
An Embedding Graph-based Model for
Software Watermarking

Maria Chroni and Stavros D. Nikolopoulos
Department of Computer Science

University of Ioannina
Ioannina, Greece

{mchroni, stavros}@cs.uoi.gr

Abstract—In a software watermarking environment, several
graph theoretic watermark methods encode the watermark val-
ues as graph structures and embed them in application programs.
In this paper we first present an efficient codec system for
encoding a watermark number w as a reducible permutation
graph F [π∗] through the use of the self-inverting permutation π∗

which encodes the number w and, then, we propose a method for
embedding the watermark graph F [π∗] into a program P . The
main idea behind the proposed embedding method is a systematic
use of appropriate calls of specific functions of the program P .
That is, our method embeds the graph F [π∗] into P using only
real functions and thus the size of the watermarked program P ∗

remains very small. Moreover, the proposed codec system has
low time complexity, can be easily implemented, and incorporates
such properties which cause it resilient to attacks.

Index Terms—software watermarking, watermark numbers,
self-inverting permutations, reducible permutation graph, encod-
ing, decoding, graph embedding, call-graphs, algorithms.

I. INTRODUCTION

In the last decade, several software watermarking algorithms
have been appeared in the literature that encode watermarks
as graph structures. In general, such encodings make use of
an encoding function encode which converts a watermarking
number w into a graph G, encode(w) → G, and also of
a decoding function decode that converts the graph G into
the number w, decode(G) → w; we usually call the pair
(encode, decode) as graph codec [7]. From a graph-theoretic
point of view, we are looking for a class of graphs G and a
corresponding codec (encode, decode)G with such properties
which cause them resilient to attacks.

A lot of research has been done on software watermark-
ing. The major software watermarking algorithms currently
available are based on several techniques, among which the
register allocation, spread-spectrum, opaque predicate, abstract
interpretation, dynamic path techniques (see, [1], [5], [10],
[11], [14], [15], [16]).

In 1996, Davidson and Myhrvold [12] proposed the first
static software watermarking algorithm which embeds the
watermark into an application program by reordering the basic
blocks of a control flow-graph. Based on this idea, Venkatesan,
Vazirani and Sinha [18] proposed the first graph-based soft-
ware watermarking algorithm which embeds the watermark by
extending a method’s control flow-graph through the insertion
of a directed subgraph; it is called VVS or GTW.

In [18] the construction of a directed graph G (or, watermark
graph G) is not discussed. Collberg et al. [8] proposed an
implementation of GTW, which they call GTWsm, and it is the
first publicly available implementation of the algorithm GTW.
In GTWsm the watermark is encoded as a reducible permutation
graph (RPG) [7], which is a reducible control flow-graph with
maximum out-degree of two, mimicking real code. Note that,
for encoding integers the GTWsm method uses self-inverting
permutations.

Recently, Chroni and Nikolopoulos [3], [4] extended the
class of software watermarking algorithms and graph struc-
tures by proposing an efficient and easily implemented codec
system for encoding watermark numbers as reducible permuta-
tion flow-graphs. They presented an efficient algorithm which
encodes a watermark number w as self-inverting permutation
π∗ and, also, an algorithm which encodes the permutation π∗

as a reducible permutation flow-graph F [π∗] by exploiting
domination relations on the elements of π∗ and using an
efficient DAG representation of π∗; in the same paper, the
authors also proposed efficient decoding algorithms.

In this paper, we first present efficient encoding and de-
coding algorithms that encode watermark values into re-
ducible permutation graphs through the use of self-inverting
permutations (or, for short, SiP) and extract them from the
graph structures. More precisely, we present an efficient codec
system for encoding a watermark number w as a reducible
permutation graph F [π∗] through the use of the self-inverting
permutation π∗ which encodes the number w [3]. Then, we
propose a method for embedding the watermark graph F [π∗]
into an application program P by using appropriate calls of
specific functions of the program P . The main feature of our
embedding method is its ability to embed the graph F [π∗]
into P using only real functions and thus the size of the
watermarked program P ∗ remains very small. Moreover, the
proposed codec system has low time complexity, can be easily
implemented, and incorporates such properties which cause it
resilience to attacks.

II. BACKGROUND RESULTS

We consider finite graphs with no multiple edges. For a
graph G, we denote by V (G) and E(G) the vertex (or, node)
set and edge set of G, respectively. The degree of a vertex x in

the graph G, denoted deg(x), is the number of edges incident
on node x; for a node x of a directed graph G, the number
of head-endpoints of the directed edges adjacent to x is called
the indegree of the node x, denoted indeg(x), and the number
of tail-endpoints is its outdegree, denoted outdeg(x).

A path in a graph G of length k is a sequence of
vertices (v0, v1, . . . , vk) such that (vi−1, vi) ∈ E(G) for
i = 1, 2, . . . , k. A path is called simple if none of its vertices
occurs more than once. A path (simple path) (v0, v1, . . . , vk)
is a cycle (simple cycle) of length k + 1 if (v0, vk) ∈ E(G).

A. Self-inverting Permutations – SiP
Next, we introduce some definitions that are key-objects

in our algorithms for encoding numbers as graphs. Let π be
a permutation over the set Nn = {1, 2, . . . , n}. We think of
permutation π as a sequence (π1, π2, . . . , πn), so, for example,
the permutation π = (1, 4, 2, 7, 5, 3, 6) has π1 = 1, π2 = 4,
ect. Notice that π−1

i is the position in the sequence of the
number i; in our example, π−1

4 = 2, π−1
7 = 4, π−1

3 = 6, etc
[13].

Definition 1. The inverse of a permutation (π1, π2, . . . , πn) is
the permutation (q1, q2, . . . , qn) with qπi = πqi = i. A self-
inverting permutation (or, involution) is a permutation that is
its own inverse: ππi

= i.

By definition, every permutation has a unique inverse, and
the inverse of the inverse is the original permutation. Clearly,
a permutation is a self-inverting permutation if and only if all
its cycles are of length 1 or 2; hereafter, we shall denote a 2-
cycle as c = (x, y) and an 1-cycle as c = (x), or, equivalently,
c = (x, x).

Definition 2. Let C1,2 = {c1 = (x1, y1), c2 = (x2, y2), . . .,
ck = (xk, yk)} be the set of all the cycles of a self-inverting
permutation π such that xi < yi (1 ≤ i ≤ k), and let ≺ be
a linear order on C1,2 such that ci ≺ cj if xi < xj , 1 ≤
i, j ≤ k. A sequence C = (c1, c2, . . . , ck) of all the cycles
of a self-inverting permutation π is called increasing cycle
representation of π if c1 ≺ c2 ≺ · · · ≺ ck. The cycle c1 is the
minimum element of the sequence C.

B. Reducible Permutation Graphs – RPG
A flow-graph is a directed graph F with an initial node s

from which all other nodes are reachable. A directed graph
G is strongly connected when there is a path x → y for all
nodes x, y in V (G). A node u is an entry for a subgraph H
of the graph G when there is a path p = (y1, y2, . . . , yk, x)
such that p ∩H = {x}.

Definition 5. A flow-graph is reducible when it does not have
a strongly connected subgraph with two (or more) entries.

III. ENCODE WATERMARK NUMBERS AS RPGS

For encoding integers some recently proposed watermarking
methods use only those permutations that are self-inverting.

π∗ = (4, 7, 6, 1, 5, 3, 2)

67 5 4 3 2 1 t

F [π∗]

s

SiP.to.RPG RPG.to.SiP

The watermark number w = 4

W.to.SiP SiP.to.W

Fig. 1. The main data components used by the algorithms of the
codec system (encode, decode)F [π∗].

Collberg et al. [7] based on the fact that there is a one-to-
one correspondence between self-inverting permutations and
isomorphism classes of RPGs proposed a polynomial algo-
rithm for encoding any integer w as the RPG, corresponding
to the wth self-inverting permutation π in this correspondence.
This encoding exploits only the fact that a self-inverting
permutation is its own inverse.

In [4] Chroni and Nikolopoulos proposed an efficient algo-
rithm which encodes an integer w as self-inverting permutation
π∗ thought the use of bitonic permutations; recall that a
permutation π = (π1, π2, . . . , πn) over the set Nn is called
bitonic if either monotonically increases and then monoton-
ically decreases, or else monotonically decreases and then
monotonically increases. In this encoding the self-inverting
permutation incorporates important structural properties which
cause it resilient to attacks.

We next describe the main properties of our codec system
(encode, decode)F [π∗]; we mainly focus on the properties of
the reducible permutation graph F [π∗] with respect to graph-
based software watermarking attacks.

1) Components of the graph F [π∗]: The reducible permu-
tation graph F [π∗] consists of the following three components:
the header node (it is a root node with outdegree one from
which every other node in the graph F [π∗] is reachable; in
the graph F [π∗] the header node is denoted by s); the footer
node (it is a node with outdegree zero that is reachable from
every other node of the graph; in the graph F [π∗] the footer
node is denoted by t); and the body (it consists of n nodes
u1, u2, . . . , un each with outdegree two. In particular, each
node ui (1 ≤ i ≤ n) has exactly two outpointers: one points
to node ui−1 and the other points to node um, where m > i).

2) Structural Properties: The proposed reducible per-
mutation graph F [π∗] and a corresponding codec system
(encode, decode)F [π∗] have the following properties:

• Appropriate graph types: The graph F [π∗] is directed
on n+2 nodes with outdegree exactly two; that is, it has
low max-outdegree, and, thus, it matches real program
graphs;

• High resiliency: Since each node in the graph F [π∗] has
exactly one outpointer and exactly one outpointer, any
single edge modification, i.e., edge-flip, edge-addition,
or edge-deletion, will violate the outpointer condition of
some nodes, and thus the modified edge can be easily
identified and corrected;

• Small size: The size |P ∗| − |P | of the embedded
watermark is small;

• Efficient codecs: The codec (encode, decode)F [π∗] has
low time and space complexity [3].

It is worth noting that our encoding and decoding algorithms
use basic data structures and basic operations, and, thus, they
can be easily implemented.

3) Unique Hamiltonian Path: We next show that the re-
ducible permutation graph F [π∗] has always a unique Hamil-
tonian path, denoted by HP(F [π∗]), and this Hamiltonian path
can be found in O(n) time, where n is the number of nodes of
F [π∗]. The following algorithm, which we call Unique HP,
takes as input a graph F [π∗] on n nodes and produces its
unique Hamiltonian path HP(F [π∗]).

Algorithm Unique HP
1. Find the node u0 of the reducible permutation graph

F [π∗] with outdegree one;
2. Perform DFS-search on graph F [π∗] starting at node u0

and compute the DFS discovery time d[u] of each node
u of F [π∗];

3. Order the nodes u0, u1, . . . , un+1 of the graph F [π∗]
by their DFS discovery time d[] and let HP(F [π∗]) =
(u′

0, u
′
1, . . . , u

′
n+1) be the resulting order of the nodes,

where d[u′
i] < d[u′

j] for i < j, 0 ≤ i, j ≤ n+ 1;
4. Return HP(F [π∗]);

Since the graph F [π∗] contains n nodes and m = O(n)
edges, both finding the node of F [π∗] with outdegree one and
performing DFS-search on F [π∗] take O(n) time and require
O(n) space.

IV. EMBEDDING A RPG INTO A CODE

Having encoded a watermark number w as Reducible
Permutation Graph F [π∗], let us now propose a method
which embeds the watermark graph F [π∗] into an application
program. The main idea behind the proposed method is a
systematic use of appropriate calls of specific functions of the
program. More specifically we present a method for encoding
our RPG in the call graph of a program.

A call graph of a program represents calling relations
between procedures in a program. It has a distinguished
root node, corresponding to the highest-level procedure and
representing an abstraction of the whole system [17]. These
graphs are used in interprocedural program optimization and
for reverse engineering of software systems [2], [9].

The nodes of a call graph represent the procedures being
either callees or callers; their edges represent the calling re-
lations between the procedures. Since call graphs are directed
graphs, every edge has an explicit source and target node,
representing the calling and called procedure, respectively;
note that, cycles in a call graph represent recursion.

A. Embedding Model

We next present the method for embedding the graph F [π∗]
into an application program P (see, Figure 1); the proposed
embedding method consists of the following steps:

Embedding Method RPG.to.CODE
1. Take as input the source code of the program P and

the watermark RPG F [π∗] and let f0, f1, . . . , fk be the
functions of P and s = u0, u1, . . . , un, un+1 = t be the
nodes of F [π∗], k ≥ n+ 2;

2. Select n+ 2 functions of P , say, f∗
0 , f

∗
1 , . . . , f

∗
n+1, and

assign the node ui of the graph F [π∗] to function f∗
i ,

0 ≤ i ≤ n+ 1;
3. Construct the call-graph (CG) of the input program P

by finding the real-calls of each function of P ;
4. Construct the control-flow graph (CFG) of each function

f∗
0 , f

∗
1 , . . . , f

∗
n+1 of the program P and locate two “call-

points” in the control-flow graph of each function f∗
i ,

0 ≤ i ≤ n+ 1;
5. Add the statement call(f∗

j) in a call-point of the
function f∗

i if the corresponding nodes ui and uj form
a directed edge (ui, uj) in the graph F [π∗], 0 ≤ i, j ≤
n+ 1, and mark this call as water-call;

6. Return the source code of the program P ∗;

B. Extracting the Watermark RPG from the Code

In this section, we present an algorithm for extracting the
graph F [π∗] from program P ∗ watermarked by the embedding
method RPG.to.CODE; the proposed extracting method is the
following:

Extracting Method RPG.from.CODE
1. Take as input the source code of the watermarked

program P ∗;
2. Construct the call-graph CG[P ∗] of the input program

P ∗ by finding the real-calls and the water-calls of each
function of P ∗;

3. Delete all the edges from the graph CG[P ∗] which
corresponds to real-calls and, then, delete all its isolated
nodes; let CG[P ′] be the resulting graph;

F [π∗]fmain

s

7

6

5

4

3

f0

f1

f2

f3

f4

f5

f6

f7

f8

2

1

t

fmain

f0

f1

f2

f3

f4

f5

f6

f7

f8

(a) (b) (c)

Fig. 2. (a) The call-graph CG[P] of the input application program
P . (b) The reducible permutation graph F [π∗]. (c) The call-graph
CG[P ∗] of the watermarked program P ∗.

4. Construct a graph F [P ∗] isomorphic to CG[P ′] and let
s = u0, u1, . . . , un, un+1 = t be its nodes;

5. Compute the unique Hamiltonian path of the graph
F [P ∗] and, then, construct the flow-graph F [π∗];

6. Return the graph F [π∗];

In order to ensure that the water-calls do not affect the
execution of the program, we propose a method which alter
the source code by inserting control flow statements, say,
an if-else-statement, and an extra parameter, say, w, in
each function f∗. During the execution of the program P ∗,
if a function f water-calls the function f∗ then we pass
by reference an appropriate value as an argument into f∗

through the parameter w; the type of the parameter may be
either boolean, number, or a string. Once the condition of the
if-else-statement is satisfied, an appropriate statement is
executed (for example, w = −w) and the function f∗ returns;
otherwise, the function f∗ is normally executed. Note that,
argument’s value does not affect program’s functionality.

In addition, we may perform an obfuscating technique in
P ∗ in order to prevent reverse engineering. Roughly speaking,
the goal of obfuscation is to hide the secrets inside a program
while preserving its functionality.

V. CONCLUDING REMARKS

In this paper we first presented a codec system which en-
codes a watermark number w as reducible permutation graph
F [π∗] and, then, we proposed a model for embedding the

graph F [π∗] into an application program P using appropriate
calls of specific functions of P . The main feature of our
embedding model is its ability to embed the graph F [π∗]
into P using only real functions and thus the size of the
watermarked program P ∗ remains very small. Moreover, the
proposed codec system has low time complexity, can be easily
implemented, and incorporates such properties which cause it
resilient to attacks.

In light of our embedding method it would be very interest-
ing to implement the method in order to obtain a clear view
of its practical behaviour; we leave it as a problem for future
investigation.

REFERENCES

[1] G. Arboit, “A method for watermarking Java programs via opaque pred-
icates,” 5th International Conference on Electronic Commerce Research
(ICECR-5) (2002).

[2] E. J. Chikofsky, and J. H. Cross II, “Reverse engineering and design
recovery: A taxonomy,” IEEE Software, pp. 1317 (1990).

[3] M. Chroni and S.D. Nikolopoulos, “Efficient Encoding of Watermark
Numbers as Reducible Permutation Graphs,” CoRR abs/1110.1194 (Oc-
tober 2011).

[4] M. Chroni and S.D. Nikolopoulos, “Encoding watermark integers as self-
inverting permutations,” Proc. Int’l Conference on Computer Systems
and Technologies (CompSysTech’10), ACM ICPS 471, 125–130 (2010).

[5] C. Collberg, E. Carter, S. Debray, A. Huntwork, J. Kececioglu, C. Linn
and M. Stepp, “Dynamic path-based software watermarking.” Proc.
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ACM SIGPLAN 39, pp. 107–118 (2004).

[6] C. Collberg and J. Nagra, “Surreptitious Software,” Addison-Wesley
(2010).

[7] C. Collberg, S. Kobourov, E. Carter, and C. Thomborson, “Error-
correcting graphs for software watermarking,” Proc. 29th Workshop on
Graph-Theoretic Concepts in Computer Science (WG’03), LNCS 2880,
pp. 156–167 (2003).

[8] C. Collberg, A. Huntwork, E. Carter, G. Townsend, and M. Stepp, “More
on graph theoretic software watermarks: Implementation, analysis, and
attacks,” Information and Software Technology 51, pp. 56–67 (2009).

[9] K. D. Cooper, and K. Kennedy, “Efficient computation of flow insensi-
tive interprocedural summary information,” In Proceedings of the ACM
SIGPLAN84 Symposium on Compiler Construction, pp. 247258 (1984).

[10] P. Cousot and R. Cousot, “An abstract interpretation-based framework
for software watermarking,” Proc. 31st ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (POPL’04), pp. 173–
185 (2004).

[11] D. Curran, N. Hurley and M. Cinneide, “Securing Java through software
satermarking, Proc,” Int’l Conference on Principles and Practice of
Programming in Java (PPPJ’03), pp. 145–148 (2003).

[12] R.L. Davidson and N. Myhrvold, “Method and system for generating
and auditing a signature for a computer program” US Patent 5.559.884,
Microsoft Corporation (1996).

[13] M.C. Golumbic, “Algorithmic Graph Theory and Perfect Graphs,”
Academic Press, New York (1980). Second edition, Annals of Discrete
Math. 57, Elsevier (2004).

[14] A. Monden, H. Iida, K. Matsumoto, K. Inoue and K. Torii, “A practical
method for watermarking Java programs,” Proc. 24th Computer Software
and Applications Conference (COMPSAC’00), pp. 191–197 (2000).

[15] J. Nagra and C. Thomborson, “Threading software watermarks,” Proc.
6th Int’l Workshop on Information Hiding (IH’04), LNCS 3200, pp.
208-223 (2004).

[16] G. Qu and M. Potkonjak, “Analysis of watermarking techniques
for graph coloring problem,” Proc. IEEE/ACM Int’l Conference on
Computer-aided Design (ICCAD’98), ACM Press, pp. 190–193 (1998).

[17] B. Ryder,“Constructing the Call Graph of a Program ,” IEEE Transac-
tions on Software Engineering SE-5(3), pp. 216–225 (1979).

[18] R. Venkatesan, V. Vazirani, and S. Sinha, “A graph theoretic approach
to software watermarking,” Proc. 4th Int’l Workshop on Information
Hiding (IH’01), LNCS 2137, pp. 157–168 (2001).

