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ABSTRACT
Recently, we have presented a dynamic watermarking model,
which we named WaterRpg, for embedding a reducible per-
mutation graph F [π∗] into an application program P . The
main idea behind the proposed watermarking model is to
modify the dynamic call-graph G(P, Ikey) of the program P ,
taken by the specific input Ikey, so that the dynamic call-
graph G(P ∗, Ikey) of the resulting watermarked program P ∗

and the the reducible permutation graph F [π∗] are isomor-
phic; within this idea the program P ∗ is produced by only al-
tering appropriate calls of specific functions of the input ap-
plication program P . Our model belongs to execution trace
watermarks category. In this paper, we implement our Wa-
terRpg watermarking model on several Java application pro-
grams and evaluate it under various criteria in order to gain
information about its practical behavior. More precisely, we
selected a number of Java application programs and water-
mark them using two main watermarking approaches sup-
ported by our WaterRpg model, namely naive and stealthy
approachs. The experimental results show the stable func-
tionality of all the Java programs P ∗ watermarked under
both the naive and stealthy cases. The experiments also
show that the watermarking approaches supported by our
model can help develop efficient watermarked Java programs
with respect to resilience, size, time, space, and other wa-
termarking metrics.

Categories and Subject Descriptors
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inverting permutations, Reducible permutation graphs, Dy-
namic call-graphs, Graph embedding, Codec algorithms, Im-
plementation, Experimental evaluation.

1. INTRODUCTION
Digital watermarking is a technique for protecting the

intellectual property of any digital content. The idea of
digital watermarking is the embedding of a unique identi-
fier, which we call watermark, into the digital image, audio,
video, software or text through the introduction of errors
not detectable by human perception [8].

Software Watermarking. The software watermarking
problem can be described as the problem of embedding a
structure w into a program P producing thus a new pro-
gram P ∗ such that w can be reliably located and extracted
from the program P ∗ even after P ∗ has been subjected to
code transformations such as translation, optimization and
obfuscation. More precisely, given a program P , a water-
mark w, and a key k, the software watermarking problem
can be formally described by the following two functions:
embed(P,w, k) → P ∗ and extract(P ∗, k) → w [6].

There are two main categories of watermarking algorithms
namely static and dynamic algorithms [7]. A static water-
mark is stored inside program code in a certain format, and
it does not change during the program execution. A dynamic
watermark is built during program execution, perhaps only
after a particular sequence of input. It might be retrieved
by analyzing the data structures built when watermarked
program is running. In other cases, tracing the program ex-
ecution may be required. Further discussion of static and/or
dynamic watermarking issues can be found in [9, 11, 14].

Having designed a static or dynamic software watermark-
ing algorithm for embedding a watermark w in to an appli-
cation program P , it is very important to evaluate it under
various criteria in order to gain information about its prac-
tical behavior. A software watermarking algorithm can be
evaluated using several criteria [4]; we mention some of the
most important:

(i) Embedding overhead,

(ii) Resistance to detection (stealth), and

(iii) Resilience against transformations.

Related Work. Although digital watermarking has made
considerable progress and became a popular technique for
copyright protection of multimedia information [8], research



on software watermarking has recently received sufficient
attention. The major software watermarking algorithms
currently available are based on several techniques, among
which are the register allocation [15], spread-spectrum [16],
code re-orderings [13], opaque predicate [12], dynamic path
techniques [3]; see also, Collberg and Nagra [6] for an expo-
sition of the main results.
In 1996, Davidson and Myhrvold [9] proposed the first

software watermarking algorithm which is static and embeds
the watermark by reordering the basic blocks of a control
flow-graph. Based on this idea, Venkatesan, Vazirani and
Sinha [14] proposed the first graph-based software water-
marking algorithm which embeds the watermark by extend-
ing a method’s control flow-graph through the insertion of a
directed subgraph; it is also a static algorithm and is called
VVS or GTW. In [14] the construction of a directed graph G
(or, watermark graph G) is not discussed. Later, Collberg
et al. [5] proposed an implementation of GTW, which they
call GTWsm; it is the first publicly available implementation
of the algorithm GTW. In GTWsm the watermark is encoded
as a reducible permutation graph (RPG) [4], which is a re-
ducible control flow-graph with maximum out-degree of two,
mimicking real code. Note that, for encoding integers the
GTWsm method uses only those permutations that are self-
inverting. The first dynamic watermarking algorithm (CT)
was proposed by Collberg and Thomborson [7]; it embeds
the watermark through a graph structure which is built on
a heap at runtime.
Several software watermarking algorithms have been ap-

peared in the literature that encode watermarks as graph
structures [9, 14, 4, 5]. The authors of this paper extended
the class of software watermarking algorithms and graph
structures by proposing an efficient and easily implemented
codec system for encoding watermark numbers as reducible
permutation flow-graphs [1, 2]. They presented algorithms
which encode a watermark number w as self-inverting per-
mutation π∗ and then encode π∗ as a reducible permutation
flow-graph F [π∗].

Our Contribution. Recently, we have presented a dy-
namic watermarking model, which we called WaterRpg, for
embedding a reducible permutation graph F [π∗] into an ap-
plication program P . The main idea behind the proposed
watermarking model is to modify the dynamic call-graph
G(P, Ikey) of the program P , taken by the specific input Ikey,
so that the dynamic call-graph G(P ∗, Ikey) of the resulting
watermarked program P ∗ is isomorphic to the reducible per-
mutation graph F [π∗]; within this idea the program P ∗ is
produced by only altering appropriate calls of specific func-
tions of the input application program P .
In this paper, we first briefly describe the main operations

and components of our dynamic watermarking model Water-
Rpg and show that it efficiently watermarks an application
program P by embedding a reducible permutation graph
F [π∗], i.e., the graph F [π∗] which encodes the watermark
w, into P producing thus the watermarked program P ∗.
In fact, we present an implementation of our watermarking
model WaterRpg on Java application programs downloaded
from a free non commercial game database, and evaluate its
functionality under various watermarking issues supported
by our WaterRpg model. We selected a number of Java
application programs and watermark them using two main
approaches: (i) the straightforward or naive approach, and

(ii) the stealthy approach. The naive approach watermarks a
given program P using only the well-defined call patterns of
our model, while the stealthy approach watermarks P using
structural and programming properties of the call patterns.

The experimental results show the efficient functionality of
all the Java programs P ∗ watermarked under both the naive
and stealthy cases. The experiments also show that the
watermarking approaches supported by our model can help
develop efficient watermarked Java programs with respect to
resilience, size, time, space, and other watermarking metrics.
Moreover, the proposed watermarking model incorporates
properties which cause it resilient to attacks.

2. BACKGROUND RESULTS
In this section, we present basic components and back-

ground results that are used in the design and implementa-
tion of our watermarking model WaterRpg.

2.1 Watermark Components
We consider finite graphs with no multiple edges. For a
graph G, we denote by V (G) and E(G) the vertex set and
edge set of G, respectively. We also consider permutations
π∗ over the set Nn = {1, 2, . . . , n} that are self-inverting (or,
for short, SiP). Throughout the paper we denote a call-graph
G of an application program P over the input I as G(P, I).

A. Reducible Permutation Graphs (RPG)

A flow-graph is a directed graph F with an initial node s
from which all other nodes are reachable. A directed graph
F is strongly connected when there is a path x → y for all
nodes x, y in V (F ). A node x is an entry for a subgraph H
of the graph F when there is a path p = (y1, y2, . . . , yk, x)
such that p ∩H = {x}.

Definition 2.2. A flow-graph is reducible when it does
not have a strongly connected subgraph with two (or more)
entries.

A reducible permutation graph F [π∗] is directed with a de-
scending ordering on its nodes s = un+1, un, . . . , u1, u0 = t.
Hereafter, we shall call the edge (ui, uj) forward if i > j
while we shall call (ui, uj) backward if i < j.

We have presented efficient codec algorithms for encoding
an integer w as self-inverting permutation π∗ and embedding
it into a reducible permutation flow-graph F [π∗] [1, 2]; see,
Figure 1 and Subsection 2.2 for these results.

B. Dynamic Call-graphs

A call-graph is a directed graph that represents calling re-
lationships between program units in a computer program.
Specifically, the nodes of a call-graph represent functions,
procedures, classes, or similar program units and each edge
(fi, fj) indicates that fi calls fj ; function fi is called caller
and function fj is called callee.

Definition 2.3. A dynamic call-graph G is a directed graph
that includes invocations of caller–callee pairs, over an exe-
cution of the program P .

A dynamic call-graph can be considered as one instance
of the corresponding static call-graph for a specific input
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Figure 1: The main data components used by our codec

algorithms (i.e., watermark w, SiP π∗, and RPG F [π∗])

and a flow of the process of encoding a watermark num-

ber w into the graph F [π∗] and extracting it from F [π∗].

sequence I. The call-graph G is the key data structure
that dynamic optimizers use to analyze and optimize whole-
program behavior. Such a graph can be extracted by a pro-
filer. It is fair to mention that the construction of a dynamic
call-graph G of a program P is not a time consuming process
even if P is a large scale software.
Figures 2(a) depicts the structure of the dynamic call-

graph G(P, Ikey) of an application program P taken by the
input Ikey.

2.2 Encode Numbers as RPGs
In [1] we introduced the notion of bitonic permutations and
we presented two algorithms, namely Encode_W.to.SiP and
Decode_SiP.to.W, for encoding an integer w into an self-
inverting permutation π∗ and extracting it from π∗; see also
[1]. We have actually proved the following results.

Theorem 2.2. Let w be an integer and let b1b2 · · · bn be the
binary representation of w. The algorithm Encode W.to.SiP
encodes the number w in a self-inverting permutation π∗ of
length 2n+ 1 in O(n) time and space.

Theorem 2.3. Let π∗ be a self-inverting permutation of
length n which encodes an integer w using the algorithm
Encode W.to.SiP. The algorithm Decode SiP.to.W correctly
decodes the permutation π∗ in O(n) time and space.

We have recently presented the algorithm Encode SiP.to.RPG
which encodes the self-inverting permutation π∗ as a re-
ducible permutation flow-graph F [π∗] by exploiting domi-
nation relations on the elements of π∗ and using an efficient
DAG representation of π∗ [2]. We also proposed the decod-
ing algorithm Decode RPG.to.SIP, which extracts π∗ from
F [π∗] by converting first the graph F [π∗] into a directed tree
T [π∗] and then applying DFS-search on T [π∗]. Our results

presented in [2] are summarized in the following theorems.

Theorem 2.4. Let π∗ be a self-inverting permutation over
the set Nn. The algorithm Encode SiP.to.RPG encodes the
permutation π∗ into a reducible permutation graph F [π∗] in
O(n) time and space.

Theorem 2.5. Let F [π∗] be a reducible permutation graph
of order O(n) produced by the algorithm Encode SiP.to.RPG.
The algorithm Encode RPG.to.SiP correctly extracts the per-
mutation π∗ from F [π∗] in O(n) time and space.

Figure 1 depicts the main data components used by our
codec algorithms, i.e., the watermark number w, the SiP π∗,
and the RPG F [π∗]. The same figure shows a flow of the
process of encoding a watermark number w into the graph
F [π∗] and extracting it from F [π∗] through the use of self-
inverting permutations.

2.3 The Watermarking Model
We next briefly describe the main operations and compo-
nents of our watermarking dynamic model WaterRpg. It
watermarks an application program P by first encoding a
watermark number w as reducible permutation graph F [π∗]
and then embedding the graph F [π∗] into P producing thus
the watermarked program P ∗. We point out that WaterRpg
constructs execution trace watermarks.

(I) Model Operations

The main operations performed by the WaterRpg model
can be outlined as follows: it first takes a specific input Ikey,
the dynamic call-graph G(P, Ikey) of the original application
program P , taken by the specific input Ikey, and the graph
F [π∗], and produce the watermarked program P ∗ having the
following key property: its dynamic call-graph G(P ∗, Ikey)
is isomorphic to reducible permutation graph F [π∗].

The call-graphs G(P, Ikey) and G(P ∗, Ikey) dictate the
execution flow of the original program P and the water-
marked program P ∗, respectively. Thus, since the call-
graph G(P, Ikey) is not isomorphic to G(P ∗, Ikey), the model
controls the flow of selected function calls of P ∗ so that
O(P, I) = O(P ∗, I) for every input I. Within this idea the
program P ∗ is produced by only altering appropriate calls
of specific functions of the input program P .

Figure 2 shows the dynamic call-graphG(P, Ikey) of an ap-
plication program P , the reducible permutation graph F [π∗]
which encodes the number w = 4 and the dynamic call-graph
G(P ∗, Ikey) of the watermarked program P ∗.

(II) Model Components

We next describe the main components of our watermark-
ing model. In particular, we describe main properties of the
dynamic call-graph G(P ∗, Ikey), two call patterns based on
which we correspond edges of the call-graph G(P ∗, Ikey) to
function calls, and specific variables and statements which
control the execution of real and water functions.

(II.a) The Dynamic Call-graph G(P ∗, Ikey): Let G(P, Ikey)
be the dynamic call-graph of a program P on n + 3
nodes fmain, fs, f1, . . . , fn, ft taken after running the
program P with the input Ikey and let F [π∗] be a
watermark-graph on n+2 nodes. We assign the n+2
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Figure 2: (a) The dynamic call-graph G(P, Ikey) of an

application program P . (b) The reducible permutation

graph F [π∗]. (c) The dynamic call-graph G(P ∗, Ikey) of

the watermarked program P ∗.

nodes fs = fn+1, fn, . . . , f1, f0 = ft of the call-graph
G(P, Ikey) to n+ 2 nodes s = un+1, un, . . . , u1, u0 = t
of F [π∗] into 1-1 correspondence; the main function
fmain do not correspond to any node of F [π∗]. The
dynamic call-graph G(P ∗, Ikey) is constructed as fol-
lows:

• it has the same node set V (G(P ∗, Ikey)) as the
graph G(P, Ikey);

• (fi, fj) is an edge in E(G(P ∗, Ikey)) iff the corre-
sponding (ui, uj) is an edge in F [π∗].

An edge (fi, fj) of the call-graph G(P ∗, Ikey) is char-
acterized as real edge if it is an edge in G(P, Ikey) oth-
erwise it is characterized as water edge. Moreover, if
(ui, uj) is a forward (resp. backward) edge in the graph
F [π∗] we say that the corresponding edge (fi, fj) in
graph G(P, Ikey) is a forward (resp. backward) edge
or calls. Thus, in our model the call (fi, fj) is either
real, water, forward, or backward.

(II.b) Call Patterns: In the implementation phase, our model
modifies the source code of program P using specific
function call-patterns.

Let (fi, fj) be an edge of call-graph G(P ∗, Ikey) or,
equivalently, an edge which we want to appear in graph
G(P ∗, Ikey). Based on whether (fi, fj) is a real, water,
forward, or backward edge, we do the following:

• if (fi, fj) is a water edge we add the statement
call(fj) in the function fi, while

• if (fi, fj) is a real edge we do nothing since the
statement call(fj) exists in fi.

• if (fi, fj) is a forward edge we add the statement
x = x+ h() in function fi before the call-point of
fj , and the statement x = x+ c() in fj , while

• if (fi, fj) is a backward edge we add the statement
x = x + g() in function fi before the call-site of
fj , and the statement x = x+ c() in fj ,

where x is a variable of type A and h(), g() and c()
functions of the same type; we call it cf-variable.

Note that, in a call-graph of an application program
we usually meet sequences of calls of the form (fi, fk1 ,
fk2 , . . ., fkm , fj). In this case, we actually have the
direct calls (fi, fk1), (fk1 , fk2), . . ., (fkm , fj) which are
either forward or backward.

(II.c) Control Statements: In our watermarking model we
use the values of the variable x of model’s call patterns
and include it in a specific control statement s causing
thus an“appropriate execution flow”of the functions of
the call-graph G(P ∗, Ikey); with the term“appropriate
execution flow” we mean that the execution flow of
the functions of the call-graph G(P ∗, Ikey) is such that
O(P, I) = O(P ∗, I) for every input I.

Our model incorporates a mechanism which ensures
an appropriate execution flow of the functions of the
call-graph G(P ∗, Ikey); it alters the execution flow of
the functions of the program P by modifying or adding
some specific control statements. In fact, the mecha-
nism actually modifies the conditions or expressions of
these control statements by adding opaque predicates
[12].

3. IMPLEMENTATION
Having described the main operations and components of

our watermarking model WaterRpg, let us in this section
present in detail the watermarking process of a Java ap-
plication program P . In our implementation, P is a game
program with market-name Laser; it has been downloaded
from www.java-gaming.org web-site.

In our model the functions fs = fn+1, fn, . . ., f1, f0 = ft
of the call-graph G(P, Ikey) are into 1-1 correspondence with
the nodes s = un+1, un, . . ., u1, u0 = t of the graph F [π∗];
recall that, F [π∗] encodes the watermark number w.

We next present the watermarking process performed by
our WaterRpg model on function fi = up() of the program
Laser; the Java code of function fi is the following:

public void up{

if (b[cx+1][cy-1-1]. . .){
hlth-;

}

b[cx+1][cy].bgr(black);
...

First we show the naive watermarking of fi = up() and,
then, we proceed with stealthy cases. Our model uses the



The Naive-watermarking Two Case of a Stealthy-watermarking

public void up{ public void up{ public void up{

if (x==267){ x=x+1; x=x+1;

x=x+1; if (x==268 && down==true){ if (x==268 && down==true){

} x=x+3; x=x+3;

if (x==268){ down(); down();

x=x+2; if (x==272){ }

health(); x=x+2; else{

} health(); if (b[cx+1][cy-1-1]. . .

if (x==271 && down==true){ } && x==268){

x=x+3; } hlth-;

down(); else{ x=x+2;

} if (b[cx+1][cy-1-1]. . . health();

if (x==271 && down==false){ && x==268){ }

if (b[cx+1][cy-1-1]. . .){ hlth-; b[cx+1][cy].bgr(black);

hlth-; }
.
.
.

} b[cx+1][cy].bgr(black);

b[cx+1][cy].bgr(black);
.
.
.

.

.

.

Figure 3: The function up() of the original program Laser watermarked with the naive approach and a stealthy
approach; the functions down() and health() are both water functions and belong to category B, i.e., both are
functions of G(Laser, Ikey).

cf-variable x which increases its value by h(), g(), or c(); in
our implementation, we take h() = 3, g() = 2, and c() = 1.

Naive-watermarking

Let ui be the node of graph F [π∗] which corresponds to
fi = up(), and let (ui, u

1
j ) and (ui, u

2
j ) be the forward and

backward edges, respectively, which both are outgoing edges
from node ui, 1 ≤ i ≤ n; note that s = un+1 has only one
outgoing edge while t = u0 has only one incoming edge. Let
f1
j and f2

j be the two functions of G(P, Ikey) which corre-

spond to nodes u1
j and u2

j , respectively; in our implementa-

tion, f1
j = down() and f2

j = health().
We next describe the modifications we make in function

fi = up() according to the watermarking rules of our Wa-
terRpg model. The watermarking process consists of the
following phases:

(I) In the first phase, we include the body of the function
fi into a control statement with conditions that hold
opaque predicates using the variable x; in our imple-
mentation of the naive-watermarking case, we use the
if-then-else statement and add opaque predicates of
the form x==cf-value; see, statement if (x==271 &&

down==false){...} of Figure 3.

Then, we handle the functions f1
j and f2

j ; in particular,

we locate the call-points of all the statements call(f1
j )

and call(f2
j ) in fi, if any, and do the following:

◦ Statement call(f1
j ): we add the statement x =

x+h() in a call-point before that of call(f1
j ) and

include both x = x+h() and call(f1
j ) into a con-

trol statement with opaque predicates using the
variable x; we call such a statement f-statement.

◦ Statement call(f2
j ): we similarly handle this state-

ment but we add the statement x = x + g() in-
stead of x = x + h(); we call such a statement
b-statement.

(II) In the case where the function fi does not contain any
statement call(f1

j ), we locate a call-point before that
of the control statement of Phase I and add the state-
ments x = x+h() and call(f1

j ) in this order; then, we
include both statements into a control statement with
conditions that hold opaque predicates using the vari-
able x; recall that, h() = 3; see, statement if (x==271

&& down==true){...} of Figure 3.

(III) We handle in a similar way the case where the function
fi does not contain any statement call(f2

j ); indeed, we
locate a call-point before that of the control statement
of Phase II, and add the statements x = x + g() and
call(f2

j ) in this order; we also include both statements
into a control statement as in Phase II; see, statement
if (x==268){...} of Figure 3.

(IV) In this phase, we locate a call-point before that of
the control statement of Phase III, add the statement
x = x+ c() and include it into a if-then-else control
statement with conditions that hold opaque predicates
using the variable x; in our implementation c() = 1; we
add this statement since in the program P ∗ there ex-
ists at least one function fk such that (fk, fi), and thus
according to our model we have to add the statement
x = x+ c() in fi; see, statement if (x==267){...} of
Figure 3.

(V) In the last phase we handle all the callee functions f∗
j

of fi that are functions of the call-graph G(P, Ikey) ex-
cept of f1

j and f2
j . For every direct call (fi, f

∗
j ) we com-

pute the sequence (fi, fk1 , . . . , f
∗
j ) which corresponds



to the shortest path (ui, uk1 , . . . , u
∗
j ) from ui to u∗

j in
graph F [π∗]; then, we remove the statement call(f∗

j )
from fi and add either the statements x = x+h() and
call(f1

j ) if (ui, uk1) is a forward edge or the statements

x = x+g() and call(f1
j ) if (ui, uk1) is a backward edge

in F [π∗]; in any case, we include the statements into
a control statement with conditions that hold opaque
predicates using the variable x; we call such a state-
ment p-statement.

All the rest callee functions f∗∗
j of the function fi = up()

are ignored during the process of watermarking since they
are not executed with the input Ikey.

Stealthy-watermarking

We next show properties and modification rules of the
model’s call patterns based on which we can stealthily wa-
termark a Java application program P . The main mod-
ifications, which we call stealthy cases, supported by the
WaterRpg model are the following:

(S.i) Making nested patterns: We can merge f-statements
and b-statements in any way; for example, we can in-
clude the control b-statement if (x==268){...} inside
the f-statement if (x==271 && down==true){...} af-
ter the statement call(f1

j ) = up(); we appropriately
change their opaque predicates; see, middle code in
Figure 3.

(S.ii) Removing control statements: We can remove the con-
trol statement that includes the statement x = x+ c()
of a function fi (Phase V); we can do that in the case
where fi is called by a function of category C; note
that, functions of category C do not modify the value
of the cf-variable x; see, stealthy codes in Figure 3.

(S.iii) Merging control statements: We can merge control state-
ments that we added in program P ∗ with program’s
original control statements by appropriately merging
their corresponding logical expressions; see, stealthy
codes in Figure 3.

4. EXPERIMENTAL EVALUATION
In the literature, several criteria have been appeared and

used for software watermarking evaluation purposes. It is a
common belief that a good watermarking system must have
the following properties [4]:

• High performance: the watermarking should not ad-
versely affect the size and execution time of the water-
marked program P ∗;

• High data rate: the ratio of the number of bits encoded
by the watermark w to the total size of the watermark
should be high;

• High resiliency: a watermarking system must be re-
silient against a reasonable set of de-watermarking at-
tacks;

• High stealth: both P and P ∗ should have similar sta-
tistical properties.

Table 1: Number of Calls in Laser and Laser∗

Nodes in Calls in Calls in Real-calls Water-calls
F [π∗] Laser Laser∗ Laser∗ Laser∗

11 32 48 20 28
13 32 51 21 30
15 32 56 19 37

In order to gain information about the practical behav-
ior of our WaterRpg watermarking model we implemented
it on several Java application programs and experimentally
evaluated it under various criteria.

More precisely, we selected a number of Java application
programs, watermarked them using the two watermarking
approaches supported by our WaterRpg model, i.e.,

(i) the Naive approach, and

(ii) the Stealthy approach,

and carried out an experimental study focusing on the fol-
lowing criteria:

(A) Time and space performance;

(B) Bytecode instructions overhead;

(C) Resilience and stealth.

The selected Java application programs are downloaded
from a free non commercial game database; they have been
downloaded from www.java-gaming.org web-site. All the
programs are almost of the same size and are watermarked
by embedding a graph F [π∗] of three different sizes; in our
implementation we use watermarking graphs F [π∗] having
number of nodes n = 11, n = 13, and n = 15. Indicatively,
Table 1 shows the number of function calls in program Laser

and its watermarked program Laser∗ for each of the three
sizes of the watermarked graph F [π∗].

All the experiments were performed on a computer with
dual-core 2.0 GHZ processors, 3.0 GB of main memory under
Windows operating system using Java version 1.6.0.26 of the
SDK (Software Development Kit).

(A) Time and Space Performance

In order to evaluate the performance of our WaterRpg
model we choose the parameters (i) execution time, (ii) disk
usage, and (iii) heap space usage.

We measure the execution time, the disk usage, and heap
space usage of the selected Java application programs P and
the corresponding watermarked programs P ∗ under both the
naive and stealthy approaches. In the evaluation process,
each program is executed “n” times with different inputs.
The runtime of each tested program is computed by taking
the the difference of the start-value and the end-value of the
Java method System.currentTimeMillis().

The execution time overhead is proportional to the size
of the watermarking graph F [π∗]. The experimental re-
sults in Table 2 indicate that for a graph F [π∗] on n = 11,
n = 13 and n = 15 nodes the execution time of the naive
watermarking causes a slight increase of 5.25%, 7.65% and
11.07%, respectively, while the corresponding increments for
the stealthy case are even smaller.



Table 2: Execution Time (msec)

Nodes in F [π∗] P → P ∗
N P → P ∗

S P ∗
N → P ∗

S

11 +5.25% +3.82% -1.37%
13 +7.65% +5.99% -1.56%
15 +11.07% +9.19% -1.72%

Table 3: Disk Usage (Kb)

Nodes in F [π∗] P → P ∗
N P → P ∗

S P ∗
N → P ∗

S

11 +20.98% +16.71% -3.65%
13 +26.35% +18.81% -6.34%
15 +30.10% +21.76% -6.85%

Table 4: Heap Space Usage (Mb)

Nodes in F [π∗] P → P ∗
N P → P ∗

S P ∗
N → P ∗

S

11 +7.69% +4.61% -2.94%
13 +10.76% +6.15% -4.34%
15 +15.38% +9.23% -5.63%

The storage requirements of programs P ∗ compared to
P increases as the number of nodes of the graph F [π∗]
increases. Applying the stealthy approach a noteworthy
amount of storage memory is saved because many of the
control statements and opaque predicates that were not nec-
essary to maintain proper functionality of the program P ∗

removed safely from the code. Table 3 illustrates the per-
centages incensement of disk demand for P ∗

N and P ∗
S , as

well as the improvement caused by the stealth approach in
comparison to the naive.
The experimental results show that our WareRpg water-

marking model has a similar performance for the heap space

Table 5: Bytecode Instructions

Bytecode P Naive P ∗
N Stealthy P ∗

S

Control Statements 519.4 42.0% 25.0%
Invocations 188.3 10.6% 10.6%
Assignments 1346.7 45.5% 32.4%
Rest Instructions 941.6 0% 0%

Table 6: Indicative Bytecode Instructions

Bytecode Original Naive Stealthy
Laser Laser∗ Laser∗

Control Statements
if_icmpne 19 78 57
ifne 3 4 4
goto 43 45 45

Invocations
invokevirtual 188 208 208

Assignments
iconst_1 186 202 202
getstatic 368 614 529
iadd 84 132 132
alaod_0 136 156 156

Rest Instructions
dup 33 33 33
ldc 19 19 19
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Figure 4: Graphical representation of the results for
parameters Execution time, Disk usage and Heap
space usage of P , Naive P ∗ and Stealthy P ∗.

usage; see, Table 4. The results for all the evaluating pa-
rameters are also sowed in a graphical form in Figure 4.

(B) Bytecode Instructions Overhead

Towards the evaluation of the data payload of our water-
marking method we compute the the total amount of the



bytecode instructions added to watermarked program P ∗.
In particular, we compute the percentage of the increment
resulted by adding control statements, functions calls and
variable assignments to the program P . To this end, we
count the bytecode instructions of watermarked programs
P ∗
N and P ∗

S that belong to four main categories: (i) Control
statements, (ii) Invocations, (iii) Assignments, and (iv) Rest
instructions; see, Table 5. Note that the category (iv) con-
tains all the bytecode instructions that remain unchanged
after the watermarking process.
Table 6 shows some bytecode instructions of the applica-

tion program Laser.

(C) Resilience and Stealth

Resiliency refers to the ability to recognize a watermark
even after the watermarked program has been attacked or
subjected to code transformations such as translation, opti-
mization and obfuscation [12].
A watermarking system must be resilient against a rea-

sonable set of de-compilation attacks. In our experimental
study, we have also included the evaluation of our water-
marking model WaterRpg against de-compilation attacks.
Indeed, we tested our programs with Java De-compiler (JD-

GUI) [10] and figured out that in all the cases WaterRpg
successfully extracts the watermarking graph F [π∗] from the
watermarked programs P ∗

N and P ∗
S ; indeed, in all the cases

the dynamic call-graph G(P ∗, Ikey) taken by the input Ikey
were isomorphic to graph F [π∗].
Moreover, the watermark code embedded to a program

should be locally indistinguishable from the rest of the pro-
gram so that it is hidden from malicious users. The code
embedded to P by our watermarking model WaterRpg is
not highly unusual, and thus it is quite difficult to locate
and remove it from P ∗. More precisely, in our work we do
not add dead or dummy code but only programs’ functions,
and control statements and variable assignments, where in
the stealthy case most of them are already used in the source
code. The experimental results indicate that there is an in-
crement from 10.6% up to 32.4% of function calls, control
statements, and assignment in the stealthy case; see, Ta-
ble 5.

5. CONCLUDING REMARKS
In this paper we presented a dynamic watermarking model

for embedding a reducible permutation graph F [π∗] into an
Java application program P and evaluated it under several
and broadly used watermarking criteria.
We point out that the number of nodes of the graph F [π∗]

affects the number of functions we use for embedding. Thus,
it is possible to use less functions which would result in a
graph F [π∗] with fewer nodes. We consider that the selected
graph sizes satisfy our evaluating criteria; note that, the
graph F [π∗] on n = 2k+1 nodes can encode a watermarking
integer w of the range [0, 2k−1 − 1]; see, [2, 1].
The experimental results show the efficient functionality of

all the Java programs P ∗ watermarked under both the naive
and stealthy cases. The experiments also show that the
watermarking approaches supported by our model can help
develop efficient watermarked Java programs with respect to
resilience, size, time, space, and other watermarking metrics.
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