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Watermarking Java Application Programs using
the WaterRpg Dynamic Model
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Abstract: We have recently presented an efficient codec system for encoding a watermark number w as a
reducible permutation graph F [π∗], through the use of self-inverting permutations π∗, and proposed a dynamic
watermarking model, which we namedWaterRpg, for embedding the watermark graph F [π∗] into an application
program P . In this paper, we implement our watermarking model WaterRpg in real application programs, taken
from a game database, and evaluate its functionality under various watermarking issues supported by our
WaterRpg model. More precisely, we selected a number of Java application programs and watermark them
using two main approaches. First, we show in detail a straightforward or naive approach for watermarking a
given program P which is based only on the well-defined call patterns of our model, and then we prove structural
and programming properties of the call patterns based on which we can watermark the program P in a more
stealthy way. The experimental results show the efficient functionality of all the programs P ∗ watermarked
under the naive-case and all the stealthy-cases. The size and the time overhead of the propose watermarking
are very low.

Key words: software watermarking, self-inverting permutations, reducible permutation graphs, graph embed-
ding, call-graphs, codec algorithms, implementation.

INTRODUCTION

Software watermarking is a technique that is currently being studied to prevent or dis-
courage software piracy and copyright infringement. The idea is similar to digital (or, media)
watermarking where a unique identifier, which is called watermark, is embedded in image,
audio, or video data through the introduction of errors not detectable by human perception
[6, 10].

The software watermarking problem can be described as the problem of embedding a
structure w into a program P such that w can be reliably located and extracted from P even
after P has been subjected to code transformations such as translation, optimization and
obfuscation [13].

Although digital watermarking has made considerable progress and become a popular
technique for copyright protection of multimedia information [10], research on software water-
marking has recently received sufficient attention; the first software watermarking algorithm
was presented in 1996 by Davidson and Myhrvold [12]; it is a static algorithm and embeds
the watermark by reordering the basic blocks of a control flow-graph. The major software wa-
termarking algorithms currently available are based on several techniques, among which the
register allocation [18], spread-spectrum [15], opaque predicate [4], abstract interpretation
[11], dynamic path techniques [5], code re-orderings [17]; see also, Collberg and Nagra [6]
and [16, 17] for an exposition of the main results. It is worth mentioning that many algorithmic
techniques on software watermarking have been also patented [2, 12, 1, 3].
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Several software watermarking algorithms have been appeared in the literature that en-
code watermarks as graph structures [12, 14, 7, 8]. The second and third authors of this
paper have extended the class of graphs which can be efficiently used in a software wa-
termarking system by proposing several efficient codec algorithms that embed watermark
values w into a type of reducible permutation graphs F [π∗] through the use of self-inverting
permutations π∗ (or, for short, SiP). Recently, they proposed a dynamic watermarking model
for embedding the watermark graph F [π∗] into an application program P . The main idea
behind the proposed watermarking model is a systematic use of appropriate calls of specific
functions of the program P . We point out that, the first dynamic watermarking algorithm (CT)
was proposed by Collberg and Thomborson [9]; it embeds the watermark through a graph
structure which is built on a heap at runtime.

In this paper, we implement our watermarking model WaterRpg in real application pro-
grams, taken from a game database, and evaluate its functionality under various watermark-
ing issues supported by our WaterRpg model. More precisely, we selected a number of
Java application programs and watermark them using two main approaches: (i) the straight-
forward or naive approach, and (ii) the stealthy approach. The naive approach watermarks
a given program P using only the well-defined call patterns of our model, while the stealthy
approach watermarks P using structural and programming properties of the call patterns.
The experimental results show the efficient functionality of all the programs P ∗ watermarked
under the naive-case and all the stealthy-cases. We also experimentally measure the size
and the time overhead of the propose watermarking.

THE DYNAMIC WATERMARKING MODEL

We next briefly describe the main operations and components of our dynamic water-
marking model which we call WaterRpg. Based on this model we can efficiently watermark
an application program P by first encoding a watermark number w as reducible permutation
graph F [π∗] and then embedding the graph F [π∗] into P producing thus the watermarked
program P ∗ (see, authors’ paper).

(I) Model Operations

The main operations performed by the dynamic watermarking model can be outlined as
follows: it first takes a specific input Ikey, the dynamic call-graph G(P, Ikey) of the original ap-
plication program P , taken by the specific input Ikey, and the graph F [π∗], and produce the wa-
termarked program P ∗ having the following key property: its dynamic call-graph G(P ∗, Ikey)
is isomorphic to reducible permutation graph F [π∗].

The call-graphs G(P, Ikey) and G(P ∗, Ikey) dictate the execution flow of the original pro-
gram P and the watermarked program P ∗, respectively. Thus, since the call-graph G(P, Ikey)
is not isomorphic to G(P ∗, Ikey), the model controls the flow of selected function calls of P ∗

so that the outputs O(P, I) = O(P ∗, I) for every input I. Within this idea the program P ∗ is
produced by only altering appropriate calls of specific functions of the input program P .

Figure 1 shows the dynamic call-graph G(P, Ikey) of an application program P , the re-
ducible permutation graph F [π∗] which encodes the number w = 4 and the dynamic call-
graph G(P ∗, Ikey) of the watermarked program P ∗.

(II) Model Components

We next describe the main components of our watermarking model. In particular, we de-
scribe main properties of the dynamic call-graphG(P ∗, Ikey), two call patterns based on which
we correspond edges of the call-graphG(P ∗, Ikey) to function calls, and specific variables and
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Figure 1: (a) The dynamic call-graph G(P, Ikey) of an application program P . (b) The reducible
permutation graph F [π∗]. (c) The dynamic call-graph G(P ∗, Ikey) of the watermarked program P ∗.

statements which control the execution of real and water functions.

(II.a) TheDynamic Call-graphG(P ∗, Ikey): LetF [π∗] be awatermark-graph on n+2 nodes and
G(P, Ikey) be the dynamic call-graph of a program P on n+3 nodes fmain, fs, f1, . . . , fn, ft
taken after running the program P with the input Ikey. We assign the n+ 2 nodes fs =
fn+1, fn, . . . , f1, f0 = ft of the call-graphG(P, Ikey) to n+2 nodes s = un+1, un, . . . , u1, u0 =
t of F [π∗] into 1-1 correspondence; the main function fmain do not correspond to any
node of F [π∗]. The dynamic call-graph G(P ∗, Ikey) is constructed as follows:

• V (G(P ∗, Ikey)) = V (G(P, Ikey)), i.e., it has the same nodes as the graph G(P, Ikey);
• E(G(P ∗, Ikey)) = E(F [π∗]), i.e., (fi, fj) is an edge in E(G(P ∗, Ikey)) iff the corre-
sponding (ui, uj) is an edge in F [π∗].

An edge (fi, fj) of the call-graph G(P ∗, Ikey) is characterized as real edge if it is an
edge in G(P, Ikey) otherwise it is characterized as water edge. Moreover, if (ui, uj) is a
forward (resp. backward) edge in the graph F [π∗] we say that the corresponding edge
(fi, fj) in graph G(P, Ikey) is a forward (resp. backward) edge. Thus, in our model the
call (fi, fj) is either real, water, forward, or backward.

(II.b) Call Patterns: In the implementation phase, our model modifies the source code of
program P using specific function call-patterns which we present in a graphical way in
Figure 2.
Let (fi, fj) be an edge of call-graph G(P ∗, Ikey) or, equivalently, an edge which we want
to appear in G(P ∗, Ikey). Since G(P ∗, Ikey) has four types of edges it follows that (fi, fj)
is either real, water, forward, or backward. Based on the type of (fi, fj), we do the
following:

• if (fi, fj) is a water edge we add the statement call(fj) in the function fi, while
• if (fi, fj) is a real edge we do nothing since the statement call(fj) exists in fi.
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Figure 2: (a) The forward call pattern f-call; (b) The backward call pattern b-call; (c) The path call
pattern p-call.

• if (fi, fj) is a forward edge we add the statement x = x+ h() in function fi before
the call-point of fj, and the statement x = x+ c() in the function fj, while

• if (fi, fj) is a backward edge we add the statement x = x+g() in function fi before
the call-site of fj, and the statement x = x+ c() in the function fj,

where x is a variable of type A and h(), g() and c() functions of the same type.
Note that, in a call-graph of an application program we usually meet sequences of
calls of the form (fi, fk1 , fk2 , . . . , fkm , fj). In this case, we actually have the direct calls
(fi, fk1), (fk1 , fk2), . . ., (fkm , fj) which are either forward or backward.

(II.c) Control Statements: In our watermarking model we use the values of the variable x of
the f-call and b-call patterns and include it in a specific control statement s causing thus
an “appropriate execution flow” of the functions of the call-graph G(P ∗, Ikey); with the
term “appropriate execution flow” we mean that the execution flow of the functions of
the call-graph G(P ∗, Ikey) is such that O(P, I) = O(P ∗, I) for every input I.
Our model incorporates a mechanism which ensures an appropriate execution flow of
the functions of G(P ∗, Ikey) through the altering of the execution flow of the functions
of the program P by modifying or adding some specific control statements. In fact, the
mechanism actually modifies the conditions or expressions of these control statements
by adding opaque predicates [4, 13].

IMPLEMENTATION

Having described the main operations and components of our watermarking model Wa-
terRpg, let us in this section present in detail the watermarking process of a Java application
program P . In our implementation, P is a game program with market-name Laser; it has
been downloaded from www.java-gaming.org web-site.

In our WaterRpg model the functions fs = fn+1, fn, . . . , f1, f0 = ft of the dynamic call-
graph G(P, Ikey) are into 1-1 correspondence with the nodes s = un+1, un, . . . , u1, u0 = t of
the reducible permutation graph F [π∗]; recall that, F [π∗] encodes the watermark number w.

We next present the watermarking process performed by our WaterRpg model on the
function fi = up() of the program Laser. First we show a naive case of the watermarking
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process of function fi = up() and, then, we proceed with stealthy cases. The Java code of
the function fi = up() is the following:

public void up{
if (b[cx+1][cy-1-1].bgr() . . .){

hlth--;
}
b[cx+1][cy].bgr(black);
...

Our model uses the cf-variable x which increases its value by h(), g(), or c(); in our
implementation, we take h() = 3, g() = 2, and c() = 1.

Naive-watermarking

Let ui be the node of graph F [π∗] which corresponds to fi = up(), and let (ui, u
1
j) and

(ui, u
2
j) be the forward and backward edges, respectively, which both are outgoing edges

from node ui, 1 ≤ i ≤ n; note that s = un+1 has only one outgoing edge while t = u0 has
only one incoming edge. Let f 1

j and f 2
j be the two functions of G(P, Ikey) which correspond

to nodes u1
j and u2

j , respectively; in our implementation, f 1
j = down() and f 2

j = health().
Before we proceed to watermarking the function fi, we divide the callee functions of fi

into the following three categories:

A: contains the functions f 1
j and f 2

j which correspond to forward node u1
j and backward

node u2
j of graph F [π∗], respectively;

B: contains the functions f ∗
j of the dynamic call-graph G(P, Ikey) except of f 1

j and f 2
j ;

C: contains the functions f ∗∗
j which are not executed with the input Ikey.

We next describe the modifications we make in function fi = up() according to the water-
marking rules of our WaterRpg model. The watermarking process consists of the following
phases:

(I) In the first phase, we include the body of the function fi into a control statement with
conditions that hold opaque predicates using the variable x; in our implementation of
the naive case, we use the if-then-else statement and add opaque predicates of the
form x==value; see, statement if (x==271 && down==false){...} of Figure 3.
Then, we handle the functions f 1

j and f 2
j of categories A; in particular, we locate the

call-points of all the statements call(f 1
j ) and call(f 2

j ) in fi, if any, and do the following:

◦ Statement call(f 1
j ): we add the statement x = x+h() in a call-point before that of

call(f 1
j ) and include both x = x + h() and call(f 1

j ) into a control statement with
opaque predicates using the variable x; in our implementation f 1

j = down() and
h() = 3; we call such a statement f-statement.

◦ Statement call(f 2
j ): we similarly handle this statement but we add the statement

x = x+g() instead of x = x+h(); in our implementation f 2
j = health() and g() = 2;

we call such a statement b-statement.

(II) In the case where the function fi does not contains any statement call(f 1
j ), we locate

a call-point before that of the control statement of Phase I and add the statements
x = x + h() and call(f 1

j ) in this order; then, we include both statements into a control
statement with conditions that hold opaque predicates using the variable x; recall that,
h() = 3; see, statement if (x==271 && down==true){...} of Figure 3.
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The Naive-watermarking A Stealthy-watermarking

public void up{ public void up{
if (x==267){ x=x+1;

x=x+1; if (x==268 && down==true){
} x=x+3;
if (x==268){ down();

x=x+2; if (x==272){
health(); x=x+2;

} health();
if (x==271 && down==true){ }

x=x+3; }
down(); else{

} if (b[cx+1][cy-1-1].bgr() . . .

if (x==271 && down==false){ && x==268){
if (b[cx+1][cy-1-1].bgr() . . .){ hlth--;

hlth--; }
} b[cx+1][cy].bgr(black);

b[cx+1][cy].bgr(black);
...

...

Figure 3: The function up() of the original program Laser watermarked with the naive ap-
proach and a stealthy approach; the functions down() and health() are both water functions
and belong to category B, i.e., both are functions of G(Laser, Ikey).

(III) We handle in a similar way the case where the function fi does not contains any
statement call(f 2

j ); indeed, we locate a call-point before that of the control state-
ment of Phase II, and add the statements x = x + g() and call(f 2

j ) in this order; we
also include both statements into a control statement as in Phase II; see, statement
if (x==268){...} of Figure 3.

(IV) In this phase, we locate a call-point before that of the control statement of Phase III,
add the statement x = x + c() and include it into a if-then-else control statement
with conditions that hold opaque predicates using the variable x; in our implementation
c() = 1; we add this statement since in the program P ∗ there exists at least one function
fk such that (fk, fi), and thus according to our model we have to add the statement
x = x+ c() in fi; see, statement if (x==267){...} of Figure 3.

(V) In the last phase we handle all the functions f ∗
j of category B, that is, the callee func-

tions of fi that are functions of the call-graph G(P, Ikey) except of f 1
j and f 2

j . For every
direct call (fi, f ∗

j ) we compute the sequence (fi, fk1 , . . . , f
∗
j ) which corresponds to the

shortest path (ui, uk1 , . . . , u
∗
j) from ui to u∗

j in graph F [π∗]; then, we remove the state-
ment call(f ∗

j ) from fi and add either the statements x = x+h() and call(f 1
j ) if (ui, uk1)

is a forward edge or the statements x = x + g() and call(f 1
j ) if (ui, uk1) is a backward

edge in F [π∗]; in any case, we include the statements into a control statement with
conditions that hold opaque predicates using the variable x; we call such a statement
p-statement.

All the functions f ∗∗
j of categoryC are ignored during the process of watermarking the function

fi = up() since they are not executed with the input Ikey.
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Stealthy-watermarking

Having described the naive case of the watermarking process of function fi = up(), we
next show properties and modification rules of the model’s call patterns based on which we
can stealthily watermark a Java application program P . The main modification cases, which
we call stealthy cases, supported by the WaterRpg model are the following:

St.1 Making nested patterns: We can merge f-statements and b-statements in any way;
for example, we can include the control b-statement if (x==268){...} inside the f-
statement if (x==271 && down==true){...} after the statement call(f 1

j ) = up(); we
appropriately change their opaque predicates; see, Figure 3.

St.2 Adding multiple water-calls: Since water-calls do not affect the functionality of the pro-
gram, we can add multiple water-calls in the body of the function fi = up(). Our aim
is to increase the complexity of the source code making thus difficult for an attacker to
understand it, the more the complexity the more the extend of the code.

St.3 Removing control statements: We can remove the control statement that includes the
statement x = x + c() of a function fi = up() (Phase V); we can do that in the case
where fi is called by a function of category C; note that, functions of category C are
not modify the value of the cf-variable x.

St.4 Constructing complex opaque predicates: We can construct more complex opaque
predicates thusmaking the control flow of a programmore difficult for an attacker to ana-
lyze it. In Phase I, we added opaque predicates of the form (x == value1 || x == value2
|| . . . || x == valuem), whereas in the stealthy case we evaluate the cf-variable in a range
of values (x <= valuei && x >= valuej) by adding logical and relational operators.

St.5 Merging control statements: We can merge control statements that we added in pro-
gram P ∗ with program’s original control statements by appropriately merging their cor-
responding logical expressions.

St.6 Assigning complex expressions: In the naive case the incremental functions of state-
ments x = x + h() and x = x + g() have constant values h() = 3 and g() = 2, respec-
tively. We can easily use any complex function for h() and g() in order to systematically
increase the cf-variable x.

St.7 Using more cf-variables: We can use more that one cf-variable to control the flow of
the watermarked program P ∗. We built relationships between the cf-variables in order
to be used interchangeably throughout the execution phase. We establish thresholds
that determine the use of different cf-variables.

CONCLUDING REMARKS

An interesting open question is whether the watermarking approaches and techniques
provided by the WaterRpg model can help develop efficient watermarked Java programs
with respect to resilience, size, time, space, or other watermarking metrics; we leave the
experimental evaluation of our WaterRpg model as a problem for future investigation.
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