V, and r E V,, ,, 
such that (s, u,) E E, for every ui E V, and (uj, 
r)EE,forevery ui=V,, 1 Ii, j<M. 

(ii)The vertex u, of the set V, is connected (where 
possible) with K = 2g + 1 vertices (u;-s, . . . , 
u ,7 . ..1 u,,g ) of the set V,,,, where 1 <i<M, 
llt<Tandg=l,2, . . . . (M-1)/2. 

The depth of a K-trellis graph will be equal to 
T + 2. Fig. 3 presents a K-trellis with T = 4, M = 4 
and K = 3. Let G = (V, E) be a K-trellis graph with 
IV I = TX M. We shall denote by V,, ,! the union of 
t’ - t + 1 consecutive vertex subsets V,, V,, , , . . , 
V,. of the graph, i.e., 

v,.,, = v, u v,, , u . u v,, , 

O<t<t’<T. 
Given a subset V , , ,, G V of vertices, we define the 

subgraph induced by V,, ,, to be G(V,, ,,) = (V,, ,,, 
E(V,, ,,I>, where E(V,, ,,> = {(ui, oj> I(u;, uj) E E and 
ui, uj E V,. ,,I. Based on this definition, if G = (V, E) 
is a K-trellis graph with IV1 = T. M, then G(V,, T) is 
a trellis graph. 



A walk in a K-trellis is an alternating sequence of 
vertices and edges, i.e.. P = [v,, (v,, v,), u2, . . . , 

(Vk- 1, v,), okI. The lengrh L(P) of a walk is the 
number of edges in it. A par/r is a walk in which all 
vertices are distinct. For simplicity, we shall denote 
the path P by P = (u,. vs. . . ., va} and we shall 
refer to U, and vii as firsr and lasr vertices of P, 
respectively. 

3.2. Weights and metrics 

In each vertex v, E V, of a K-trellis graph we 
associate two numbers, which we call vertex weighr 
and vertex metric and we denote by: 

b,( v,) : vertex weight, 

Q,( vi) : vertex metric, 

where 1 I I I T. Sometimes we shall denote the 
vertex weight of b,(v,) by b,(i) or b(i). In a similar 
way, in each edge (v,, u,) E E, vi E V, and v, E V,, ,, 
we associate two numbers, which we call edge 
weight and edge metric and we denote by 

w,( vi, vj) : edge weight, 

D,( ui , vi) : edge metric, 

where 1 I I I T, 1 I i, j I M. As with vertices, in 
some cases we shall denote the edge weight w,(u;, 
vi> by w,(i, j> or w(i, j> or w;,. 

Given a path P in a K-trellis, we define the path 
metric F(P) to be the sum of the vertex weights in 
the path P, i.e., 

F(P) = c b(v;). 
u, E P 

where v, E V, and 1 < i i T. 

3.3. Edge and path cost 

In addition to the above defined edge weights and 
metrics, in each edge (v,, vj) E E of a K-trellis, 
v,EV, and v,EV,+,, we associate a third number, 

which we call edge cost and denote by c,(v,, vj) or 
c,(i,j)orc(i,j),l<t_<Tandl<i,j<M.Inthis 
paper the cost of each edge is given by 

VV~EV, and~(u;,vj) EE. (1) 

I= 1,2. . ..) T, where Q and D will be computed in 
Section 9. We state here that, in all cases the vertex 
metrics of vertices s E V, and r E V,, ,, as well as 
the edge metrics of edges (s, vI) E E and (vj, r) E E 
are 0, V vi E V, and V vi E V,, i.e., 

Q(s) =Q(r) =O, 

D(s,v,)=D(v,,r)=O ~v;EV, andVu,EV,. 

Let P={v,, v2, . . . . vk} be a path in a K-trellis 
graph. The cosr c(P) of a path P through the 
K-trellis is defined as 

(l./)EP 

where c( vi, vj> is the cost of edge (i, j) E E. The 
shorfesr path from the vertex vi to vertex v, is a 
path P = {vi, vi+ ,, . , vj} with minimum cost. 

4. Problem transformation 

Each pixel of the display image is mapped onto a 
vertex of the K-trellis (except vertices s and r) in a 
one-to-one relationship with the pixel intensity as- 
signed to the vertex weight b,( v,), for every ui E E. 
It is obvious that the problem of track detection is 
reduced to the problem of finding a set of vertices in 
the K-trellis which minimizes some cost function. It 
is important to point out that the quality of the 
detection process significantly depends on the cost 
function used. 

Taking the above into consideration, we define a 
line in an image to be any vertex sequence {v,, v2, 
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. . . , u,} which (8 forms a path P = (u,, u2, . . . , u,}, 
and (ii) minimizes the following cost function 

c(P) = c+;,uj)> 

i= I  

where ui E V, and 2 I t  5 T. 
We formulate the track detection problem as a 

graph theoretic, shortest path, problem with a well- 
know dynamic programming solution. 

5. Single line detection - Dynamic programming 

As stated earlier, a K-trellis diagram will be the 
graphical representation of a display image. The aim 
is to find a path P = (s, u,, u2, . . . , ur, T} through 
the K-trellis (from s E V, to vertex r E V,, , >, which 
minimizes the cost function defined in Section 4, i.e., 

c(P) =c(s,u,) + ~C(UpU,) +c(u,,r), 
i- I 

where ui E V, and 1 I i I T. 
We define P,, 1 to be the shortest path from vertex 

s E V, to vertex u, E V,, with cost c( P,. i), where 
t=O, 1, . . . . T+ 1. Starting at time t= 1 by 

C(P,.r) = b,(u,) 

we have 

Thus, a new extended path to vertex u, E V, has 
cost, that is, the sum of the shortest path from s to 
vertex u, E V,_ ,, plus the cost of the edge (u,, 
uj) E E. 

Recall that the cost c( u,, u,> of the edge ( u,, 
uj) E E (see Eq. (1 I>, is given by 

C(Ui,Uj) =Q(i)-D(ui,uj), 

VU,EV, andV(i,j) EE. 

t= 1,2. . . . . T, where Q and D will be computed in 
Section 9, and 

Q(s )  =Q(r) =O, 
D(s.u,)=D(u,,r)=O Vui~V,andVu,~VT. 

Thus, 

c(p)= ~c(u~;u~)=T~‘C(u~~u~)+{Q~(uj)} 

,= I i= I 

=Q,(Uj>+ ${Q(‘J;I--D(u,,uI)). 
i= 2 

From the last equation we have 

~(Pt.,)=Qt<u,) +minj-,q<ts,+,e 

(4L.J -W,J,)) 

which is the key equation for updating the shortest 
path from t - 1 to t, 1 I t < T. For each j, the 
smallest index i for which the minimum is attained, 
is given by the argmin function 

Yr(U,)=argminj~,~.,.,+,~{c(P,-,.,)-~(ui,uj)}. 

The method described above provides a complete 
globally optimum track detection in the sense that 
the path from vertex s E V,, to vertex r E VT+, 
through a K-trellis graph determined is an optimum 
solution, 7’2 2. The algorithm which implements the 
above method is listed below. 

Algorithm DP 
1. for j= 1 to M do Ccl, j)=Q(I, j>; A(1, 

j) = arbitrary end; 
2. for t=2toTdo 

forj=l to Mdo 
C(t, j) = Q(t, j> + minjen s ;< j+,{C(t - 

1, i) - Hi, j)}; 
Act, j>=argminj_,.i.,+,{C(t- 1, i>- 

D(i. j)); 
end; 

end; 
3. P(T) = argmin 

for t = iI-- * ;o;;t$c;~9 j)); 

P(t)=A(t+ 1, P(t+ 1))end; 
end. 
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It is easy to see that Step 1 of the algorithm is 
executed in time O(M). Step 2 has time complexity 
O( K. T. Ml, where 1 I K I M. Clearly Step 3 takes 
time O(T). Thus, the overall asymptotic time com- 
plexity of the algorithm is O( K. T. M). 

6. Optimal survivor paths 

Let G(V,, r) be a trellis graph with [VI= T.M. 

Two paths Pi = {u,, u2, . . . , Us} and P, = {u’,, u>, 

. . I u’,} are said to be mutually exclusive or un- 
merged if U, # u’, for all t = 1, 2, . . . , T; otherwise, 
they are said to be merged. Similarly, two lines in a 
display image are said to be mutually exclusive or 
unmerged if they can be represented by two mutu- 
ally exclusive paths in a trellis graph. 

Bellman’s optimality principle for Dynamic Pro- 
gramming [3] states that if a shortest path from 
vertex U, E V, to vertex uj E V,, passes through 
vertex w E V,, 1 < r < T, then the subpaths from U; 
to w and from w to u,, must also be shortest paths. 
Based on this principle, we can also state that if P, is 
the shortest path from vertex U, = u, E V, to vertex 
r E V,, ,, i.e., 

a trellis graph G(V,, r>, contains more than one 
un-merged lines. It is then obvious that, if the opti- 
mal paths P,, P,, . . , P,, in the graph G(V,, r> are 
such that P, n P, n . . . n P, # 0, then the path with 
minimum cost, say Pi, is more likely to lie along a 
line in the image. We call a path with the previous 
property optimal survivor path, i.e., 

c(P,)=min(c(P,)Ij= 1,2 ,..., 4). 

Based on the above definition, we can claim that two 
optimal survivor paths P, and P,, i.e., P, n P, # 0, 
with minimum cost among all optimal survivor paths 

in G(V, T), are more likely to lie along two un- 
merged lines in the image. 

Given a display image with k lines on it, the 
problem of detecting the k lines in the image can be 
converted into the problem of finding k optimal 
survivor paths P,, P,, . . . , Pk, through a trellis 
which minimizes the total cost 

J= ic(P;). 
*= I 

P,={u,,u, ,..., u,-]>W,U,. I,..., u,,r> 

and is P,’ the shortest path from vertex u’, E V, to 
vertex UJ E V,, i.e., 

P/! = (u’, ) u; , . . . ) w} 

We are interested in formulating an algorithm for 
finding all possible survivor paths in a trellis graph. 
We can do this by using the optimal DP algorithm. 
Below we describe an algorithm, which we call OSP 
(Optimal Survivor Paths), for computation of all 
possible optimal survivor paths of length T - 1 in a 
trellis graph G(V,, T). 

Algorithm OSP 
then the path 1. Find the set S of the M optimal paths P,, P,, 

Pj=(u’,,u; ,..., w,u,+ ,,..., +,r} 

is the shortest path from vertex u’, E V, to vertex 

“EVTT+I7 where ui # us, 1 I i I I - 1 and 1 < t < T. 
It follows that, if Pi and Pj are two merged optimal 
paths in graph G(V,, 7), i.e., 

Pi n P, z 0 

then, paths P, and Pj have the same last vertex. 
We suppose that a display image, represented by 

. . . ) P,, through a trellis G(V,, 
r> using optimal algorithm DP, 
such that: 

(i) path P, has length T - 1, and 
(ii) path Pi has first vertex vi E V,, 1 Q i < M. 

2. Partition set S into q subsets S,, S,, . . . , S,, 
1 I q I M, such that: 

(i) S = S, U S, U . . . U S,, 1 < q I M, and 
(ii) set Sj contains all optimal paths which 

have the same last vertex, 1 I i I 



3. Compute the 
q. 
optimal survivor path from each 
subsets S,, .Sz, . . . . S,,, l<q< 
M. 

4, Select the k best optimal survivor path P,. P2, 

end. 
. , P,, I I ksq. 

Let us now compute the time complexity of algo- 
rithm OSP (Optimal Survival Paths). It is easy to see 
that Step 1 can be executed in time O(K . T. M’) 
(see optimal solution of algorithm DP). where 1 I I( 
I M. Obviously. the computation of the sets S,, S,. 
. . , S,. 1 5 9 I M, has time complexity O(M’>. In 
a sequential machine. the operation of finding the 
minimum of II numbers required time proportional 
to n. Therefore, Step 3 of the algorithm requires 
IS,/ + IS,1 + . . . +IS,I = ISI comparison steps, 1 52 q 
5 M. Thus, the overall asymptotic time complexity 
of the algorithm is O( K. T I M2>. 

7. Multiple line detection - Sub-optimal solution 

Apart from the fact that algorithm OSP takes a 
considerable amount of computing time since T be- 
comes very large in some applications, it also has a 
major weakness, that is, its inability to detect a pair 
of crossing or discontinuous lines in the image. The 
reason is obvious, looking at the definition of the 
optimal survivor paths and taking into consideration 
that algorithm OSP computes the optimal survivor 
paths of the whole trellis graph, i.e., paths of length 
T. Our objective here is to study methods for the 
track detection problem, which overcome this weak- 
ness. 

7.1. Sub-optimal approach 

A way to overcome the above mentioned weak- 
nesses is to consider sub-optimal solutions. By the 
term “sub-optimal solution” we simply mean that, 
instead of finding all optimal survivor paths of length 
T in the whole trellis graph, we find all optimal 

survivor paths of length L in graphs G(V,, L). G(V,, 
zL), _. . . G(V,-,~. rl. In this case, the question we 
should answer is how well the lines selected by a 
sub-optimal algorithm fit the trajectory models (type 
of lines in the image) that are given. 

Let G(V,, r) be a trellis graph, and P an optimal 
path in graph G(V,, i> which fits a given line in an 
image represented by the trellis graph G(V,, T). Let 
P, and P, be two optimal paths in graphs G(V,. ,> 
and GCV,, ,, ,>, respectively. Suppose that the ver- 
tices of the optimal paths P, and P, lie along P. It 
is likely that the positions of the vertices of the 
optimal path P in G(V,, j) will be close to those in 
the set P, U P,. Therefore, we can compute a sub- 
optimal path {u,. . . u,) in graph G(V,. i), i <j, by 
computing first an optimal path (ui, . . . , w,) in G(V,. 
,I. and then an optimal path (wz, . . . , uj} in graph 

Cc”,+ 1. ; 1, where i<t<t+ 1 and (w,, w,)EE. 
Consequently, we can compute a sub-optimal path 
from s E V, to r E VT+, through a K-trellis by 
computing the optimal paths {s, . . . , u,}, {u,+ ,, . . . , 
u,). (II/+ ,, . . . , ~~1, . . , {uI-, . . . , ~1 in graphs G(VO, 
0, G(V,+,, ,I, G(V,+,~ & . . . . G(V,, r+,), revec- 
tively. 

7.2. Sub-optimal detection algorithms 

This approach leads us to formulate sub-optimal 
algorithms which have the potential ability to detect 
a pair of crossing lines even in the region of the 
crossing. Additionally, it is obvious that such an 
algorithm is also able to detect discontinued lines. 

Let us now focus on a sub-optimal solution of the 
track detection problem in order to detect crossing or 
discontinuous lines in the image. Given a trellis 
graph G(V,. r> with T. M vertices, we partition its 
vertex set V,. T into T/L subsets V, L, V, 2L, . . . , 
V r- L, r, each with (L + 1). M vertices (except the 
first vertex set V,. L, and possible the last one). We 
assume that T/L = [T/L]. 

Using algorithm OSP, we can find all possible 
optimal survivor paths P,, P,, . . . , P, of each 



graph G(V,, L), G(V, zL), . . . , G(V,-,, r), i.e., all 
paths of each graph with the property 

P,nP,z0, 

where 1 <q<M. 1 Ii, jlM and i#j. 
There are two possible ways to extract lines from 

the image: 

(1) Using a fixed number of extracting lines. 
(2) Using a threshold to extract lines. 

These approaches lead us to formulate two differ- 
ent track detection sub-optimal algorithms. 

Algorithm SuhOSP-k 
For each graph G(V,, L), G(VL, zL). . . . 

GO’- L ,T). do 
1. Compute all possible optimal survivor 

paths. 
2. Extract the k best optimal survivor paths. 

end. 

Algorithm SuhOSP-h 
For each graph G(V,, L), G(V,, zL), . , 

GO’-, r>, do 
1. Compute all possible optimal survivor 

paths. 
2. Extract all optimal survivor paths, whose 

cost metric does not exceed a 
threshold determined experi- 
mentally. 

end. 

Both algorithms determine local optimal paths 
through a trellis graph, and therefore, the solution 
given is obviously sub-optimal. Experimental results, 
presented in Section 9, show how “near” to the 
optimal solution, i.e., to the optimal path. given by 
algorithm OSP, the sub-optimal solution given by the 
described algorithms SubOSP-k and SubOSP-h is. 

We should comment in advance that algorithm 
SubOSP-k is preferable when the number of tracks is 
known, as well as when the tracks are represented by 

continuous lines. On the other hand. algorithm Sub- 
OSP-h is preferable when the number of lines is 
unknown, or when the lines are represented by dis- 
continuous lines. The cost paid for the SubOSP-h 
algorithm’s ability is (i) the a priori determination of 
a threshold, and (ii) the unclear processed image. 

8. Parallel implementation 

In most applications we are interested in design- 
ing algorithms that support not only automatic, but 
also a very fast detection of line patterns in display 
images (i.e., lofargrams). A natural way to increase 
the speed of the detection process is to use an 
ensemble of processors [4,15]. Obviously, our graph 
theoretic approach to the track detection problem is 
ideally suited for parallel computation. Therefore, we 
turn our attention to the parallel implementation of 
the optimal and sub-optimal detection algorithms 
proposed in the previous sections. 

8. I. Algorithm OSP 

We fist describe a parallel implementation of the 
optimal algorithm OSP, which hereinafter referred to 
as Par-OSP. 

Algorithm OSP consists of four steps. In Step 1 it 
computes M optimal paths P,, P,, . . . P,w, through 
a trellis. This computation can be done by using 
algorithm DP to find M optimal path P, from vertex 
u,EV, tovertex rEV,+,,i=l,2, . . . . M.Letus 
consider algorithm DP. Obviously, Step 1 can be 
executed in parallel. As far as Step 2 is concerned, 
we observe that the computation of C(t, j) depends 
on the value of C( t - 1, j), 1 I j I M. On the other 
hand, for each t = 2, 3 3 .--7 T, the computation of 
the M values C(r, l>, C(t, 21, . . . , C(t. M) can be 
executed independently, and therefore, in parallel. 
Obviously, the last step of algorithm DP cannot be 
executed faster, since different iterations of the for- 
loop cannot be performed in parallel. Let us now 



implement Step 2 and Step 3 of the algorithm OPS. 
We define an M X M matrix L as follows: 

if v, is the last vertex of P, 

otherwise. 

j= 1. 2, . . . . M. (Actually. vertex v, is the last but 
one vertex of P,; the last is the vertex r.) Obviously, 
path P,,,, 1 I m I M, is an optimal survivor path if 
and only if 

(i) m = argmin{L[i. I], L[i, 21. . . . . L[i. MI), and 
(ii) L[i, m] + a . 1 I i I M. 

Let pow be the set of all Optimal Survivor Paths 
computed in Step 3 of algorithm OSP. This basic 
operation (find the smallest element in the array L[i, 
1 . M 1, 1 I i I M) can be performed in parallel 
[6.17]. Finally, in Step 4 the algorithm OSP selects k 
best optimal survivor paths of the set Posp. This, 
obviously, is equivalent to the problem of selecting 
the k-th smallest out of 1 Pospl elements. For this 
operation. we invoke a parallel algorithm proposed 
by Cole [6]. 

In order to evaluate the overall complexity of 
algorithm Par-OSP, let us compute the complexity of 
each step separately. As a model of parallel computa- 
tion, we use both the concurrent-read, exclusive-write 
(CREW-PRAM) and the concurrent-read, concur- 
rent-write (CRCW-PRAM) parallel RAMS [ 1,9.19]. 

Sfep I: It is easy to verify that algorithm DP, 
which is used by OPS in Step I, can be implemented 
on a CREW-PRAM in time O(T. log K) with K. M 
processors, where 1 < K I M. Moreover. if we use 
an CRCW-PRAM it is also easy to verify that it runs 
in time O(T) with O( K’ M) processors, when a 
constant time algorithm for finding the minimum on 
a CRCW-PRAM is used. 

Steps 2 and 3: The operations performed in Steps 
2 and 3 can be executed in O(log M) time with M2 
processors on a CREW-PRAM model. The same 
operations required O(l) time and O( M j> proces- 

sors or O( M > time and O( M * ) processors, when an 
CRCW-PRAM computational model is used. 

Srep 4: As we have mentioned, Step 4 selects the 
lst, 2nd, . . . . k-th best out of 4 optimal survivor 
paths. As we have mentioned, we can use the algo- 
rithm of Cole [6] which selects the k-th smallest out 
of n elements on a EREW-PRAM in time O(log n 
log. n) by using n/(log n log 1 n) processors, where 
log ̂  n is the least i such that the i-th iterate of the 
logarithm function, i.e., log(‘)n. is less that or equal 
to 2. Therefore, this step can be executed in time 
O(log 4 log * 9) with k. q/clog 9 log * 4) processors 
on both, ERCW-PRAM and CRCW-PRAM models, 
where 1 < q I M. 

Thus, the overall time and processor complexities 
of algorithm Par-OSP are OCT. log K + log M > and 

M2 respectively, 3 I K I M, when it is executed on 
a CREW-PRAM. As far as the model CRCW-PRAM 
is concerned, algorithm Par-OSP can be executed 
either in time O(T + M) with max(K*. M, M2} 
processors or in time O(T) with M’ processors. 

X.2. Parallel multiple line detection - Sub-optimal 

solution 

Despite algorithm Par-OSP behaves linearly with 
T (the depth of the K-trellis minus l), it can take a 
considerable amount of computing time since T be- 
comes very large in some applications. In these 
cases, as we have seen in Section 7, instead of a 
complete globally optimum solution, a quick sub-op- 
timal solution is preferable. 

Let us now focus on a parallel sub-optimal solu- 
tion to the problem of finding line patterns in a 
display image in order to reduce the computational 
time needed for this operation. We consider parallel 
implementations of the sub-optimal algorithms Sub- 
OSP-k and SubOSP-h, described in Section 7. Here- 
after, these implementations will be referred to as 
Par-SubOSP-k and Par-SubOSP-h, respectively. 

Having a parallel implementation of algorithm 



OSP, i.e., parallel algorithm Par-OSP. the parallel 
implementations of algorithms SubOSP-k and Sub- 
OSP-h are straightforward. We recall that. given a 
trellis graph G(V,, T > with T * M vertices, algorithm 
SubOSP-k extract the k best optimal survivor paths 
from T/L graphs G(V,. r>, G(V,. 2L), . . . . G(V,-,. 
r), each with (L + 1) . M vertices, while algorithm 
SubOSP-h extracts all optimal survivor paths whose 
cost metric does not exceed a threshold determined 
experimentally. Therefore, take into consideration 
the time and processor complexities of the algorithm 
Par-OSP. we conclude that algorithms Par-SubOSP-k 
and Par-SubOSP-h can be executed in time O(L . 
log K + log M) with T/L. M2 on a CREW-PRAM 
model. When a CRCW-PRAM computational model 
is available, these algorithms require O(L + M) time 
and max{T/L . K ’ . M, T/L M2} processors or 
O(L) time and T/L. M3 processors. 

Without a doubt, the previous sub-optimal parallel 
algorithms have the benefit to be very fast - they 
can operate in almost constant time since L can be 
considered small enough - but. they have a disad- 
vantage, that is, their unknown detective ability; this 
is because the optimal algorithm OSP has unknown 
detective ability. Therefore, we are interested in 
testing algorithms OSP, SubOSP-k and SubOSP-h on 
simulated data in order to determine, first, how well 
algorithm OSP detects line patterns in a display 
image, next, any significant difference in the perfor- 
mance of the optimal algorithm OSP and sub-opti- 
mal algorithms SubOSP-k and SubOSP-h, and. fi- 
nally, the conditions (e.g., range of values for L and 
K) under which sub-optimal algorithms detect at 
least as well as an optimal algorithm. 

9. Testing the algorithms on simulated data 

The performance of the optimal and sub-optimal 
algorithms, i.e.. OSP, SubOSP-k and SubOSP-h, is 
evaluated by an application to simulated data. The 

advantage of simulated data over real data is that the 
tracks in the image are precisely known, thus we are 
able to assess the algorithms’ performance. 

The main points of this section are (i) to show the 
detective ability of the proposed algorithms by test- 
ing them under various conditions, and (ii) to find 
the possible conditions under which the optimal al- 
gorithm OSP and the sub-optimal SubOSP-k may 
detect identically. 

9.1. Simulated data 

Display images are generated by cross-correlating 
the output of two sensors that each receive a signal, 
r,(t) and r2(t) respectively, given by 

r,(t) =s(t) +n,(t). 

‘z(t) =s(t-d) +n2(t), 

where s(t). n,(t) and n2( t) are uncorrelated Gauss- 
ian random processes which are observed for a total 
time of T seconds and d is the time delay r7.81. The 
peaks of the correlograms form particular line pat- 
terns in the image. 

Four images generated in this way are shown in 
Fig. 5(a) and Fig. 5(b) and Fig. 6(a) and Fig. 6(b). 
These images have been specially chosen because 
they combine all types of line patterns (straight, 
curve. unmerged. crossed, continuous and discontin- 
uous lines). We have chosen to present display im- 
ages with SNR = - 4 and SNR = - 5, since these 
images are adequate in showing the directive ability 
of the proposed algorithms. 

9.2. Computation of vertex and edge metrics 

Let us now compute the cost of each edge in a 
given K-trellis. As mentioned in Section 3, in this 
paper the cost of edges is given as a function of the 
metrics Q end D. Let us consider the computation of 
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Q and D. The vertex metric Q,(u,) for the vertex 
u~EV,, 11i<M, l~r<T,iscomputedby 

Q,(i) = (max{ B,) - b,(i))‘, (2) 

where B, = Ib,(u,), b,(u,), . . . . b,(u,)j. 
The edge metric D,( ui, u,) for the edge (u,, 

u~)EE, u~EV, and u,EV,+,, 1 <i<M and 1 <t 
I T. is computed as follows: 

D,(i,i-g) =~~,~~,+,(~-g) +Y&+~(~-g) 

+“,,4+*(i-g- 1), 

D,(i,j) = ~~~06,+,(i) +~~~b,+~(j), (3) 

D,(i,j+j)=MXb,+,(j+g) +~~,~o~r+2(~+g) 

+w,,h+2(i+g+1)y 

where 

w,~=~*‘,(i,i-g)=~,(i,i+g), 

w 0 = w,(i,i), 

W $!I = W,+,(i-g*i-g- 1) 

=w,+,(i+g,i+g+ I), 

WxO = w,+,(i-g,i-g) =w!+,(i+g,i+g). 

w@J = w,- I (i,i). 

Y ” Y 1’ \’ 
1-g-1 1-Y I  j+‘C 1+g+ i 

Fig. 4. Edge wetghts wO, wv, lvOO. wee. wc, used in the computa- 
tion of the edge metrics D,(I, i- ,y). D,(i. i) and D,(i, i+ g). 

Moreover, the edge weights wo, bvy, woo, wpo, 

flJg , satisfy the following conditions: 

M’,vO + w,p I = w R’ 

“‘,qo/wx, = we/w, > 

w0 = woo * 

where j=i-g, . . . . i. . . . . i+g and I= 1,2, . . . . 
T (see Fig. 4). Thus, the cost of each edge (i, j) E E 
in the K-trellis is given by the formula 

c(i,j)=Q(i)-D(i,j), V(i,j)eE, 

where Q(i) and D(i, j) are given by Eq. (2) and Eq. 
(31, respectively. 

9.3. Test conditions 

We are interested in testing the sub-optimal algo- 
rithms’ performance as a function of signal-to-noise 
ratio (SNR) and cost function. For this purpose, 
display images were generated with SNR values of 
0. -1, . . . . - 7 dB. Furthermore, one image has 
been generated with only noise. As mentioned ear- 
lier, the cost c(i, j) of each edge (i, j> E E is given 
as a function of vertex and edge weights. For the 
needs of the test, five different sets of edge weights 
have been generated as follows. 

Let U, be a vertex of the set V,, t = I, 2, . . . , 
T - 1. By definition the vertex u, is connected with 
vertices{u,m,q, . . . . u,, . . . . ~,+,~}oftheset V,,,. We 
initially set 

w,(i:i) = 1 

and, we compute the weights bvi, ,_ p and w,, i+R 
using the formula 

w,(i.i-g)=w,(i,i+g)=&, ,’ 

where x is a real number in the interval (0, I) and 
g = 1. 2, 3, . . . , A4 - 1. The five sets of edge 
weights, called W,, Wz. . . . . IV,. are generated using 
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values of x = 0.8, 0.6, 0.5, 0.4, 0.2 respectively, i.e., 

w, = (1,0.8,0.40, . ..} 

W,= (1,0.6,0.30, . ..) 

w,={1,0.5,0.25 ,...I 

W,= (1,0.4,0.20, . ..) 

w, = (1,0.2,0.10, . ..} 

According to these weights, five sets of edge costs, 
referred to as S,, S,, . . . , S,, are generated using Eq. 
(2) and Eq. (3). 

9.4. Experiments 

As mentioned above, eight images have been 
generated with SNR = 0. - 1, . . . , - 7 dB and one 
image with noise only. Both sub-optimal algorithms 
were tested in each image with K = 3 and L = 6, 
where L is the length of the paths computed by each 
algorithm. In all cases, tests were done for each edge 
set S,, S,, . . . , S,. 

Apart from testing the performance of the sub-op- 
timal algorithms SubOSP-k and SubOSP-h, we are 
also interested in testing the difference in the perfor- 
mance between the optimal algorithm OSP and the 
sub-optimal SubOSP-k. For this purpose the gener- 
ated display images have only one line presented as 
a continuous curved line. The path metric F(P). 
defined in Section 3, has been chosen as criterion to 

Table I 
Optimal algorithm OSP 

SNR S, s2 .L $4 S? ~~~~ 
P ‘TP UCL *P UP ff 

0 864.3 8.5 864.3 8.5 864.3 8.5 864.3 8.5 864.3 8.5 

-3 216.2 4.9 216.2 4.9 316.2 4.9 216.2 4.9 216.2 4.9 
-4 136.5 4.5 136.5 4.5 136.5 4.5 136.5 4.5 136.5 4.5 
-5 89.0 4.0 88.3 4.0 88.0 4.0 87.6 4.0 87.1 4.2 
-6 60.1 3.2 59.5 3.2 59.1 3.2 58.6 3.3 57.7 3.3 
-7 50.9 2.5 50.4 2.5 49.9 2.5 49.4 2.5 48.3 2.6 
Noise 44.2 1.4 43.9 I.5 43.6 1.5 43.1 1.6 42.1 1.7 

Table 2 

Sub-optimal algorithm SubOSP-k; k = I, L = 6 

SNR S, SZ s3 s4 s5 ~___ 

0 864.3 8.5 864.3 8.5 864.3 8.5 864.3 8.5 864.3 8.5 

-3 216.2 4.9 216.2 4.9 216.2 4.9 216.2 4.9 216.2 4.9 
-4 136.5 4.5 136.5 4.5 136.5 4.5 136.5 4.5 136.5 4.5 

-5 88.5 4.2 87.9 4.2 87.7 4.2 87.4 4.2 86.9 4.2 
-6 58.2 4.2 57.7 4.4 57.6 4.4 57.7 4.3 56.6 4.1 

-7 47.8 3.2 47.8 3.2 47.3 3.1 47.0 3.2 46.3 3.2 
Noise 40.8 1.7 40.5 1.8 40.2 1.8 40.0 I.7 36.1 1.8 

evaluate the algorithms’ performance. For each value 
of SNR. 100 display images were used, each gener- 
ated with a different seed. The path metrics for each 
sample are given by 

u!={F(P,‘)ISNR=i), 

a6 = {F( Pi) (noise only}, 

where P,’ is the path taken by the tested algorithm in 
the j-th sample in the image and P,’ is the path 
taken in the image with noise only, i = 0, - 1, - 2, 
. . . . - 7 and j = 1, 2, . . . . 100. Since algorithm 
SubOSP-k always computes paths of length L = 6 (it 
computes T/L paths of length L = 6), we take F(P,‘) 
to be the sum of the path metric of each path. 

The values of the path metrics are taken for each 
algorithm, i.e., OSP and SubOSP-k, and for each 
combination of SNR = 0, - 1. - 2 7 . . . . -7 and S,, 
i = 1, 2, . . , 5. The mean and standard deviation of 
each normal curve ( 100 sample values of each case) 
taken by the algorithm OSP are given in Table 1, and 
by the algorithm SubOSP-k are given in Table 2. 

9.5. Results 

The graphical results show that there is no signifi- 
cant difference in the performance of the optimal 
algorithm OSP and the sub-optimal algorithm Sub- 
OSP-k, when SNR (in dB) belongs to the interval 
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[ - 4, 0] and L = 6 (see Fig. 5(c)). In other words, 
both algorithms have the same detective ability with 
K = 3, edge set S,, i = 1, 2, . . . , 5 and SNR = 0, 
- 1, - 2, - 3, - 4, when local optimal paths of 
length 6 are used to construct sub-optimal paths. 
Moreover, in order to verify the graphical results an 
approximation of the standard normal distribution 
was used. As with the graphical results, these results 
showed no difference between the algorithms under 
the same conditions, i.e., with K = 3, L = 6, edge 
set S;, i=l,2, . . . . 5 and SNR=O, -1, -2, -3, 
-4. The ability of the sub-optimal algorithms Sub- 
OSP-k and SubOSP-h to detect multiple lines is 

shown in Fig. .5(c) and Fig. 5(d) and Fig. 6(c) and 
Fig. 6(d), respectively. 

Algorithm SubOSP-h computes paths of length 6 
and accepts these paths whose metric does not ex- 
teed a threshold. The algorithm extracts the three 
middle vertices of each accepted path. In real appli- 
cations the threshold can be determined experimen- 
tally in a variety of ways. In this paper, a pre- 
processing of data was performed in order to deter- 
mine the minimum and maximum value of the path 
metric in the sub-images. The results showed in Fig. 
6(c) and Fig. 6(d) have been taken with values of a 
threshold in the interval [min, max]. Further, we 

Algorithm SubOSP-k 

(a) A display unage with four conlinuous 
tracks: SNR = -4 dB. 

(b) A dlsplny mm@ wth four cont~““““s 
tracks. SNR = -5 dB. 

Cc) Extracted tracks from display imnge, 
generared wth SNR = 0. -I. -2. -3. -4 dB 

Cdl Extracted tracks from ndlsplay image 
generated with SNR = -5 dB. 1.e. (b). 

i 

Fig. 5. (a) and (b) Display images containin p four continuous tracks. Cc) and Cd) Graphical results (extracted tracks) taken by algorithm 

SubOSP-k, with k = 4 Note that the results presented in (c) arc the same for all display images generated with SNR in the range [ - 4, 01. 
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Algorithm SubOSP-h 

(a) A display unage wth crossed and 
dwontinuous tracks; SNR = -4 dB 

(b) A display image with crossed and 
dtscontinuous tracks; SNR = -5 dB 

(c) Extracted tracks from a display image 
generated with SNR = -4 dF3. 1.e :a). 

(d) Extracted tracks from a display image 
generated with SNR = -5 dB. i.e. (b) 

Fig. 6. (a) and (b) Display images containing four crossed and discontinuous :rachs. (c) and Cd) Graphical results (extracted tracks) taken by 

algorithm SubOSP-h. with h = IS and h = 9 respectively. 

should point out that some of the tracks extracted 
from these images by algorithm SubOSP-h actually 
represent false detection. These tracks can potentially 
be eliminated through further post-processing. Fi- 
nally, we point out that the experimental results 
verify the theoretical results reported by Ianniello 

[7,81. 

10. Conclusions 

This paper has given a formulation of the track 
detection problem in terms of a directed weighted 

graph, and has proposed algorithms for optimal and 
sub-optimal solutions based on graph theoretic tech- 
niques. The experimental results have shown the 
ability of the proposed sub-optimal algorithms to 
detect multiple, crossing and discontinuous lines in a 
display image. Moreover. the results indicate that the 
sub-optimal algorithms can perform at least as well 
as a globally optimal algorithm when simulated data 
are used. However, work with real data is required 
before any definite statements can be made as to 
their applicability to target detection. 

In closing, it should be mentioned that the sub-op- 
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timal approach to the track detection problem leads 
us to formulate sub-optimal parallel algorithms whose 
computational times are negligible compared with 
global optimal algorithms or even with sub-optimal 
ones. As shown, both sub-optimal algorithms pro- 
posed in this paper have such features that can easily 
be implemented in a parallel process environment. 
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