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Abstract: Software watermarking involves embedding a unique identifier or, equivalently, a watermark value, within a
software to discourage software theft; towards the embedding process, several graph theoretic watermarking
algorithmic techniques encode the watermark values as graph structures and embed them in application pro-
grams. Recently, we presented an efficient codec system for encoding a watermark number w as a reducible
permutation graph F [π∗] through the use of self-inverting permutations π∗. In this paper, we propose a dy-
namic watermarking model for embedding the watermark graph F [π∗] into an application program P. The
main idea behind the proposed watermarking model is a systematic use of appropriate calls of specific func-
tions of the program P. More precisely, our model uses the dynamic call-graph G(P, Ikey) of the program P,
taken by the specific input Ikey, and the graph F [π∗], and produces the watermarked program P∗ having the
following key property: its dynamic call-graph G(P∗, Ikey) and the reducible permutation graph F [π∗] are iso-
morphic graphs. Within this idea the program P∗ is produced by only altering appropriate real-calls of specific
functions of the input program P. Moreover, the proposed watermarking model incorporates such properties
which cause it resilient to attacks.

1 INTRODUCTION

The rapid growth of World Wide Web users, the ease
of distributing fast and in the original form digital
content through internet, as well as the lack of techni-
cal measures to assure the intellectual property right
of owners, has led to the increasing of copyright in-
fringement. Digital watermarking is a technique for
protecting the intellectual property of any digital con-
tent. The idea of digital watermarking is the embed-
ding of a unique identifier into the digital image, au-
dio, or video data, software and text through the intro-
duction of errors not detectable by human perception
(Cox et al., 1996).

According to the recent Business Software Al-
liance (BSA) global software piracy study (BSA,
2011) over half of the worlds personal computer users
– 57 percent – admit they pirate software. What is
more, as the price of hardware drops and the price
of licensed software goes up, piracy becomes more
popular and lucrative. This fact has led to a more sys-
tematic work on protecting the intellectual property as
can be seen from a recent research of World Intellec-

tual Property Organization (WIPO) where there is a
growth of intellectual property filings (WIPO, 2012).

Software Watermarking. Although digital water-
marking has made considerable progress and be-
come a popular technique for copyright protection
of multimedia information (Cox et al., 1996), re-
search on software watermarking has recently re-
ceived sufficient attention. The patent by Davidson
and Myhrvold (Davidson and Myhrvold, 1996) pre-
sented the first published software watermarking al-
gorithm, where and other patents have been published
lately (Rodriguez et al., 2010; Collberg et al., 2011;
Horne et al., 2012). The major software watermark-
ing algorithms currently available are based on sev-
eral techniques, among which the register allocation
(XiaoCheng and Zhiming, 2010), spread-spectrum
(Zhang et al., 2011), opaque predicate (Arboit, 2002),
abstract interpretation (Cousot and Cousot, 2004), dy-
namic path techniques (Collberg et al., 2004), code re-
orderings (Sharma et al., 2011) (Curran et al., 2003;
Grover, 1997; Monden et al., 2000; Nagra and Thom-
borson, 2004; Qu and Potkonjak, 1998; Stern et al.,
1999); see also, Collberg and Nagra (Collberg and



Nagra, 2010) and (Zhang et al., 2003; Zhu et al.,
2005; Sharma et al., 2011; Zhang et al., 2009) for an
exposition of the main results.

The software watermarking problem can be de-
scribed as the problem of embedding a structure w
into a program P and, thus, producing a new pro-
gram Pw, such that w can be reliably located and ex-
tracted from Pw even after Pw has been subjected to
code transformations such as translation, optimization
and obfuscation (Myles and Collberg, 2006). More
precisely, given a program P, a watermark w, and
a key k, the software watermarking problem can be
formally described by the following two functions:
embed(P,w,k)→ Pw and extract(Pw,k)→ w.

There are two main categories of watermarking al-
gorithms namely static and dynamic algorithms (Coll-
berg and Thomborson, 1999). A static watermark is
stored inside program code in a certain format, and
it does not change during the program execution. A
dynamic watermark is built during program execu-
tion, perhaps only after a particular sequence of in-
put. It might be retrieved by analyzing the data struc-
tures built when watermarked program is running. In
other cases, tracing the program execution may be re-
quired. Further discussion of static and/or dynamic
watermarking issues can be found in (Davidson and
Myhrvold, 1996; Moskowitz and Cooperman, 1996;
Venkatesan et al., 2001).

Having designed a static or dynamic software wa-
termarking algorithm for embedding a watermark w
in to an application program P, producing thus the
watermarked program Pw, it is very important to eval-
uate the watermarking algorithm under various cri-
teria in order to gain information about its practical
behavior. A software watermarking algorithm can be
evaluated using several criteria (Collberg et al., 2009);
we mention some of the most important:

• Data rate,

• Embedding overhead,

• Resistance to detection (stealth), and

• Resilience against transformations.

Graph-based Codecs and Attacks. Recently, sev-
eral software watermarking algorithms have been ap-
peared in the literature that encode watermarks as
graph structures. In general, such encodings make
use of an encoding function encode which con-
verts a watermarking number w into a graph G,
encode(w) → G, and also of a decoding function
decode that converts the graph G into the num-
ber w, decode(G) → w; we usually call the pair
(encode,decode)G as graph codec system (Collberg
et al., 2003). From a graph-theoretic point of view,

we are looking for a class of graphs G and a corre-
sponding codec (encode,decode)G with the follow-
ing properties which cause them resilience to attacks:

• Appropriate graph types: Graphs in G should be
directed having such properties, i.e., nodes with
small outdegree, so that matching real program
graphs;

• High resiliency: The function decode(G) should
be insensitive to small changes of G, i.e., inser-
tions or deletions of a constant number of nodes
or/and edges; that is, if G ∈ G and decode(G)→
w then decode(G′)→ w with G′ ≈ G;

• Small size: The size |Pw| − |P| of the embedded
watermark should be small;

• Efficient codecs: The functions encode and
decode should be computed in polynomial time.

Related Work. In 1996, Davidson and Myhrvold
(Davidson and Myhrvold, 1996) proposed the first
software watermarking algorithm which is static and
embeds the watermark by reordering the basic blocks
of a control flow-graph; note that a static watermark
is stored inside program code in a certain format
and it does not change during the program execution.
Based on this idea, Venkatesan, Vazirani and Sinha
(Venkatesan et al., 2001) proposed the first graph-
based software watermarking algorithm which em-
beds the watermark by extending a method’s control
flow-graph through the insertion of a directed sub-
graph; it is also a static algorithm and is called VVS
or GTW. In (Venkatesan et al., 2001) the construc-
tion of a directed graph G (or, watermark graph G) is
not discussed. Collberg et al. (Collberg et al., 2009)
proposed an implementation of GTW, which they call
GTWsm, and it is the first publicly available imple-
mentation of the algorithm GTW. In GTWsm the wa-
termark is encoded as a reducible permutation graph
(RPG) (Collberg et al., 2003), which is a reducible
control flow-graph with maximum out-degree of two,
mimicking real code. Note that, for encoding integers
the GTWsm method uses only those permutations that
are self-inverting. The first dynamic watermarking al-
gorithm (CT) was proposed by Collberg and Thom-
borson (Collberg and Thomborson, 1999); it embeds
the watermark through a graph structure which is built
on a heap at runtime.

Recently, the authors of this paper (authors’ pa-
pers 2010 and 2011) extended the class of soft-
ware watermarking algorithms and graph structures
by proposing an efficient and easily implemented
codec system for encoding watermark numbers as re-
ducible permutation flow-graphs. They presented an
algorithm which encodes a watermark number w as



self-inverting permutation π∗ and algorithms which
encode the permutation π∗ as a reducible permutation
flow-graph F [π∗].

Our Contribution. Recently, we presented effi-
cient and easily implemented algorithms for encoding
numbers as reducible permutation flow-graphs (or, for
short, RPG) through the use of self-inverting permu-
tations (or, for short, SiP). More precisely, we have
designed an efficient method for encoding integers as
self-inverting permutations (authors’ papers 2010 and
2011), and algorithms for encoding a self-inverting
permutation π∗ into a reducible permutation flow-
graph F [π∗]; the graph F [π∗] incorporates properties
capable to match real program graphs, that is, it does
not differ from the graph data structures built by real
programs since its maximum outdegree does not ex-
ceed two and it has a unique root node so the program
can reach other nodes from the root node.

In this paper, we propose a dynamic watermark-
ing model for embedding the watermark graph F [π∗]
into an application program P. The main idea behind
the proposed watermarking model is a systematic use
of appropriate calls of specific functions of the pro-
gram P. More precisely, our model uses the dynamic
call-graph G(P, Ikey) of the program P, taken by the
specific input Ikey, and the graph F [π∗], and produces
the watermarked program P∗ having the following
key property: its dynamic call-graph G(P∗, Ikey) and
the reducible permutation graph F [π∗] are isomor-
phic graphs. Within this idea the program P∗ is pro-
duced by only altering appropriate real-calls of spe-
cific functions of the input program P. Moreover,
the proposed watermarking model incorporates such
properties which cause it resilient to attacks.

Road Map. The paper is organized as follows: In
Section 2 we establish the notation and related termi-
nology, and present background results. In Section 3
we present our dynamic watermarking model; we
first describe its data and operational components and
then the embedding algorithm Encode SIP.to.RPG
and the extracting algorithm Encode SIP.to.RPG. Fi-
nally, in Section 4 we conclude the paper and discuss
properties of our watermarking model and possible
future extensions.

2 BACKGROUND RESULTS

In this section, we present basic components and
background results that are used in the design of our
watermarking model. In particular, we present the
main components namely self-inverting permutations
(or, for short, SiP) and reducible permutation graphs

(or, for short, RPG) of our previous work on encoding
numbers as graph structures. In fact, we concentrate
on the properties of the RPG F [π∗] which encodes a
SiP π∗ and also on the encoding and extracting algo-
rithms. We also briefly discuss properties of dynamic
call-graphs which are used as key-objects in our wa-
termarking model for embedding the graph F [π∗] into
an application program.

2.1 Encode Numbers as RPGs

We consider finite graphs with no multiple edges. For
a graph G, we denote by V (G) and E(G) the vertex
set and edge set of G, respectively. We also consider
permutations over the set Nn = {1,2, . . . ,n}.

A. Self-inverting Permutation (SiP)

Let π be a permutation over the set Nn. We think of
permutation π as a sequence (π1,π2, . . . ,πn), so, for
example, the permutation π = (1,4,2,7,5,3,6) has
π1 = 1, π2 = 4, etc. Notice that π−1

i is the posi-
tion in the sequence of the number i; in our example,
π−1

4 = 2, π−1
7 = 4, π−1

3 = 6, etc.

Definition 2.1. Let π = (π1,π2, . . . ,πn) be a permu-
tation over the set Nn. The inverse of π is the permu-
tation τ = (τ1,τ2, . . . ,τn) with τπi = πτi = i. A self-
inverting permutation (or, involution) is a permutation
that is its own inverse: ππi = i.

Notation 2.1. Throughout the paper we denote a self-
inverting permutation π over the set Nn as π∗;

By definition, every permutation has a unique in-
verse, and the inverse of the inverse is the original
permutation. Clearly, a permutation is a self-inverting
permutation iff all its cycles are of length 1 or 2; here-
after, we shall denote a 2-cycle by c = (x,y) and by
1-cycle as c = (x), or, equivalently, c = (x,x).

B. Reducible Permutation Graphs (RPG)

A flow-graph is a directed graph F with an initial node
s from which all other nodes are reachable. A directed
graph G is strongly connected when there is a path
x → y for all nodes x, y in V (G). A node u is an entry
for a subgraph H of the graph G when there is a path
p = (y1,y2, . . . ,yk,x) such that p∩H = {x}.

Definition 2.2. A flow-graph is reducible when it
does not have a strongly connected subgraph with two
(or more) entries.

There are at least three other equivalent defini-



tions, as Theorem 2.1 shows. Those definitions use
a few more graph-theoretic concepts. An edge (x,x)
(for some node x) is a cycle-edge. A depth first search
(DFS) of a flow-graph partitions its edges into tree
edges (making up a spanning tree known as a DFS
tree), forward edges (pointing to a successor in the
spanning tree), back edges (pointing to a predeces-
sor in the spanning tree, plus cycle-edges), and cross
edges (the others). Tree edges, forward edges, and
cross edges form a dag known as a DFS dag.

Theorem 2.1. (Hecht and Ullman, 1972; Hecht and
Ullman, 1974): Let F be a flow-graph. The following
three statements are equivalent:

(1) the graph F is reducible;

(2) the graph F has a unique DFS dag;

(3) the graph F can be transformed into a single node
by repeated application of the transformations T1
and T2, where T1 removes a cycle-edge, and T2
picks a non-initial node y that has only one in-
coming edge and glue nodes x and y.

The reducible permutation graph F [π∗] is directed
with descending ordering on its nodes V (G) = {s =
un+1,un, . . . ,u1,u0 = t}. Throughout the paper, we
shall call the edge (ui,u j) forward if i > j while we
shall call (ui,u j) backward if i < j.

C. Codec Algorithms

In (authors’ paper, 2010) we introduced the no-
tion of bitonic permutations and we presented
two algorithms, namely Encode W.to.SiP and
Decode SiP.to.W, for encoding an integer w into an
self-inverting permutation π∗ and extracting it from
π∗; see also (authors paper, 2011) . We have actually
proved the following results.

Theorem 2.2. Let w be an integer and let b1b2 · · ·bn
be the binary representation of w. The algorithm
Encode W.to.SiP encodes the number w in a self-
inverting permutation π∗ of length 2n+1 in O(n) time
and space.

Theorem 2.3. Let π∗ be a self-inverting permuta-
tion of length n which encodes an integer w using
the algorithm Encode W.to.SiP. The algorithm De-
code SiP.to.W correctly decodes the permutation π∗

in O(n) time and space.

Recently, we have presented an efficient and easily
implemented algorithm for encoding numbers as re-
ducible permutation flow-graphs through the use of
self-inverting permutations (authors’ paper, 2012).

π∗ = (4, 7, 6, 1, 5, 3, 2)

67 5 4 3 2 1 t

F [π∗]

s

SiP.to.RPG RPG.to.SiP

The watermark number w = 4

W.to.SiP SiP.to.W

Figure 1: The main data components used by our codec
algorithms (i.e., watermark w, SiP π∗, and RPG F [π∗]) and
a flow of the process of encoding a watermark number w
into the graph F [π∗] and extracting it from F [π∗].

In particular, we have proposed the algo-
rithm Encode SiP.to.RPG, which encodes the self-
inverting permutation π∗ as a reducible permutation
flow-graph F [π∗] by exploiting domination relations
on the elements of π∗ and using an efficient DAG
representation of π∗. We also proposed the decod-
ing algorithm Decode RPG.to.SIP, which extract the
self-inverting permutation π∗ from F [π∗] by convert-
ing first the graph F [π∗] into a directed tree T [π∗] and
then applying DFS-search on T [π∗].

The whole encoding process takes O(n) time and
requires O(n) space, where n is the length of the per-
mutation π∗. The decoding process takes time and
space linear in the size of the flow-graph F [π∗], that
is, the algorithm Decode RPG.to.SIP takes O(n) time
and space. Our results presented in (authors’ paper,
2012) are summarized in the following theorems.

Theorem 2.4. Let π∗ be a self-inverting permutation
over the set Nn. The algorithm Encode SiP.to.RPG
encodes the permutation π∗ into a reducible permuta-
tion graph F [π∗] in O(n) time and space.

Theorem 2.5. Let F [π∗] be a reducible permutation
graph of order O(n) produced by the algorithm En-
code SiP.to.RPG. The algorithm Encode RPG.to.SiP
correctly extracts the permutation π∗ from F [π∗] in
O(n) time and space.

Figure 1 depicts the main data components used
by our codec algorithms, i.e., the watermark number



w, the SiP π∗, and the RPG F [π∗]. The same figure
shows a flow of the process of encoding a watermark
number w into the graph F [π∗] and extracting it from
F [π∗] through the use of self-inverting permutations.

2.2 Dynamic Call-graphs

A call-graph is a directed graph that represents calling
relationships between program units in a computer
program. Specifically, the nodes of a call-graph rep-
resent functions, procedures, classes, or similar pro-
gram units and each edge ( fi, f j) indicates that func-
tion fi calls function f j; function fi is called caller
and function f j is called callee.

Call-graphs can be divided in two main classes of
graphs, namely static and dynamic.

A static call-graph is the structure describing those
invocations that could be made from one program unit
to another in any possible execution of the program
(Xie and Notkin, 2002). The static call-graph can be
determined from the program source code; we men-
tion that, its construction is a time consuming process
specifically in the case of large scale softwares (Gra-
ham et al., 1982).

A dynamic call-graph G is a directed graph that
includes invocations of caller–callee pairs, over an ex-
ecution of the program P. A dynamic call-graph can
be considered as one instance of the corresponding
static call-graph for a specific input sequence I. The
call-graph G is the key data structure that dynamic op-
timizers use to analyze and optimize whole-program
behavior. Such a graph can be extracted by a profiler.
It is fair to mention that the construction of a dynamic
call-graph G of a program P is not a time consuming
process even if P is a large scale software.

Throughout the paper we denote a call-graph G
of the program P over the input I as G(P, I). Fig-
ures 2(a) depicts the structure of the dynamic call-
graph G(P, Ikey) of an application program P with in-
put Ikey.

3 THE DYNAMIC
WATERMARKING MODEL

Having encoded a watermark number w as reducible
permutation graph F [π∗], let us now propose a dy-
namic watermarking model based on which we can
efficiently watermark an application program P by
embedding the graph F [π∗] into P producing thus the
watermarked program P∗.

The main idea behind the proposed dynamic wa-
termarking model is the use of the dynamic call-

F [π∗]fmain
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Figure 2: (a) The dynamic call-graph G(P, Ikey) of an ap-
plication program P. (b) The reducible permutation graph
F [π∗]. (c) The dynamic call-graph G(P∗, Ikey) of the water-
marked program P∗.

graph G(P, Ikey) of the program P, taken by the spe-
cific input Ikey, and the graph F [π∗] in order to pro-
duce the watermarked program P∗ having the follow-
ing key property: its dynamic call-graph G(P∗, Ikey)
and the reducible permutation graph F [π∗] are iso-
morphic graphs. Within this idea the program P∗

is produced by only altering appropriate real-calls of
specific functions of the input program P.

Figure 2 shows the dynamic call-graph G(P, Ikey)
of an application program P, the reducible permuta-
tion graph F [π∗] which encodes the number w = 4
and the dynamic call-graph G(P∗, Ikey) of the water-
marked program P∗.

Next, we first describe the data and operational
components used by the model and, then, we present
the embedding and the extracting watermarking algo-
rithms.

3.1 Model Components

Our watermarking model uses two main categories
of components namely data components and opera-



tional components. The first category includes the dy-
namic call-graph G(P, Ikey) of the input program P, the
watermark graph F [π∗], and the dynamic call-graph
G(P∗, Ikey) of the watermarked program P∗, while
the second category includes call patterns and control
statements which are components related to the pro-
cess of embedding the graph F [π∗] into application
program P.

We next describe the construction and main prop-
erties of the dynamic call-graph G(P∗, Ikey), two call
patterns based on which we correspond edges of the
call-graph G(P∗, Ikey) to function calls, and specific
variables and statements which control the execution
of real and water functions.

(I) The Dynamic Call-graph G(P∗, Ikey)

Let F [π∗] be a watermark-graph on n+ 2 nodes and
G(P, Ikey) be the dynamic call-graph of a program P
on n+ 3 nodes fmain, fs, f1, . . . , fn, ft taken after run-
ning the program P with the input Ikey. In general,
the selection of the input Ikey is such that it produces
the call-graph G(P, Ikey) having structure as “close” as
possible to the structure of F [π∗]. We assign the n+2
nodes fs = fn+1, fn, . . . , f1, f0 = ft of the call-graph
G(P, Ikey) to n + 2 nodes s = un+1,un, . . . ,u1,u0 = t
of F [π∗] into 1-1 correspondence; the main function
fmain do not correspond to any node of F [π∗].

Let (ui,u j) be an edge in graph F [π∗] and let
( fi, f j) be an edge in call-graph G(P, Ikey). We say
that the edge ( fi, f j) corresponds to edge (ui,u j) iff
the node fi corresponds to ui and the node f j corre-
sponds to u j, 0 ≤ i, j ≤ n+1. Moreover, if (ui,u j) is
a forward (resp. backward) edge in the graph F [π∗]
we say that the corresponding edge ( fi, f j) in graph
G(P, Ikey) is a forward (resp. backward) edge.

The dynamic call-graph G(P∗, Ikey) is constructed
as follows:

• V (G(P∗, Ikey))=V (G(P, Ikey)), i.e., it has the same
nodes as the call-graph G(P, Ikey);

• E(G(P∗, Ikey)) = E(F [π∗]), i.e., ( fi, f j) is an edge
in E(G(P∗, Ikey)) iff the corresponding (ui,u j) is
an edge in F [π∗].

The edges of the call-graph G(P∗, Ikey) are divided
into two categories namely real and water edges; note
that, the real (resp. water) edges are corresponded to
real (resp. water) function calls. An edge ( fi, f j) of
the call-graph G(P, Ikey) is characterized as either

• real edge if ( fi, f j) is an edge in G(P, Ikey), or

• water edge if ( fi, f j) is not an edge in G(P, Ikey).

Figure 2 shows the dynamic call-graph G(P∗, Ikey)
along with its real edges (solid arrows) and water

fi() fj()

x = x+ h() x = x+ c()

(a)

f

forward RPG edge

(b)

b

backward RPG edge

callfj()

(c)

fk()

fi() fj()

f|bf|b

f|b

fl()

fj()fi()

x = x+ g()

callfj()

x = x+ c()

f|b

f|bf|b

Figure 3: (a) The forward call pattern f-call; (b) The back-
ward call pattern b-call; (c) The path call pattern p-call.

edges (dashed arrows); it also depicts the dynamic
call-graph G(P, Ikey) and the watermark-graph F [π∗].

(II) Call Patterns

In the implementation phase, we modify the source
code of program P using specific function call pat-
terns which we describe below.

Let P be an application program, G(P, Ikey) be
the dynamic call-graph of the program P with input
Ikey, and F [π∗] be a watermark-graph which we have
to embed into P. According to our watermarking
model, the embedding process relies mainly on alter-
ing the execution-flow of appropriate function calls of
P such that the execution of the resulting program P∗

with the input Ikey produces a call-graph G(P∗, Ikey)
which, after removing the node fmain, is isomorphic
to watermark-graph F [π∗].

Let ( fi, f j) be an edge of call-graph G(P∗, Ikey)
or, equivalently, an edge which we want to appear in
G(P∗, Ikey). Since G(P∗, Ikey) has two types of edges it
follows that ( fi, f j) is either real or water edge. Based
on the type of ( fi, f j), we do the following:

• if ( fi, f j) is a water edge we add the statement
call(fj) in the function fi, while

• if ( fi, f j) is a real edge we add no call statement



since the statement call( f j) exists in fi.
Based on whether ( fi, f j) is either a forward or a back-
ward edge we add specific statements in functions fi
and f j according to the following two call patterns
namely forward and backward call patterns:

(a) if ( fi, f j) is a forward edge we add the statement
x = x+ h() in function fi before the call-site or,
equivalently, call-point of the function f j, and the
statement x = x+ c() in the function f j, while

(b) if ( fi, f j) is a backward edge we add the statement
x = x+g() in function fi before the call-site of the
function f j, and the statement x = x+ c() in the
function f j,

where x is a variable of type A and h(), g() and c()
functions which returns values of type A. Figure 3(a)
depicts the forward call pattern or, for short, f-call,
while Figure 3(b) depicts the backward call pattern
or, for short, b-call.

Recall that the direct edge ( fi, f j) of a call-graph
represents a function call operation where fi is the
caller function and f j the callee function; in other
words, it means that in function fi there exists the
statement call( f j). Hereafter, in this case we shall
say that ( fi, f j) is a direct call.

In a call-graph of an application program we
usually meet sequences of calls of the form
( fi, fk1 , fk2 , . . . , fkm , f j). For simplicity we set fi = fk0
and f j = fkm+1 and suppose that each of these calls
( fk0 , fk1), ( fk1 , fk2), . . ., ( fkm , fm+1) is either forward
or backward. We extend the notion of the direct call
( fi, f j) to indirect call ( fi → f j); an indirect call con-
sists of a path of functions ( fi, fk1 , . . . , f j) of length
ℓ ≥ 2. Using the f-call and b-call patterns, we next
define the path call pattern or, for short, p-call as fol-
lows:

(c) if ( fki , fki+1) and ( fki+1 , fki+2) are two consecutive
calls of a call sequence, we apply an f-call or
a b-call in ( fki+1 , fki+2) by first adding the state-
ment x = x + h() or the statement x = x + g()
in the function fki+1 after the call-point of state-
ment x = x+ c(), and then adding the statement
x = x+ c() in the function fki+2 , 0 ≤ i ≤ m−1.

Figure 3 shows the structures of the patterns of an
f-call and a b-call of the direct call ( fi, f j), and the
structure of a p-call of an indirect call ( fi → f j).

Note that an indirect call ( fi → f j) consisting of
a path of functions ( fi, fk1 , . . . , f j) of length ℓ can be
considered as a sequence of ℓ direct calls.

(III) Control Statements

In any watermarking model both the original program
P and the watermarked program P∗ have to operate

(a) (b)

fmain

fs

f7

f6

f5

f4

f3

f2

f1

ft

fmain

fs

f7

f6

f5

f4

f3

f2

f1

ft

Figure 4: (a) The real-call ( f4, f6) in the call-graph
G(P, Ikey) of a program P; bold arrow. (b) The correspond-
ing path-call ( f4, f3, f5, f6) in the call-graph G(P∗, Ikey) of
the watermarked program P∗; bold arrows.

identically, that is, the output O(P, I) of the program
P must be the same with the output O(P∗, I) of the
program P∗ for every input I. Thus, since the call-
graphs G(P, Ikey) and G(P∗, Ikey) dictate the execution
flow of the original program P and the watermarked
program P∗, respectively, and since the call-graph
G(P, Ikey) is not isomorphic to G(P∗, Ikey) we have to
control the flow of selected function calls of P∗ so that
O(P, I) = O(P∗, I) for every input I.

To do this, we exploit the values of specific vari-
ables in a function fi by using them in some selected
or added control statements as part of opaque predi-
cates. More precisely, in our watermarking model we
use the values of the variable x of the f-call and b-call
patterns and include it in a specific control statement
s causing thus an “appropriate execution flow” of the
functions of the call-graph G(P∗, Ikey); with the term
“appropriate execution flow” we mean that the execu-
tion flow of the functions of the call-graph G(P∗, Ikey)
is such that O(P, I) = O(P∗, I) for every input I.

Hereafter, we shall call cf-statement the control
statement s since it controls the execution flow of the
functions of G(P∗, Ikey) and, in an analogous way, we
shall call cf-variable the variable x of the f-call and
b-call patterns.

We next describe the mechanism which ensures



an appropriate execution flow of the functions of
G(P∗, Ikey) through the altering of the execution flow
of the functions of the program P by modifying or
adding some specific control statements. In fact, what
the mechanism actually does is to modify the con-
ditions or expressions of these control statements by
adding opaque predicates.

Definition 3.1. A predicate Q is opaque at a program
point p, if at point p the outcome of Q is known at
embedding time. If Q always evaluates to true we
write QT

p , for false we write QF
p , and if Q sometimes

evaluates to true and sometimes to false we write Q?
p.

Let ( fi, f j) be a direct call in our program P∗ or,
equivalently, an edge in the call-graph G(P∗, Ikey); it
is either real, water, forward, or backward edge. In
any case, the proposed mechanism uses the value of
the variable x of the f-call or b-call pattern of ( fi, f j)
and does the following:

• In function fi: create a control statement (if,
switch, for, while, etc), add an opaque predicate
Q?

p with respect to cf-variable x in the condition
of the control statement, and insert it at a point p
before the statement x = x+ h() or x = x+ g();
we can also select an existing control statement at
a point p, consider it as cf-statement, and include
in its condition part the opaque predicate Q?

p.

• In function f j: create a control statement (if,
switch, for, while, etc), add an opaque predicate
Q?

p with respect to cf-variable x in the condition
of the control statement, and insert it at a point p
before the statement x = x+ c(); the main body
of f j is included in a block of a cf-statement the
execution of which is depending upon the truth-
ness or falsity of the opaque predicate Q?

p. If f j
is called by another function fk, that is, if ( fk, f j)
is an edge in the call-graph G(P∗, Ikey), we do not
create a new control statement but we use the pre-
vious one and add or appropriately modify its ex-
isting opaque predicate Q?

p.

Table 1 shows an example of the modification of the
condition part of an if cf-statement via an opaque
predicate; since ( fi, f j) is a water and forward func-
tion call, the statement call( f j) does not exist in
function fi, and thus we add it in fi, while the cf-
statement is the x = x+ h(). On the other hand, Ta-
ble 2 shows an example in this case where ( fi, f j)
is a real and backward function call. In this case,
the statement call( f j) does exist in fi while the cf-
statement is the x = x+g(). Table 3 shows an exam-
ple of the modification of the function f j in the case

Program P Program P∗

function fi() function fi()
... ...

if ( condition & Q?
p)

if ( condition) ...
... x = x + h();
statements; ...
... call f j();

...
statements;
...

Table 1: An example of cf-statement modification via
opaque predicates in the case where ( fi, f j) is a water and
forward function call.

Program P Program P∗

function fi() function fi()
... ...

if ( condition & Q?
p)

if ( condition) ...
... x = x + g();
call f j(); ...
... call f j();
statements; ...
... statements;

...

Table 2: An example of cf-statement modification via
opaque predicates in the case where ( fi, f j) is a real and
backwards function call.

Caller of ( fi, f j) Callee of ( fi, f j)

function fi() function f j()
... ...
if ( condition & Q?

p) if ( condition & Q?
p)

... ...
x = x + h(); x = x + c();
... ...
call f j(); if ( condition & Q?

p)
... ...
statements; statements;
... ...

Table 3: An example of cf-statement modification via
opaque predicates of the function f j in the case where
( fi, f j) is a water and forward function call.

where ( fi, f j) is a water and forward function call.

Remark 3.1. Based on the structural properties of the
watermark graph F [π∗] and call-graph G(P∗, Ikey) we



can easily prove the following lemma.

Lemma 3.1. Let G(P, Ikey) and G(P∗, Ikey) be the call-
graphs of programs P and P∗, respectively, on input
Ikey, and let ( fi, f j) be an edge in call-graph G(P, Ikey).
Then, there always exists an edge ( fi, f j) or a path
( fi, fk1 , fk2 , . . . , fkm , f j) in call-graph G(P∗, Ikey).

Remark 3.2. In our implementation, in the case
where ( fi, f j) is an edge in G(P, Ikey) and ( fi, f j) is
not an edge in G(P∗, Ikey) we have to compute a path
( fi, fk1 , . . . , f j) of function calls in G(P∗, Ikey). Such
a path is a shortest path from fi to f j in the graph
G(P∗, Ikey); it may consist of all types of edges, that
is, real or water edges and forward or backward edges.
Figure 4(a) shows the edge ( f4, f6) in G(P, Ikey) which
is not an edge in G(P∗, Ikey), while Figure 4(b) shows
its corresponding shortest path from fi to f j, that is,
the path ( f4, f3, f5, f6); note that, ( f4, f3) is a real and
forward edge, ( f3, f5) is a real and backward edge,
and ( f5, f6) is a water and backward edge.

(VI) Execution Rules

We present the rules based on which we control
the execution flow of the functions of P∗ such that
O(P, I) = O(P∗, I) for every input I. In fact, we show
in all the cases how the value of Q?

p dictates the exe-
cution flow of functions of G(P∗, Ikey).

Let ( fi, f j) be a direct call in our program P∗ or,
equivalently, an edge in the call-graph G(P∗, Ikey). We
distinguish the following cases:
• Edge ( fi, f j) is real and forward/backward: in

this case we modify the functions fi and f j as fol-
lows:
◦ Function fi: the opaque predicate Q?

p in the cf-
statement before the cf-value x = x+h() or x =
x+ g() and the call( f j) is evaluated to true,
that is, QT

p .
◦ Function f j: the opaque predicate Q?

p in the cf-
statement before the cf-value x= x+c() is eval-
uated to true, that is, QT

p , while the Q?
p for the

cf-statement which controls the statements of
the main body of the function f j is also evalu-
ated to true, that is, QT

p .
• Edge ( fi, f j) is water and forward/backward: in

this case we modify the functions fi and f j as fol-
lows:
◦ Function fi: the opaque predicate Q?

p in the cf-
statement before the cf-value x = x+h() or x =
x+ g() and the call( f j) is evaluated to true,
that is, QT

p .
◦ Function f j: the opaque predicate Q?

p in the cf-
statement before the cf-value x= x+c() is eval-

uated to true, that is, QT
p , while the Q?

p for the
cf-statement which controls the statements of
the main body of the function f j is evaluated to
false, that is, QF

p .

Remark 3.3. At the execution time of the function fi
of the program P∗, only one opaque predicate Q?

p in
the cf-statements is evaluated to true with respect to
the current value of the cf-variable x.

3.2 Embedding an RPG into a Code

Having described the main properties and operations
of our dynamic watermarking model, let us now
present the algorithm which efficiently watermark an
application program P by embedding the reducible
permutation graph F [π∗] into an application program
P producing thus the watermarked program P∗.

We next present in detail the proposed embedding
algorithm, namely Encode RPG.to.CODE, which con-
sists of the following steps:

Embedding Algorithm Encode RPG.to.CODE

1. Take as input the source code of the program P,
select an input Ikey, and construct the call-graph
G(P, Ikey); let fmain, fs, fn, . . . , f1, ft be the func-
tions of call-graph G(P, Ikey); then, construct a
watermark graph F [π∗] on n + 2 nodes and let
s = un+1,un, . . . ,u1,u0 = t be the nodes of F [π∗];

2. Remove the node fmain from G(P, Ikey) and assign
an exact pairing, i.e., one-to-one and onto map-
ping, of the n+2 nodes of G(P, Ikey) to the nodes
of F [π∗]; let fi → ui, 0 ≤ i ≤ n+1;

3. Construct the call-graph G(P∗, Ikey) of the water-
marked program P∗ as follows:

◦ V (G(P∗, Ikey)) = V (G(P, Ikey)), i.e., it has the
same nodes as the call-graph G(P, Ikey);

◦ E(G(P∗, Ikey)) = E(F [π∗]), i.e., ( fi, f j) is an
edge in E(G(P∗, Ikey)) iff the corresponding
(ui,u j) is an edge in graph F [π∗];

4. Create a call-table T of dimension (m×3), where
m is the number of function calls ( fi, f j) which
appear in the execution trace of P with input Ikey;
the 1st column stores the caller functions fi, the
2nd column stores the callee functions f j, while
the 3rd one stores the invocations of ( fi, f j);

5. Initially insert into table T the edges ( fi, f j) of
the call-graph G(P∗, Ikey); then, if ( fi, f j) does
not exist in G(P, Ikey), compute the shortest path
( fi, fk1 , fk2 , . . . , fkm , f j) from node fi to node f j



in graph G(P∗, Ikey) and insert the edges ( fi, fk1),
( fk1 , fk2), . . ., ( fkm , f j) into table T ; the edges are
inserted into table T in a specific order;

6. Characterize the edges ( fi, f j) in table T as either
real, water, forward, or backward;

7. For each water edge ( fi, f j) of the graph
G(P∗, Ikey), add the statement call( f j) in a call-
point in the function fi of the program P;

8. For each edge ( fi, f j) in the table T , insert the cf-
variable x in both functions fi and f j by adding the
statements x = x+h(), x = x+g(), or x = x+ c()
according to f-call and b-call patterns; see, sub-
section (II) Call Patterns;

9. For each edge ( fi, f j) in the table T , insert cf-
statements which control:

◦ the values of the cf-variables x,
◦ the function calls call( f j), and
◦ the values of the cf-variables x;

see, subsection (III) Control Statements;

10. Return the source code of the program P∗;

Remark 3.4. In Step 5 of the embedding algorithm,
the edges ( fi, f j) are included into the table T in a
specific order. This order is determined by the or-
der they appeared in the execution trace of program
P with input Ikey, that is, if call ( fi, f j) appears be-
fore the call ( fk, fℓ) in execution trace of P, the edge
( fi, f j) appears before the edge ( fk, fℓ) in table T .

Remark 3.5. Let ( fi, f j) be an edge which is handled
in Step 8 of the embedding algorithm and let the state-
ment call( f j) appears more that once in function fi.
We point out that in this case we insert both the cf-
variable and cf-statement before the call-site of each
statement call( f j) in function fi.

3.3 Extracting the Watermark RPG
from the Code

In this section, we present an algorithm for extracting
the graph F [π∗] from the program P∗ watermarked by
the embedding algorithm Encode RPG.to.CODE. The
proposed extracting algorithm works as follows:

Extracting Algorithm Decode CODE.to.RPG

1. Take the program P∗ watermarked by the embed-
ding algorithm Encode RPG.to.CODE and run it
with input Ikey;

2. Construct the call-table T using the execution
trace of the program P∗ with input Ikey;

3. Construct the dynamic call-graph G(P∗, Ikey) us-
ing the call-table T as follows:

◦ search the table T and add all the different
functions fi in the set V , where 0 ≤ i ≤ n+2,

◦ search the table T row-by-row and select all the
different pairs ( fi, f j), where fi and f j belong
to 1st and 2nd columns of the same row of T ,
respectively; add the selected pairs ( fi, f j) in
the set E;

◦ take the vertex set V (G(P∗, Ikey)) = V and
the edge set E(G(P∗, Ikey)) = E of the graph
G(P∗, Ikey);

4. Remove the node fmain from G(P∗, Ikey) resulting
the graph G′(P∗, Ikey);

5. Construct a graph F [P∗] isomorphic to G′(P∗, Ikey)
and then compute the unique Hamiltonian path
HP of the graph F [P∗]; let

HP = (un+1,un,un−1, . . . ,u1,u0)

be the Hamiltonian path of F [P∗];

6. Relabeling the nodes of the graph F [P∗] according
to their order in the HP resulting thus the graph
F [π∗] with nodes s = un+1,un, . . . ,u0 = t;

7. Return the graph F [π∗];

Remark 3.6. In Step 5 of the extracting algorithm,
we compute the unique Hamiltonian path of the graph
F [P∗]. Indeed, it has been shown that the reducible
permutation graph F [π∗] has always a unique Hamil-
tonian path, denoted by HP(F [π∗]), and this Hamilto-
nian path can be found in O(n) time, where n is the
number of nodes of F [π∗] (author’s papers). Since
F [π∗] is isomorphic to G′(P∗, Ikey) we can compute
the unique Hamiltonian path HP of the graph F [P∗]
within the same time complexity.

4 CONCLUDING REMARKS

In this paper we presented a dynamic watermarking
model for embedding a reducible permutation graph
or, equivalently, a watermarking graph F [π∗] into an
application program P using appropriate calls of spe-
cific functions of P. The main feature of our embed-
ding model is its ability to embed the graph F [π∗]
into P using only real functions and thus the size of
the watermarked program P∗ remains relatively very



small. Moreover, the proposed dynamic watermark-
ing model has low time complexity and incorporates
such properties which cause it resilient to attacks.

Our model uses opaque predicates in specific con-
trol statements in order to control the flow of selected
function calls of P∗ so that the watermarked program
P∗ have an appropriate execution, that is, O(P, I) =
O(P∗, I) for every input I. It is worth noting that it is
hard for an attacker to deduce an opaque predicate at
run time. Specifically, the usage of opaque predicates
in our model enables us to dictate the execution flow
of function calls and also makes the programs’ con-
trol flow difficult for an attacker to analyze it either
statically or dynamically.

In addition, we point out that if an attacker makes
a modification in some values of a cf-variable in a
call-site p, he/she has to properly modify all the val-
ues of all the cf-variables in every call-site of the exe-
cution flow after p.

Moreover, an important property of our model is
its ability to not use any mark during the embedding
process in order to be able to extract the embedding
watermark from the software.

Roughly speaking, the goal of an obfuscation
technique is to make an attacker to hardly understand
the operational parts of a code. Our model water-
marks an application program P in such a way that it
withstands several obfuscation attacks among which
layout and data obfuscation attacks. Moreover, the
watermark can be effectively extracted even the code
has been subjected to some control obfuscation at-
tacks such as ordering (reordering expressions, re-
order loops, etc). It is fair to mention, our model does
not properly operate on some other control obfusca-
tion attacks such as aggregation (inline functions, out-
line functions, etc).

Finally, in light of our dynamic watermarking
model it would be very interesting to evaluate it in or-
der to gain information on its practical behavior; we
leave it as a problem for future work.
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