
DESIGN AND EVALUATION OF A GRAPH CODEC SYSTEM
FOR SOFTWARE WATERMARKING

Maria Chroni and Stavros D. Nikolopoulos
Department of Computer Science, University of Ioannina, GR-45110 Ioannina, Greece

{mchroni, stavros}@cs.uoi.gr

Keywords: Software watermarking; Codec systems, Self-inverting permutations; Reducible permutation graphs; Encod-
ing algorithms; Decoding algorithms; Performance; Experimental Evaluation.

Abstract: In this paper, we propose an efficient and easily implemented codec system for encoding watermark numbers
as graph structures thought the use of self-inverting permutations. More precisely, based on the fact that
a watermark number w can be efficiently encoded as self-inverting permutation π∗, we present an efficient
encoding algorithm which encodes a self-inverting permutation π∗ as a reducible flow-graph F [π∗] and a
decoding algorithm which extracts the permutation π∗ from the graph F [π∗]. Our codec algorithms are very
simple, use elementary operations on sequences and linked structures, and the produced flow-graph F [π∗] does
not differ from the graph data structures built by real programs. Moreover, our codec algorithms have very low
time and space complexity and the flow-graph F [π∗] incorporates important structural properties which cause
it resilient to attacks. We have evaluated several components of our codec system in a simulation environment
in order to obtain a clear view of their practical behaviour; the experimental results show that we can decide
with high probability whether the graph F [π∗] suffer an attack on its edges.

1 INTRODUCTION

Software watermarking is a technique for protecting
the intellectual property of an application program;
the idea is similar to digital watermarking where a
unique identifier is embedded in image, audio, or
video data through the introduction of errors not de-
tectable by human perception (Cox et al., 1996). The
software watermarking problem can be described as
the problem of embedding a structure w into a pro-
gram P and, thus, producing a new program Pw, such
that w can be reliably located and extracted from
Pw even after Pw has been subjected to code trans-
formations such as translation, optimization and ob-
fuscation (Myles and Collberg, 2006). More pre-
cisely, given a program P, a watermark w, and a
key k, the software watermarking problem can be
formally described by the following two functions:
embed(P,w,k)→ Pw and extract(Pw,k)→ w.

Although digital watermarking has made consid-
erable progress and become a popular technique for
copyright protection of multimedia information (Cox
et al., 1996), research on software watermarking has
recently received sufficient attention. The patent by
Davidson and Myhrvold (Davidson and Myhrvold,
1996) presented the first published software water-

marking algorithm. The major software watermark-
ing algorithms currently available are based on sev-
eral techniques, among which the register alloca-
tion, spread-spectrum, opaque predicate, abstract in-
terpretation, dynamic path techniques (Arboit, 2002;
Cousot and Cousot, 2004; Curran et al., 2003; Grover,
1997; Monden et al., 2000; Nagra and Thomborson,
2004; Qu and Potkonjak, 1998; Stern et al., 1999); see
also, Collberg and Nagra (Collberg and Nagra, 2010)
and (Zhang et al., 2003; Zhu et al., 2005) for an expo-
sition of the main results.

We should mention that there are two general cate-
gories of watermarking algorithms namely static and
the dynamic algorithms (Collberg and Thomborson,
1999). A static watermark is stored inside program
code in a certain format, and it does not change during
the program execution, while a dynamic watermark
is built during program execution, perhaps only af-
ter a particular sequence of input. Further discussion
of static and/or dynamic watermarking issues can be
found in (Davidson and Myhrvold, 1996; Moskowitz
and Cooperman, 1996; Venkatesan et al., 2001).

Codec Systems and Attacks. Recently, several soft-
ware watermarking algorithms have been appeared in
the literature that encode watermarks as graph struc-
tures. In general, such encodings make use of an en-

coding function encode which converts a watermark-
ing number w into a graph G, encode(w) → G, and
also of a decoding function decode that converts the
graph G into the number w, decode(G)→ w; we usu-
ally call the pair (encode,decode)G as graph codec
system (Collberg et al., 2003). From a graph-theoretic
point of view, we are looking for a class of graphs
G and a corresponding codec (encode,decode)G with
the following properties which cause them resilience
to attacks:

• Appropriate Graph Types: Graphs in G should be
directed having such properties, i.e., nodes with
small outdegree, so that matching real program
graphs;

• High Resiliency: The function decode(G) should
be insensitive to small changes of G, i.e., inser-
tions or deletions of a constant number of nodes
or/and edges; that is, if G ∈ G and decode(G)→
w then decode(G′)→ w with G′ ≈ G;

• Small Size: The size |Pw| − |P| of the embedded
watermark should be small;

• Efficient Codecs: The functions encode and
decode should be computed in polynomial time.

Related Work. In 1996, Davidson and Myhrvold
(Davidson and Myhrvold, 1996) proposed the first
software watermarking algorithm which is static and
embeds the watermark by reordering the basic blocks
of a control flow-graph; note that a static watermark
is stored inside program code in a certain format
and it does not change during the program execution.
Based on this idea, Venkatesan, Vazirani and Sinha
(Venkatesan et al., 2001) proposed the first graph-
based software watermarking algorithm which em-
beds the watermark by extending a method’s control
flow-graph through the insertion of a directed sub-
graph; it is also a static algorithm and is called VVS
or GTW. In (Venkatesan et al., 2001) the construc-
tion of a directed graph G (or, watermark graph G) is
not discussed. Collberg et al. (Collberg et al., 2009)
proposed an implementation of GTW, which they call
GTWsm, and it is the first publicly available imple-
mentation of the algorithm GTW. In GTWsm the wa-
termark is encoded as a reducible permutation graph
(RPG) (Collberg et al., 2003), which is a reducible
control flow-graph with maximum out-degree of two,
mimicking real code. Note that, for encoding integers
the GTWsm method uses only those permutations that
are self-inverting. The first dynamic watermarking al-
gorithm (CT) was proposed by Collberg and Thom-
borson (Collberg and Thomborson, 1999); it embeds
the watermark through a graph structure which is built
on a heap at runtime.

Recently, the authors of this paper (Chroni and
Nikolopoulos, 2010; Chroni and Nikolopoulos, 2011)
extended the class of software watermarking algo-
rithms and graph structures by proposing an efficient
and easily implemented codec system for encoding
watermark numbers as reducible permutation flow-
graphs (or, hereafter, RPG). They presented an effi-
cient algorithm which encodes a watermark number
w as self-inverting permutation π∗ and, also, an ef-
ficient algorithm which encodes the permutation π∗

as a reducible permutation flow-graph. The construc-
tion of the flow-graph is made by exploiting domi-
nation relations on the elements of π∗ and using an
efficient DAG representation of the permutation π∗;
in the same paper, the authors also proposed efficient
decoding algorithms. The main components of their
codec system incorporate important structural proper-
ties which cause them resilient to attacks; we mention
that attacks against graph-based software watermark-
ing structures can mainly occur in the following two
ways: (i) Node-modification attacks, and (ii) Edges-
modification attacks.

Our Contribution. In this paper we present an ef-
ficient and easily implemented algorithm for encod-
ing numbers as reducible permutation flow-graphs
through the use of self-inverting permutations (or,
for short, SiP). More precisely, having designed
an efficient method for encoding integers as self-
inverting permutations (Chroni and Nikolopoulos,
2010; Chroni and Nikolopoulos, 2011), we describe
an algorithm for encoding a self-inverting permuta-
tion π∗ into a directed graph structure F [π∗] having
properties capable to match real program graphs; it is
simpler than that proposed in (Chroni and Nikolopou-
los, 2011), uses elementary operations on sequences
and linked structures (trees and graphs), and the pro-
duced flow-graph F [π∗] does not differ from the graph
data structures built by real programs since its max-
imum outdegree does not exceed two and it has a
unique root node so the program can reach other
nodes from the root node. We also describe an ef-
ficient decoding algorithm which extract the self-
inverting permutation π∗ from the reducible permu-
tation flow-graph F [π∗].

We have evaluated several components of our
codec system in a simulation environment in order to
obtain a clear view of their practical behaviour; the
experimental results show that we can decide with
high probability whether the graph F [π∗] suffer an at-
tack on its edges.

It is worth noting that our codec system
(encode,decode)F [π∗] has very low time and space
complexity, and the flow-graph F [π∗] incorporates
important structural properties which enable us to

identify with hight probability any single or multiple
changes made by an attacker to flow-graph F [π∗]. We
have evaluated several components of our codec sys-
tem in a simulation environment in order to obtain a
clear view of their practical behaviour; the experimen-
tal results are presented in Section 6.

Finally, we should point out that our graph codec
system has very low time and space complexity which
is O(n) where n is the number of bits in a binary rep-
resentation of the watermark integer w. Indeed, both
functions Encode W.to.SiP and Decode SiP.to.W are
computed in time and space linear in the binary size
of the watermark integer w. Moreover, the func-
tions Encode SiP.to.RPG and Decode RPG.to.SiP are
also computed in linear time and space; in particu-
lar, the function Encode SiP.to.RPG is computed in
time and space linear in the length of the self-inverting
permutation π∗ which is O(n), while the function
Decode RPG.to.SiP is computed in time and space
linear in the size of the flow-graph F [π∗] which is also
O(n), where n = O(logw) and w is the watermark.

Road Map. The paper is organized as follows: In
Section 2 we establish the notation and related termi-
nology, we present background results, and we prove
important properties on self-inverting permutations.
In Section 3 we present an efficient algorithm for
encoding the self-inverting permutation π∗ as a re-
ducible permutation flow-graph F [π∗], which we call
Encode SIP.to.RPG, and the corresponding decoding
algorithm Decode RPG.to.SIP. In Section 4 we ana-
lyze the structure of the flow-graph F [π∗] and show
properties which prevent several edge and/or node
modifications attacks. In Section 5 we show that the
malicious intentions of an attacker to lead an RPG
in incorrect-stage by modifying node-labels and/or
edges of the flow-graph F [π∗] can be efficiently de-
tected. Finally, in Section 6 we conclude the paper
and discuss possible future extensions.

2 THEORETICAL FRAMEWORK

In this section, we present basic components and
background results that are used in the design of
our codec system. In particular, we first define the
main components namely self-inverting permutations
(SiP) and reducible permutation graphs (RPG), and
then we study self-inverting permutations and prove
properties which are used as key-objects in our algo-
rithms for encoding numbers as reducible permuta-
tion graphs.

2.1 Data Components

We consider finite graphs with no multiple edges. For
a graph G, we denote by V (G) and E(G) the vertex
set and edge set of G, respectively. We also consider
permutations over the set Nn = {1,2, . . . ,n}.

A. Self-inverting Permutation (SiP)

Let π be a permutation over the set Nn. We think of
permutation π as a sequence (π1,π2, . . . ,πn), so, for
example, the permutation π = (1,4,2,7,5,3,6) has
π1 = 1, π2 = 4, etc. Notice that π−1

i is the posi-
tion in the sequence of the number i; in our example,
π−1

4 = 2, π−1
7 = 4, π−1

3 = 6, etc.

Definition 1. Let π = (π1,π2, . . . ,πn) be a permuta-
tion over the set Nn. The inverse of π is the permu-
tation τ = (τ1,τ2, . . . ,τn) with τπi = πτi = i. A self-
inverting permutation (or, involution) is a permutation
that is its own inverse: ππi = i.

Notation 1. Throughout the paper we denote a self-
inverting permutation π over the set Nn = {1,2, . . . ,n}
as π∗;

By definition, every permutation has a unique in-
verse, and the inverse of the inverse is the original
permutation. Clearly, a permutation is a self-inverting
permutation iff all its cycles are of length 1 or 2; here-
after, we shall denote a 2-cycle by c = (x,y) and by
1-cycle as c = (x), or, equivalently, c = (x,x).

B. Reducible Permutation Graphs (RPG)

A flow-graph is a directed graph F with an initial node
s from which all other nodes are reachable. A directed
graph G is strongly connected when there is a path
x → y for all nodes x, y in V (G). A node u is an entry
for a subgraph H of the graph G when there is a path
p = (y1,y2, . . . ,yk,x) such that p∩H = {x}.

Definition 2. A flow-graph is reducible when it does
not have a strongly connected subgraph with two (or
more) entries.

There are at least three other equivalent defini-
tions, as Theorem A shows. Those definitions use
a few more graph-theoretic concepts. An edge (x,x)
(for some node x) is a cycle-edge. A depth first search
(DFS) of a flow-graph partitions its edges into tree
edges (making up a spanning tree known as a DFS
tree), forward edges (pointing to a successor in the
spanning tree), back edges (pointing to a predeces-
sor in the spanning tree, plus cycle-edges), and cross
edges (the others). Tree edges, forward edges, and

cross edges form a dag known as a DFS dag.

Theorem A (Hecht and Ullman, 1972; Hecht and Ull-
man, 1974): Let F be a flow-graph. The following
three statements about the flow-graph F are equiva-
lent:

(1) the graph F is reducible;

(2) the graph F has a unique DFS dag;

(3) the graph F can be transformed into a single node
by repeated application of the transformations T1
and T2, where T1 removes a cycle-edge, and T2
picks a non-initial node y that has only one in-
coming edge and glue nodes x and y.

C. Encode Numbers as SiPs

In (Chroni and Nikolopoulos, 2010) we introduced
the notion of bitonic permutations and we pre-
sented two algorithms, namely Encode W.to.SiP and
Decode SiP.to.W, for encoding an integer w into an
self-inverting permutation π∗ and extracting it from
π∗; see also (Chroni and Nikolopoulos, 2011). We
have actually proved the following results.

Theorem 1. Let w be an integer and let b1b2 · · ·bn
be the binary representation of w. The algorithm
Encode W.to.SiP encodes the number w in a self-
inverting permutation π∗ of length 2n+1 in O(n) time
and space.

Theorem 2. Let π∗ be a self-inverting permuta-
tion of length n which encodes an integer w using
the algorithm Encode W.to.SiP. The algorithm De-
code SiP.to.W correctly decodes the permutation π∗

in O(n) time and space.

2.2 System Components

Our codec system uses of three main data compo-
nents: (i) the watermark number w, (ii) the self-
inverting permutation π∗, and (iii) the reducible per-
mutation graph F [π∗]; theses three components are
depicted in Figure 1.

The same figure also shows the two main faces of
our system’s process:

(I) Face W–SiP: it uses two algorithms, namely
Encode W.to.SiP and Decode SiP.to.W, and en-
codes a watermark number w into an self-
inverting permutation π∗ and extracting it from
π∗;

(II) Face SiP–RPG: this face also uses two al-
gorithms, namely Encode SiP.to.RPG and

π∗ = (4, 7, 6, 1, 5, 3, 2)

67 5 4 3 2 1 t

F [π∗]

s

SiP.to.RPG RPG.to.SiP

The watermark number w = 4

W.to.SiP SiP.to.W

Figure 1: The main data components used by the algorithms
of our codec system: (i) the watermark number w, (ii) the
self-inverting permutation π∗, and (iii) the reducible permu-
tation graph F [π∗].

Decode RPG.to.SiP, and encodes a self-inverting
permutation π∗ into a reducible permutation
graph F [π∗] and extracting it from F [π∗].

Recall that our contribution in this paper is concen-
trated on face SiP–RPG. Indeed, we design and ana-
lyze algorithms for encoding a SiP π∗ as a reducible
permutation flow-graph F [π∗] and the corresponding
decoding algorithm; we also show properties which
prevent several edge and/or node modifications at-
tacks.

2.3 Properties of SIPs

In this section, we study self-inverting permutations
and prove properties which are used as key-objects
in our algorithms for encoding numbers as reducible
permutation graphs.

Lemma 1. Let ci = (x,y) and c j = (z,w) be two 2-
cycles of a self-inverting permutation π∗ such that x >
y and z > w. If x > z > y and π∗−1

x < π∗−1
z < π∗−1

y ,
then w > y and π∗−1

w < π∗−1
y .

Lemma 2. Let ci = (x,y) and c j = (z,w) be two 2-
cycles of a self-inverting permutation π∗ such that x >
y and z > w. If x < z and π∗−1

x < π∗−1
z , then w > y and

π∗−1
w > π∗−1

y .

Let π∗ = (π∗
1,π

∗
2, . . . ,π

∗
n) be a permutation over

the set Nn. A subsequence of π∗ is a sequence
α∗ = (π∗

i1 ,π
∗
i2 , . . . ,π

∗
ik) such that i1 < i2 < · · · < ik.

If, in addition, π∗
i1 < π∗

i2 < · · · < π∗
ik , then we say

that α∗ is an increasing subsequence of π∗, while if
π∗

i1 > π∗
i2 > · · ·> π∗

ik , then we say that α∗ is a decreas-
ing subsequence of π∗.

A left-to-right maximum (resp. left-to-right min-
imum) of π∗ is an element π∗

i , 1 ≤ i ≤ n, such that
π∗

i > π∗
j (resp. π∗

i < π∗
j) for all j < i. The increasing

(resp. decreasing) subsequence α∗ = (π∗
i1 ,π

∗
i2 , . . . ,π

∗
ik)

is called a left.to.right maxima (resp. minima) sub-
sequence if it consists of all the left.to.right max-
ima (resp. minima) of π∗; clearly, π∗

i1 = π∗
1. For

example, the left.to.right maxima subsequence of
the permutation π∗ = (4,2,6,1,9,3,7,5,12,11,8,10)
is (4,6,9,12), while the left.to.right minima subse-
quence of π∗ is (4,2,1).

The 1st increasing (resp. decreasing) subsequence
S1 of a permutation π∗ is defined to be the left.to.right
maxima (resp. minima) subsequence of π∗. The ith
increasing (resp. decreasing) subsequence Si of π∗ is
defined to be the left.to.right maxima (resp. minima)
subsequence of π′, where π′ results from π∗ after hav-
ing ignored the elements of the 1st,2ed, . . . ,(i− 1)st
increasing (resp. decreasing) subsequences of π. For
example, the decreasing subsequences of the permu-
tation π∗ = (4,2,6,1,9,3,7,5,12,11,8,10) are S1 =
(4,2,1), S2 = (6,3), S3 = (9,7,5), S4 = (12,11,8)
and S5 = (10).

Theorem 3. Let Si = (x1,x2, . . . ,xk) be the ith de-
creasing subsequence of a self-inverting permutation
π∗. Then,
(i) if k is an even number, the following pairs (x1,xk),

(x2,xk−1), . . . ,(x k
2
,x k

2+1) form k
2 2-cycles of π∗;

(ii) if k is an odd number, the following pairs (x1,xk),
(x2,xk−1), . . . ,(x⌊ k

2
⌋,x⌈ k

2 ⌉+1) form ⌊ k
2⌋ 2-cycles

and (x k
2+1) forms an 1-cycle of π∗.

3 CODEC ALGORITHMS

It has been shown that a watermark number w
can be efficiently encoded as self-inverting permu-
tation π∗ and efficiently decoded form it (Chroni
and Nikolopoulos, 2010; Chroni and Nikolopoulos,
2011). In this section, we concentrate on system’s
face SiP–RPG and present efficient algorithms for
encoding a self-inverting permutation π∗ into a re-
ducible permutation graph F [π∗] and also decoding
the graph F [π∗].

3.1 Algorithm Encode SiP.to.RPG

The proposed encoding algorithm, which we call
Encode SiP.to.RPG, takes as input the self-inverting
permutation π∗ of length n and constructs a reducible
permutation flow-graph F [π∗] by using the proper-
ties of the decreasing subsequences of π∗ described
in Theorem 3. The algorithm takes O(n) time and re-
quires O(n) space; it works on two phases:

(I) it first computes the decreasing subsequences
S1,S2, . . . ,Sk of the permutation π∗ and, then

(II) it constructs a directed graph F [π∗] on n + 2
nodes using the next relation on the elements
of the decreasing subsequences S1,S2, . . . ,Sk; we
note that, if (x1,x2, . . . ,xi,xi+1, . . . ,xm) is a subse-
quence, then the elements {xi,xi+1} are next re-
lated, that is, next(xi) = xi+1, 1 ≤ i ≤ m−1.

Next, we present in details the proposed encoding al-
gorithm (see, Figure 2).

Algorithm Encode SiP.to.RPG
Input: a self-inverting permutation π∗;
Output: a reducible permutation flow-graph F [π∗];

1. Compute the decreasing subsequences S1, S2,
. . . ,Sk of π∗ as follows:

◦ construct k queues Q1,Q2, . . . ,Qk, initially
empty; let last(i) be the last inserted element
in queue Qi, 1 ≤ i ≤ k;

◦ insert the first element π1 of π∗ in queue Q1;
◦ insert the ith element πi, i = 2,3, . . . ,n, of π∗ in

queue Q j if
(i) πi < last(j) or Q j is empty, and
(ii) π j > last(j−1);

◦ compute Si from the elements of Qi, 1 ≤ i ≤ k;

2. Construct a directed graph F [π∗] on n+2 vertices,
as follows:

◦ V (F [π∗]) = {t = u0,u1, . . . ,un,un+1 = s};
◦ for i = n downto 0 do: add the edge (ui+1,ui) in

E(F [π∗]); we call it list pointer;

3. For each vertex ui ∈V (F [π∗]), 1 ≤ i ≤ n, do

◦ add the edge (ui,um) in E(F [π∗]) if
(i) πm > πi and next(πm) = πi in

a subsequence S j, or
(ii) um = un+1 and πi is the first element

of S j, 1 ≤ j ≤ k; we call it
permutation pointer;

4. Return the graph F [π∗];

Time and Space Complexity. The encoding algorithm
Encode SiP.to.RPG constructs the reducible permu-
tation flow-graph F [π∗] in O(n logn) time, where n is
the length of π∗; it uses binary search to insert the el-
ements of π∗ in Q1,Q2, . . . ,Qk and requires O(n logn)
time. The sequences S1,S2, . . . ,Sk of π∗ can also be
computed in O(n) time using counting sort. Thus, the
following theorem holds.

Theorem 4. Let π∗ be a self-inverting permutation of
length n. The algorithm Encode SiP.to.RPG for en-
coding the permutation π∗ as a reducible permutation
flow-graph F [π∗] requires O(n) time and space.

3.2 Algorithm Decode RPG.to.SiP

Having designed the efficient encoding algorithm
Encode SiP.to.RPG, we next present the decoding al-
gorithm Decode RPG.to.SiP which takes as input a
flow-graph F [π∗] and extracts the self-inverting per-
mutation π∗ from the graph F [π∗] (see, Figure 2); it
works as follows:

Algorithm Decode RPG.to.SiP
Input: a reducible permutation flow-graph F [π∗];
Output: the self-inverting permutation π∗;

1. Delete the directed edges (vi+1,vi) from the edge
set E(F [π∗]), 1 ≤ i ≤ n, and the node t = v0 from
V (F [π∗]) = {t = v0,v1, . . . ,vn,vn+1 = s};

2. Flip all the remaining directed edges of the graph
F [π∗]; the resulting graph is a tree T [π∗] rooted at
s = vn+1;

3. While the root s of T [π∗] has at least one child vi,
do the following:

◦ find the leaf v j of T [π∗] which is reachable from
node vi;

◦ set Pm = (vi,v j) and delete both vi and v j from
T [π∗];

4. Construct the permutation π∗ = (π1,π2, . . . ,πn)
over the set Nn such that πi = i, 1 ≤ i ≤ n;

5. Let P be the set of all pairs P1,P2, . . . ,Pk computed
at step 3; then,

◦ for each pair (vi,v j) ∈ P set ππi = π j and ππ j =
πi;

6. Return the self-inverting permutation π∗;

Time and Space Complexity. The size of the tree T [π∗]
is O(n) since the input graph F [π∗] constructed by the
algorithm Encode SiP.to.RPG has O(n) nodes. Based

π∗ = (6, 3, 2, 9, 8, 1, 11, 5, 4, 10, 7)

1011 9 8 7 6 5 4 3 2 1 t

6 9 11

3 8 10

2

F [π∗]

T [π∗]

7

s

s

S1 = (6, 3, 2, 1)

S2 = (9, 8, 5, 4)

S3 = (11, 10, 7)

1

5

4

P1 = (6, 1)

P2 = (3, 2)

P3 = (9, 4)

P4 = (8, 5)

P5 = (11, 7)

P6 = (10)

Figure 2: The main structures used or constructed by the al-
gorithms Encode SiP.to.RPG and Decode RPG.to.SiP; that
is, the self-inverting permutation π∗, the decreasing subse-
quences of π∗, the graph F [π∗], the tree T [π∗], and the ele-
ments of π∗ in pairs.

on the structure of the tree T [π∗] we can compute
the pairs P1,P2, . . . ,Pk in O(n) time using O(n) space.
Thus, we can obtain the following result.

Theorem 5. Let F [π∗] be a reducible permu-
tation flow-graph of size O(n) produced by the
algorithm Encode SiP.to.RPG. The algorithm De-
code RPG.to.SiP decodes the flow-graph F [π∗] in
O(n) time and space.

4 PROPERTIES OF OUR CODEC
SYSTEM

In this section, we analyze the structures of the
two main components of the proposed codec system,
that is, the self-inverting permutation π∗ and the re-
ducible permutation graph F [π∗], and present proper-
ties which make our codec system resilient to attacks.

4.1 Properties of SiP π∗

In our codec system (encode,decode)F [π∗] an integer
w is encoded as self-inverting permutation π∗ using a
particular construction technique which captures into
π∗ important structural properties. These properties
enable us to identify edge changes made by an at-
tacker to π∗.

The main structural properties of our self-
inverting permutation π∗ produced by the algorithm

Encode W.to.SiP can be summarized into the follow-
ing three categories:

• SiP property: By construction the permutation
π∗ is self-inverting permutation of odd length;

• 1-cycle property: The self-inverting permutation
π∗ always contains one, and only one, cycle of
length 1;

• Bitonic property: The self-inverting permuta-
tion π∗ is constructed from the bitonic sequence
πb = X ||Y R, where X and Y are increasing sub-
sequences (see, authors’ work in (Chroni and
Nikolopoulos, 2010; Chroni and Nikolopoulos,
2011)), and thus the bitonic property is encapsu-
lated in the cycles of π∗.

The above properties can be efficiently used in or-
der to identify whether our system has been at-
tacked. In closing, we should mention that our en-
coding approach enables us to encode the integer
w= b1b2 · · ·bn as self-inverting permutation π∗ of any
length; indeed, π∗ can be constructed over the set
Nn′ = {1,2, . . . ,n′}, where n′ ≥ 2⌈logw⌉+1.

4.2 Properties of Flow-graph F [π∗]

We next describe the main properties of the reducible
permutation graph F [π∗] with respect to graph-based
software watermarking attacks.

Structural Properties. In graph-based encoding al-
gorithms, the watermark w is encoded into some spe-
cial kind of graphs G. Generally, the watermark graph
G should not differ from the graph data structures
built by real programs. Important conditions are that
the maximum outdegree of G should not exceed two
or three, and that the graph G have a unique root
node so the program can reach other nodes from the
root node. Moreover, G should be resilient to attacks
against edge and/or node modifications. Finally, G
should be efficiently constructed.

The reducible permutation graph F [π∗] produced
by our codec system has all the above properties;
in particular, the graph F [π∗] and the corresponding
codec have the following properties: (i) Appropriate
graph types, (ii) High resiliency, and (iii) Efficient
codecs. It is also worth noting that our encoding and
decoding algorithms use basic data structures and ba-
sic operations, and, thus, they can be easily imple-
mented.

Unique Hamiltonian Path. It is well-known that any
acyclic digraph G has at most one Hamiltonian path
(HP); G has one HP if the subgraphs G0,G1, . . . ,Gn
have only one node with indegree zero, where G0 =G

and Gi = G\{v1,v2, . . . ,vi}, 1 ≤ i ≤ n−1 (recall that
n denotes the number of nodes in G). Furthermore, it
has been shown that any reducible flow-graph has at
most one Hamiltonian path (Collberg et al., 2003).

We next show that the reducible permuta-
tion graph F [π∗] produced by the algorithm
Encode SiP.to.RPG has always a unique Hamiltonian
path, denoted by HP(F [π∗]), and this Hamiltonian
path can be found in O(n) time, where n is the
number of nodes of F [π∗].

The following algorithm, which we call
Unique HP, takes as input a flow-graph F [π∗]
on n nodes and produces its unique Hamiltonian path
HP(F [π∗]).

Algorithm Unique HP

1. Find the node u0 of the graph F [π∗] with outde-
gree one;

2. Perform DFS-search on graph F [π∗] starting at
node u0 and compute the DFS discovery time d[u]
of each node u of F [π∗];

3. Order the nodes u0,u1, . . . ,un+1 of F [π∗] by their
DFS discovery time d[] and let HP(F [π∗]) =
(u′0,u

′
1, . . . ,u

′
n+1) be the resulting order, where

d[u′i]< d[u′j] for i < j and 0 ≤ i, j ≤ n+1;

4. Return HP(F [π∗]);

Since the graph F [π∗] contains n nodes and m = O(n)
edges, it is easy to see that both finding the node of
F [π∗] with outdegree one and performing DFS-search
on F [π∗] take O(n) time and require O(n) space.
Thus, we have the following result.

Theorem 6. Let F [π∗] be a reducible permuta-
tion graph of size O(n) produced by the algorithm
Encode SiP.to.RPG. The algorithm Unique HP cor-
rectly computes the unique Hamiltonian path of F[π∗]
in O(n) time and space.

5 DETECTING ATTACKS

In this section, we show that the malicious intentions
of an attacker to lead a reducible permutation graph
F [π∗] in incorrect-stage by modifying some node-
labels or edges of the graph F [π∗] can be efficiently
detected.

5.1 Node-label Modification

By construction, our reducible flow-graph F [π∗] is a
labeled graph. Indeed, the labels of F [π∗] are numbers
of the set {0,1, . . . ,n+1}, where the label n+1 is as-
signed to header node s= un+1, the label 0 is assigned
to footer node t = u0, and the label n− i is assigned to
the ith body node un+1−i, 1 ≤ i ≤ n.

Let F ′[π∗] be the graph which results after mak-
ing some label modifications on the flow-graph F [π∗];
a label modification attacker may be performs swap-
ping of the labels of two nodes, altering the value
of the label of a node, or even removing all the la-
bels of the graph F [π∗] resulting an unlabeled graph.
Since the extraction of the watermark w relies on
the labels of the flow-graph F [π∗] (see algorithm
Decode RPG.to.SiP), it follows that our codec system
(encode,decode)F [π∗] is susceptible to node modifica-
tion attacks.

Thus, we are interested in finding a way to extract
the watermark w efficiently from F [π∗] without rely-
ing on its labels; for example, to extract w efficiently
from the graph F ′[π∗]. We show that, after any node-
label modification attack on graph F [π∗], we can ef-
ficiently reassign the initial labels to nodes of F [π∗]
using the structure of the unique Hamiltonian path
HP(F [π∗]). More precisely, given the graph F ′[π∗] we
can construct the flow-graph F [π∗] in O(n) time and
space. In addition, if F ′[π∗] is the unlabeled graph of
the flow-graph F [π∗] we can also construct the graph
F [π∗] in O(n) time and space.

The above properties imply that we are able to ex-
tract a watermark w in linear time from a modified or
unlabeled flow-graph F [π∗]; this can be simply done
by assigning labels to nodes of F [π∗] just prior the use
of the decoding algorithm Decode RPG.to.SiP. Thus,
we obtain the following result.

Lemma 3. Let F [π∗] be a reducible permutation
graph of size O(n) produced by the algorithm En-
code SiP.to.RPG and let F ′[π∗] be the graph resulting
from F [π∗] after modifying or deleting its node-labels.
Given the graph F ′[π∗], the flow-graph F [π∗] can be
constructed in O(n) time and space.

5.2 Edge Modification

In this section we show that, given a reducible permu-
tation graph F [π∗] produced by our codec system we
can decide with high probability whether the graph
F [π∗] suffer an attack on its edges.

Let F [π∗] be a flow-graph which encodes the in-
teger w and let F ′[π∗] be the graph resulting from
F [π∗] after an edge modification. Then, we say that

11 21 31 41 51 61 71 81 91
0

0,004

0,008

0,012

0,016

0,02

1 Edge Attack

Number of Nodes

P
ro

ba
bi

lit
y

Figure 3: The probability for the RPG F [π∗] to have the
RPG property after a modification of 1 edge.

F ′[π∗] is either in a F-incorrect-stage (False) or in a T-
incorrect-stage (True): F ′[π∗] is in F-incorrect-stage
if our codec system fails to return an integer w from
the graph F ′[π∗], while F ′[π∗] is in T-incorrect-stage
if our codec system extracts from the graph F ′[π∗] and
returns an integer w′ ̸= w.

Let F ′[π∗] be the graph resulting from a flow-
graph F [π∗] after an edge modification and let F ′[π∗]
be in a T-incorrect-stage. Then, the following proper-
ties hold:

(i) RPG property: F ′[π∗] is a directed graph on n+2
nodes s,u1,u2, . . . ,un, t; node s (resp. t) has inde-
gree 0 (resp. 1) and outdegree 1 (resp. 0), and
each internal node ui has outdegree exactly two,
1 ≤ i ≤ n;

(ii) SiP property: The permutation π∗ of length n
produced by algorithm Decode RPG.to.SiP is a
self-inverting permutation (SiP). Thus, any single
edge-modification can be easily identified;

(iii) 1-cycle property: The SiP π∗ contains only one
1-cycle. Thus, any random rearrangement of
some elements of π∗ can be identified with high
probability (if we rearrange some elements of π∗ it
is unlike to produce a SiP with only one 1-cycle);

(iv) Bitonic property: The 1-cycle SiP π∗ has the
bitonic property. Recall that the self-inverting per-
mutation π∗ is constructed from the bitonic se-
quence πb = X ||Y R, where X and Y are increas-
ing subsequences (see, authors’ work in (Chroni
and Nikolopoulos, 2010; Chroni and Nikolopou-
los, 2011)), and thus this property of πb is encap-
sulated in the cycles of π∗. Thus an appropriate
change to SiP π∗ that keeps the 1-cycle SiP prop-
erty may be identified during the decoding pro-

cess by checking the subsequence Y (if a SiP per-
mutation π∗ has not been produced by our encod-
ing algorithm Encode W.to.SiP then subsequence
Y may not be increasing).

The graph F ′[π∗] is in F-incorrect-stage if one of the
above properties does not hold. Based on these prop-
erties, we next show that the malicious intentions of
an attacker to lead a flow-graph F [π∗] in F-incorrect-
stage by modifying some of its edges can be detected
with high probability.

We experimentally evaluated the resilience of the
main component of our system, which is the flow-
graph F [π∗], in edge changes. To this end, we have
produced RPG’s F [π∗] on n = 11,21,31, . . . ,91 nodes
and computed the probability for the graph Fi[π∗] to
be in F-incorrect-stage, where Fi[π∗] is the graph re-
sulting from F [π∗] after a modification of i edges,
1 ≤ i ≤ 4. The experimental results show that we can
decide with high probability whether the flow-graph
F [π∗] suffer an attack on its edges; Figures 3 and 4
depict the high-resilience structure of the graph F [π∗].

6 CONCLUDING REMARKS

In this paper we proposed an efficient and easily
implemented codec system for encoding watermark
numbers as graph structures . In particular, we pro-
posed an efficient codec method for encoding a wa-
termark number w as self-inverting permutation π∗

and then embedding it into a flow-graph F [π∗]; the
proposed flow-graph F [π∗] can be efficiently used for
software watermarking.

Our codec algorithms are very simple, use ele-
mentary operations on sequences and linked struc-
tures, have very low time and space complexity, and
the flow-graph F [π∗] incorporates important struc-
tural properties which enable us to identify with high
probability edge changes made by an attacker to
F [π∗].

In light of the two data components π∗ and F [π∗]
of our codec system for software watermarking it
would be very interesting to come up with new ef-
ficient codec algorithms and structures having “bet-
ter” properties with respect to resilience to attacks;
we leave it as an open question.

An interesting question for further investigation
is whether the class of reducible permutation graphs
can be extended so that it includes other classes of
graphs with structural properties capable to efficiently
encode watermark numbers.

Another interesting question with practical value
is whether we can produce more than one reducible
flow-graphs F1[π∗],F2[π∗], . . . ,Fn[π∗] which encode

11 21 31 41 51 61 71 81 91
0

1

2

3

4

x 10
−4

2 Edges Attack

Number of Nodes

P
ro

ba
bi

lit
y

11 21 31 41 51 61 71 81 91
0

1

2

3

4

5

6

7

8

x 10
−6

3 Edges Attack

Number of Nodes

P
ro

ba
bi

lit
y

11 21 31 41 51 61 71 81 91
0

0.4

0.8

1.2

1.6

x 10
−7

4 Edges Atack

Number of Nodes

P
ro

ba
bi

lit
y

Figure 4: The probability for the RPG F [π∗] to have the
RPG property after a modification of 2 edges (top graph), 3
edges (middle graph) and 4 edges (bottom graph).

the same self-inverting permutation π∗ using differ-
ent subsequences or other relations on the elements
of π∗; we also leave it as an open question.

Finally, the evaluation of our codec algorithms
and structures under other software watermarking
measurements in order to obtain detailed information
about their practical behaviour is a interesting prob-
lem for future study.

REFERENCES

Arboit, G. (2002). A method for watermarking java pro-
grams via opaque predicates. In Proc. 5th Interna-
tional Conference on Electronic Commerce Research
(ICECR-5).

Chroni, M. and Nikolopoulos, S. (2010). Encoding water-
mark integers as self-inverting permutations. In Proc.
Int’l Conference on Computer Systems and Tech-
nologies (CompSysTech’10), volume ACM ICPS 471,
pages 125–130.

Chroni, M. and Nikolopoulos, S. (2011). Encoding water-
mark numbers as cographs using self-inverting per-
mutations. In Proc. Int’l Conference on Computer
Systems and Technologies (CompSysTech’11), volume
ACM ICPS 578, pages 142–148.

Collberg, C., Carter, E., Kobourov, S., and Thomborson, C.
(2003). Error-correcting graphs for software water-
marking. In Proc. 29th Workshop on Graphs in Com-
puter Science (WG’03), volume LNCS 2880, pages
156–167.

Collberg, C., Huntwork, A., Carter, E., Townsend, G., and
Stepp, M. (2009). More on graph theoretic software
watermarks: Implementation, analysis, and attacks.
Information and Software Technology, 51:56–67.

Collberg, C. and Nagra, J. (2010). Surreptitious Software.
Addison-Wesley.

Collberg, C. and Thomborson, C. (1999). Software water-
marking: models and dynamic embeddings. In Proc.
26th ACM SIGPLAN-SIGACT on Principles of Pro-
gramming Languages (POPL’99), pages 311–324.

Cousot, P. and Cousot, R. (2004). An abstract
interpretation-based framework for software water-
marking. In Proc. 31st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages
(POPL’04), pages 173–185.

Cox, I., Kilian, J., Leighton, T., and Shamoon, T. (1996). A
secure, robust watermark for multimedia. In Proc. 1st
Int’l Workshop on Information Hiding, volume LNCS
1174, pages 317–333.

Curran, D., Hurley, N., and Cinneide, M. (2003). Securing
java through software watermarking. In Proc. Int’l
Conference on Principles and Practice of Program-
ming in Java (PPPJ’03), pages 145–148.

Davidson, R. and Myhrvold, N. (1996). Method and system
for generating and auditing a signature for a computer
program. US Patent, 5.559.884.

Grover, D. (1997). The Protection of Computer Software -
Its Technology and Applications. Cambridge Univer-
sity Press, New York.

Hecht, M. and Ullman, J. (1972). Flow graph reducibilit.
SIAM J. Computing, 1:188–202.

Hecht, M. and Ullman, J. (1974). Flow graph reducibilit.
Journal of the ACM, 21:367–375.

Monden, A., Iida, H., Matsumoto, K., Inoue, K., and Torii,
K. (2000). A practical method for watermarking java
programs. In Proc. 24th Computer Software and Ap-
plications Conference (COMPSAC’00), pages 191–
197.

Moskowitz, S. and Cooperman, M. (1996). Method for
stegacipher protection of computer code. US Patent,
5.745.569.

Myles, G. and Collberg, C. (2006). Software watermarking
via opaque predicates: implementation, analysis, and
attacks. Electronic Commerce Research, 6:155–171.

Nagra, J. and Thomborson, C. (2004). Threading software
watermarks. In Proc. 6th Int’l Workshop on Informa-
tion Hiding (IH’04), volume LNCS 3200, pages 208–
223.

Qu, G. and Potkonjak, M. (1998). Analysis of watermark-
ing techniques for graph coloring problem. In Proc.
IEEE/ACM Int’l Conference on Computer-aided De-
sign (ICCAD’98), volume ACM Press, pages 190–
193.

Stern, J., Hachez, G., Koeune, F., and Quisquater, J. (1999).
Robust object watermarking: Application to code.
In Proc. 3rd Int’l Workshop on Information Hiding
(IH’99), volume LNCS 1768, pages 368–378.

Venkatesan, R., Vazirani, V., and Sinha, S. (2001). A graph
theoretic approach to software watermarking. In Proc.
4th Int’l Workshop on Information Hiding (IH’01),
volume LNCS 2137, pages 157–168.

Zhang, L., Yang, Y., Niu, X., and Niu, S. (2003). A sur-
vey on software watermarking. Journal of Software,
14:268–277.

Zhu, W., Thomborson, C., and Wang, F. (2005). A survey
of software watermarking. In Proc. IEEE Int’l Confer-
ence on Intelligence and Security Informatics (ISI’05),
volume LNCS 3495, pages 454–458.

