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Abstract: Software watermarking involves embedding a unique identifier, i.e., a watermark value, within a
software to discourage software theft; to this end, several graph theoretic watermark methods encode the wa-
termark values as graph structures and embed them in application programs using a wide range of algorithmic
techniques. In this paper we propose an efficient method for encoding the same watermark value into sev-
eral different graphs, we call it multiple encoding, answering thus the question we have recently left open. In
particular, we propose an efficient algorithm which embed a cograph G[π∗] into a reducible permutation graph
F [π∗] by first computing the cotree ofG[π∗], then computing a rooted binary tree having specific node-value and
child-parent properties, and finally, based on these properties, producing a reducible permutation graph F [π∗].
In light of our recent encoding algorithms which encode a watermark value w as a self-inverting permutation π∗

and the permutation π∗ into several cographsG1[π
∗], G2[π

∗], . . . , Gn[π
∗], we conclude that we can efficiently en-

code the same watermark value w into several reducible permutation graphs F1[π
∗], F2[π

∗], . . . , Fn[π
∗], n ≥ 2.

This property causes a codec watermarking system resilient to attacks since we can embed multiple copies
of the same watermark value w into an application program. We also propose decoding algorithms which ef-
ficiently extract the watermark value w from the reducible permutation graph F [π∗]. Moreover, our encoding
and decoding algorithms have low time complexity and can be easily implemented.

Key words: software watermarking, watermark numbers, self-inverting permutations, cographs, cotrees, re-
ducible permutation graphs, encoding, decoding, algorithms.

INTRODUCTION

The software watermarking problem can be described as the problem of embedding a
structure w into a program P such that w can be reliably located and extracted from P even
after P has been subjected to code transformations such as translation, optimization and
obfuscation [13, 15, 16, 18].

Recently, several software watermarking algorithms have appeared in the literature that
encode watermarks as graph structures. From a graph-theoretic point of view, we are look-
ing for a class of graphs G and a corresponding codec (encode, decode)G system with the
following properties: (i) appropriate graph types, (ii) high resiliency, (iii) small size, and (iv)
efficient encoding and decoding functions.

In 1996, Davidson and Myhrvold [11] proposed the first software watermarking algorithm
which is static and embeds the watermark by reordering the basic blocks of a control flow-
graph. Based on this idea, Venkatesan et al. [17] proposed the first graph-based software
watermarking algorithm which embeds the watermark by extending a method’s control flow-
graph through the insertion of a directed subgraph; it is called VVS or GTW.

Collberg et al. [7] proposed an implementation of GTW, which they call GTWsm; note that,
it is the first publicly available implementation of the algorithm GTW. In GTWsm the watermark
is encoded as a reducible permutation graph (RPG) [6], which is a reducible control flow-
graph [19, 20] with maximum out-degree of two, mimicking real code. The first dynamic
watermarking algorithm (CT) was proposed by Collberg and Thomborson [8]; it embeds the
watermark through a graph structure which is built on a heap at runtime.
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Recently, Chroni and Nikolopoulos [3] extended the class of graphs which can be effi-
ciently used in a software watermarking system by proposing efficient codec algorithms that
embed watermark values into cographs through the use of self-inverting permutations (or,
for short, SiP) and extract them from the graph structures using cotrees. The main prop-
erty of their codec system is its ability to encode the same integer w, through the use of a
self-inverting permutation π∗, into more than one cograph G1[π

∗], G2[π
∗], . . . , Gn[π

∗], n ≥ 2.
In the same paper [3], Chroni and Nikolopoulos left open the problem of encoding a wa-

termark value w, or, equivalently, a self-inverting permutation π∗ into more than one reducible
permutation graphs F1[π

∗], F2[π
∗], . . . , Fn[π

∗], n ≥ 2; note that, they have proposed efficient
algorithms which encode (resp. extract) a watermark valuew into (resp. from) a self-inverting
permutation π∗ [2].

In this paper, we propose an efficient transformation of a cograph G[π∗], produced by the
encoding algorithm of [3], into a reducible permutation graph F [π∗]. In particular, we propose
an efficient encoding algorithm, we call it Encode_Cotree.to.RPG, which embed a cograph
G[π∗] into a reducible permutation graph F [π∗] by first computing the cotree of G[π∗], then
computing a rooted binary tree R[π∗] having specific node-value and child-parent properties,
and finally, based on these properties, producing a reducible permutation graph F [π∗]; we
also propose a decoding algorithm, we call it Encode_RPG.to.SiP, which extracts the SiP π∗

from the reducible permutation graph F [π∗] using the tree R[π∗] and specific properties of the
inorder sequence of the nodes of R[π∗].

Thus, in light of our encoding algorithm which encodes a watermark integer w as a self-
inverting permutation π∗ [2], we conclude that we can efficiently encode the same watermark
integer w into several different reducible permutation graphs F1[π

∗], F2[π
∗], . . . , Fn[π

∗], n ≥ 2.
This property causes a codec system resilient to attacks since we can embed multiple copies
of the same watermark number w into an application program. Moreover, our encoding and
decoding algorithms have low time complexity and can be easily implemented.

BACKGROUND RESULTS

We consider finite graphs with no multiple edges. For a graph G, we denote by V (G) and
E(G) the vertex (or, node) set and edge set of G, respectively. For basic definitions in graph
theory refer to [12].

Self-inverting Permutations

Next, we define a type of permutations, named self-inverting permutations, that are key-
objects in our algorithms for encoding numbers as graphs. Let π be a permutation over the
set Nn = {1, 2, . . . , n}. We think of permutation π as a sequence (π1, π2, . . . , πn), so, for
example, the permutation π = (1, 4, 2, 7, 5, 3, 6) has π1 = 1, π2 = 4, ect. Notice that π−1

i is the
position in the sequence of the number i; in our example, π−1

4 = 2, π−1
7 = 4, π−1

3 = 6, etc [12].

Definition 1. The inverse of a permutation (π1, π2, . . . , πn) is the permutation (q1, q2, . . . , qn)
with qπi

= πqi = i. A self-inverting permutation (or, involution) is a permutation that is its own
inverse: ππi

= i.

By definition, every permutation has a unique inverse, and the inverse of the inverse is
the original permutation. Clearly, a permutation is a self-inverting permutation if and only if
all its cycles are of length 1 or 2; hereafter, we shall denote a 2-cycle as c = (x, y) and an
1-cycle as c = (x), or, equivalently, c = (x, x).
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Reducible Permutation Graphs

A flow-graph is a directed graph F with an initial node s from which all other nodes are
reachable. A directed graph G is strongly connected when there is a path x → y for all nodes
x, y in V (G). A node x is an entry for a subgraph H of the graph G when there is a path
p = (y1, y2, . . . , yk, x) such that p ∩H = {x}.

Definition 2. A flow-graph is reducible when it does not have a strongly connected subgraph
with two (or more) entries.

There are at least three other equivalent definitions [19, 20]; we give the following: F is
reducible iff F can be transformed into a single node by repeated application of the trans-
formations T1 and T2, where transformation T1 removes a cycle-edge (x, x), while T2 picks a
non-initial node y that has only one incoming edge (x, y) and glue nodes x and y.

Cographs and Cotrees

Cographs were introduced in the early 1970s by Lerchs [14] who studied their structural
and algorithmic properties. Along with other properties, Lerchs has shown that the cographs
admit a unique tree representation, up to isomorphism, called a cotree. The cotree of a
cograph G is a rooted tree such that:

(i) each internal node, except possibly for the root, has at least two children;

(ii) the internal nodes are labeled by either 0 (0-nodes) or 1 (1-nodes); the internal nodes
that are children of a 1-node (0-node resp.) are 0-nodes (1-nodes resp.);

(iii) the leaves of the cotree are in a 1-to-1 correspondence with the vertices of G, and two
vertices vi, vj are adjacent in G if and only if the least common ancestor of the leaves
corresponding to vi and vj is a 1-node (see, Figure 1).

The study of cographs led naturally to constructive characterizations that implied several
linear-time recognition algorithms that also enabled the construction of the corresponding
tree representation (cotree) in linear time [1]. The first linear-time recognition and cotree-
construction algorithm was proposed by Corneil, Perl, and Stewart in 1985 [9].

Encoding a Watermark Number into many Cographs

Recently, Chroni and Nikolopoulos presented the algorithm Encode_W.to.SIP for encod-
ing an integer as self-inverting permutation [2]. The authors also presented an extraction
algorithm which takes as input a self-inverting permutation π∗ and returns its corresponding
integer w; it is called Decode_SIP.to.W.

Based on the results of [2], the same authors proposed an algorithm for encoding a self-
inverting permutation as a cograph; the algorithm is called Encode_SIP.to.Cograph [3]. Their
algorithm takes as input a self-inverting permutation π∗ of length 2n + 1 produced by algo-
rithm Encode_W.to.SIP, and then constructs an arbitrary cograph G[π∗] on 2n+1 vertices by
preserving the cycle relation of permutation π∗. We next describe the encoding algorithm by
the help of an example:

Example (Encode a SiP into Cographs): Let π∗ = (3, 5, 1, 7, 2, 6, 4) be the input self-inverting
permutation in the algorithm Encode_SIP.to.Cograph which corresponds to watermark num-
ber w. The algorithm first constructs the graph H having V (H) = {v1, v2, v3, v4, v5, v6,
v7}, and E(H) = {(v1, v3), (v2, v5), (v4, v7)} and then computes its connected components
H1 = H[v1, v3], H2 = H[v2, v5], H3 = H[v4, v7], and H4 = H[v6]; note that H1 = H[v1, v3] is the
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Figure 1: Two cographs G1[π
∗] and G2[π

∗] on 7 vertices which encode the same watermark number
w, and the corresponding cotrees T1[π

∗] and T2[π
∗].

subgraph of H induced by the nodes v1 and v3 (for the construction of the cographs G1[π
∗]

and G2[π
∗] of Figure 1, see [3]).

Chroni andNikolopoulos also presented a decoding algorithm for extracting a self-inverting
permutation from a cograph [3]. Their algorithm Decode_Cograph.to.SIP takes as input a co-
graph G[π∗] produced by algorithm Encode_SIP.to.Cograph and extracts the self-inverting
permutation π∗ from G[π∗] by constructing first its cotree T [π∗] and then finding the pairs of
nodes (x1, y1), (x2, y2), . . ., (xn, yn) such that the nodes xi and yi, 1 ≤ i ≤ n, have the same
internal node (0-node or 1-node) as parent; these pairs correspond to 2-cycles of the per-
mutation π∗. We next give a brief description of the decoding algorithm by the help of an
example:

Example (Extract a SiP from Cographs): LetG1[π
∗] andG2[π

∗] be two cographs produced by
the encoding algorithm Encode_SIP.to.Cograph (see Figure 1). The decoding algorithm con-
structs first the corresoding cotrees T1[π

∗] and T2[π
∗], and then computes the pairs of nodes

(v4, v7), (v1, v3) and (v2, v5). Then it constructs the identity permutation π∗ = (1, 2, 3, 4, 5, 6, 7),
which maps every element of the setNn to itself, and changes the positions of element 4 and
7, 1 and 3, and 2 and 5; it returns the self-inverting permutation π∗ = (3, 5, 1, 7, 2, 6, 4) which
corresponds to watermark number w.

MULTIPLE ENCODING OF A WATERMARK NUMBER INTO RPGs

Having presented an encoding algorithm which embeds a watermark number into sev-
eral deferent cographs [3], let us next propose an algorithm which embeds a cograph into
a reducible permutation graph (or, for short, RPG) using the structure and some important
properties of the class of cographs. Thus, having such an algorithm, we can encode a wa-
termark number w into many RPGs F1[π

∗], F2[π
∗], . . . , Fn[π

∗], where n ≥ 2.
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Encoding a Cograph as Reducible Permutation Graph

We next propose the algorithm Encode_Cotree.to.RPG which takes as input the cotree
T [π∗] of a cograph G[π∗] produced by the algorithm Encode_SiP.to.Cograph [3], and con-
structs a reducible permutation graph F [π∗] by using an efficient node elimination and sub-
tree modification on T [π∗]. The whole encoding process takes O(n) time and requires O(n)
space, where n is the length of the input cotree T [π∗].

Given the cotree T [π∗] of a cograph G[π∗] on n vertices our encoding algorithm works on
two phases:

(I) it first uses a strategy based on node elimination and subtree modification to transform
the cotree T [π∗] into a binary tree R[π∗], which we call RPG-tree, having the property
that each node has value smaller than the value of its parent;

(II) then, it constructs a directed graph F [π∗] on n+2 nodes using the child-parent relation
of the nodes of the tree R[π∗].

Next, we describe in detail the encoding algorithm Encode_Cotree.to.RPG (see, Figure 2 and
Figure 3); the two phases of the algorithm work as follows:

Phase I: Construction of the RPG-tree R[π∗] from T [π∗]: We construct the RPG-tree
(rpgtree) R[π∗] by eliminating the internal nodes of the cotree T [π∗] and max-merging certain
subtrees in an appropriate way, as follows:

I.1. Let r be the root of the cotree T [π∗] and t be the internal node of T [π∗] with only one
leaf, say, v;

◦ Replace the label of the root r with the number n+1 and the label of each internal
node with the number −1;

◦ Create a new node with value 0 and make it child of the node v;

I.2. While the tree T [π∗] contains internal nodes u with value -1, do the following:
◦ Find such an internal node u of maximum high and let u1, u2, . . . , uk be

the children of u, k > 1;
◦ Max-merge the subtrees T (u1), T (u2), . . . , T (uk) and let T (um) be the

resulting subtree rooted at node um, 1 ≤ m ≤ k;
◦ Make the root um of the resulting subtree T (um) child of the parent of u;
◦ Delete the node u from the tree T [π∗];

where the function Max-merge works as follows:

◦ Order the subtrees T (u1), T (u2), . . . , T (uk) according to their root values, and
let u1 < u2 < . . . < uk;

◦ Make the root ui of T (ui) child of the root ui+1 of T (ui+1), for all i (1 ≤ i ≤ k − 1);

Phase II: Construction of the RPG F [π∗] fromR[π∗]: We construct the directed graph F [π∗]
by exploiting the child-parent relation of the nodes of the rpgtree R[π∗], as follows:

II.1. For every node ui of R[π∗], 0 ≤ i ≤ n+ 1, create a node vi and add it to V (F [π∗]); that
is, V (F [π∗]) = {s = vn+1, vn, vn−1, . . . , v1, , v0 = t};

II.2. For every pair of nodes (vi, vi−1) of the set V (F [π∗]) add the directed edge (vi, vi−1) in
E(F [π∗]), 1 ≤ i ≤ n+ 1; we call it list pointer;
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Figure 2: The cotree T1[π
∗] of Figure 1 and the resulting RPG-tree R1[π

∗]; trees T ′[π∗] and T ′′[π∗]
show the contraction process.

II.3. For every node ui of R[π∗] compute its parent node p(vi), 0 ≤ i ≤ n, and add the
directed edge (ui, p(ui)) in E(F [π∗]); we call it tree pointer.

Theorem 1. Let T [π∗] be the cotree of a cographG[π∗] on n vertices. The encoding algorithm
Encode_Cotree.to.RPG encodes the cotree T [π∗] into a reducible permutation graph F [π∗] in
O(n) time and space.

Algorithm Decode_RPG.to.SiP

Next, we present such a decoding algorithm, we call it Decode_RPG.to.SiP, which is ef-
ficient: it takes time and space linear in the size of the flow-graph F [π∗], and easily imple-
mented: the only operations used by the algorithm are edge modifications on F [π∗] and
inorder traversal on trees.

The algorithm takes as input a reducible permutation graph F [π∗] on n + 2 nodes and
produces a self-inverting permutation π∗ of length n; it works as follows:

Algorithm Decode_RPG.to.SiP

1. Delete the directed edges (vi+1, vi) from the edge set E(F [π∗]), 1 ≤ i ≤ n;

2. Flip all the remaining directed edges of the graph F [π∗]; let R[π∗] be the resulting tree
and let s = v0, v1, v2, . . . , vn, vn+1 = t be the nodes of R[π∗];

3. Make first the binary tree R[π∗] rooted at node s = v0 and ordered, and then perform
inorder traversal on R[π∗];

4. List the nodes s = v0, v1, v2, . . . , vn+1 of the tree R[π∗] by the order in which they are
visited; remove from the list the root node and let v′1, v′2, . . . , v′n+1 be the resulting list;
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∗] and the corresponding reducible permutation graphs
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∗], respectively, produced by the algorithm Encode_Cotree.to.RPG.

5. Compute the pairs (v′1, v′2), (v′3, v′4), . . . , (v′n, v′n+1) and remove the pair (v′i, v′i+1) for which
v′i = 0; let n′ be the remaining pairs;

6. Construct the identity permutation on N2n′, and then compute a self-inverting permuta-
tion π using the pairs of step 5; return π∗ = π;

Let us now describe the decoding process using the two RPGs F1[π
∗] and F2[π

∗] of Fig-
ure 3. Let F1[π

∗] be the input of the algorithm Decode_RPG.to.SiP. It first computes the rooted
ordered tree R1[π

∗] and then computes the inorder sequence I1 = (4, 7, 8, 0, 6, 1, 3, 5, 2); it
deletes the value 8 of the root resulting the sequence I ′1 = (4, 7, 0, 6, 1, 3, 5, 2); then the
algorithm computes the pairs C1 = {(4, 7), (0, 6), (1, 3), (5, 2)} and removes the pair (0, 6)
from C1. Then, it takes the identity permutation πI = (1, 2, 3, 4, 5, 6, 7) and using the pairs
(4, 7), (1, 3), (5, 2) as 2-cycles produces the SiP π∗ = (3, 5, 1, 7, 2, 6, 4).

If the algorithm takes as input the RPG F1[π
∗] then I1 = (1, 3, 5, 2, 8, 0, 6, 7, 4) and thus

I ′1 = (1, 3, 5, 2, 0, 6, 7, 4). It is easy to see that the 2-cycles in C2 are (1, 3), (5, 2), (7, 4), and
thus the identity permutation πI becomes π∗ = (3, 5, 1, 7, 2, 6, 4).

Theorem 2. Let T [π∗] be a cotree which encodes the self-inverting permutation π∗ and
let F [π∗] be a reducible permutation flow-graph of size O(n) produced by the algorithm
Encode_Cotree.to.RPG. The algorithm Decode_RPG.to.SIP extracts the permutation π∗ from
the flow-graph F [π∗] in O(n) time and space.

CONCLUDING REMARKS

An interesting open question is whether the approach and techniques used in this paper,
also in [3, 4], can help develop efficient codec algorithms and graph structures having “better”
properties with respect to resilience, size, and/or time and space efficiency; we leave it as
an open problem for future investigation.
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