
International Conference on Computer Systems and Technologies – CompSysTech’12

Multiple Encoding of a Watermark Number into Reducible
Permutation Graphs using Cotrees

Maria Chroni and Stavros D. Nikolopoulos

Abstract: Software watermarking involves embedding a unique identifier, i.e., a watermark value, within a
software to discourage software theft; to this end, several graph theoretic watermark methods encode the wa-
termark values as graph structures and embed them in application programs using a wide range of algorithmic
techniques. In this paper we propose an efficient method for encoding the same watermark value into sev-
eral different graphs, we call it multiple encoding, answering thus the question we have recently left open. In
particular, we propose an efficient algorithm which embed a cograph G[π∗] into a reducible permutation graph
F [π∗] by first computing the cotree ofG[π∗], then computing a rooted binary tree having specific node-value and
child-parent properties, and finally, based on these properties, producing a reducible permutation graph F [π∗].
In light of our recent encoding algorithms which encode a watermark value w as a self-inverting permutation π∗

and the permutation π∗ into several cographsG1[π
∗], G2[π

∗], . . . , Gn[π
∗], we conclude that we can efficiently en-

code the same watermark value w into several reducible permutation graphs F1[π
∗], F2[π

∗], . . . , Fn[π
∗], n ≥ 2.

This property causes a codec watermarking system resilient to attacks since we can embed multiple copies
of the same watermark value w into an application program. We also propose decoding algorithms which ef-
ficiently extract the watermark value w from the reducible permutation graph F [π∗]. Moreover, our encoding
and decoding algorithms have low time complexity and can be easily implemented.

Key words: software watermarking, watermark numbers, self-inverting permutations, cographs, cotrees, re-
ducible permutation graphs, encoding, decoding, algorithms.

INTRODUCTION

The software watermarking problem can be described as the problem of embedding a
structure w into a program P such that w can be reliably located and extracted from P even
after P has been subjected to code transformations such as translation, optimization and
obfuscation [13, 15, 16, 18].

Recently, several software watermarking algorithms have appeared in the literature that
encode watermarks as graph structures. From a graph-theoretic point of view, we are look-
ing for a class of graphs G and a corresponding codec (encode, decode)G system with the
following properties: (i) appropriate graph types, (ii) high resiliency, (iii) small size, and (iv)
efficient encoding and decoding functions.

In 1996, Davidson and Myhrvold [11] proposed the first software watermarking algorithm
which is static and embeds the watermark by reordering the basic blocks of a control flow-
graph. Based on this idea, Venkatesan et al. [17] proposed the first graph-based software
watermarking algorithm which embeds the watermark by extending a method’s control flow-
graph through the insertion of a directed subgraph; it is called VVS or GTW.

Collberg et al. [7] proposed an implementation of GTW, which they call GTWsm; note that,
it is the first publicly available implementation of the algorithm GTW. In GTWsm the watermark
is encoded as a reducible permutation graph (RPG) [6], which is a reducible control flow-
graph [19, 20] with maximum out-degree of two, mimicking real code. The first dynamic
watermarking algorithm (CT) was proposed by Collberg and Thomborson [8]; it embeds the
watermark through a graph structure which is built on a heap at runtime.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

CompSysTech’12, June 22–23, 2012, Ruse, Bulgaria.
Copyright©2012 ACM 000-0-0000-0000-0/00/00...$00.00.

International Conference on Computer Systems and Technologies – CompSysTech’12

Recently, Chroni and Nikolopoulos [3] extended the class of graphs which can be effi-
ciently used in a software watermarking system by proposing efficient codec algorithms that
embed watermark values into cographs through the use of self-inverting permutations (or,
for short, SiP) and extract them from the graph structures using cotrees. The main prop-
erty of their codec system is its ability to encode the same integer w, through the use of a
self-inverting permutation π∗, into more than one cograph G1[π

∗], G2[π
∗], . . . , Gn[π

∗], n ≥ 2.
In the same paper [3], Chroni and Nikolopoulos left open the problem of encoding a wa-

termark value w, or, equivalently, a self-inverting permutation π∗ into more than one reducible
permutation graphs F1[π

∗], F2[π
∗], . . . , Fn[π

∗], n ≥ 2; note that, they have proposed efficient
algorithms which encode (resp. extract) a watermark valuew into (resp. from) a self-inverting
permutation π∗ [2].

In this paper, we propose an efficient transformation of a cograph G[π∗], produced by the
encoding algorithm of [3], into a reducible permutation graph F [π∗]. In particular, we propose
an efficient encoding algorithm, we call it Encode_Cotree.to.RPG, which embed a cograph
G[π∗] into a reducible permutation graph F [π∗] by first computing the cotree of G[π∗], then
computing a rooted binary tree R[π∗] having specific node-value and child-parent properties,
and finally, based on these properties, producing a reducible permutation graph F [π∗]; we
also propose a decoding algorithm, we call it Encode_RPG.to.SiP, which extracts the SiP π∗

from the reducible permutation graph F [π∗] using the tree R[π∗] and specific properties of the
inorder sequence of the nodes of R[π∗].

Thus, in light of our encoding algorithm which encodes a watermark integer w as a self-
inverting permutation π∗ [2], we conclude that we can efficiently encode the same watermark
integer w into several different reducible permutation graphs F1[π

∗], F2[π
∗], . . . , Fn[π

∗], n ≥ 2.
This property causes a codec system resilient to attacks since we can embed multiple copies
of the same watermark number w into an application program. Moreover, our encoding and
decoding algorithms have low time complexity and can be easily implemented.

BACKGROUND RESULTS

We consider finite graphs with no multiple edges. For a graph G, we denote by V (G) and
E(G) the vertex (or, node) set and edge set of G, respectively. For basic definitions in graph
theory refer to [12].

Self-inverting Permutations

Next, we define a type of permutations, named self-inverting permutations, that are key-
objects in our algorithms for encoding numbers as graphs. Let π be a permutation over the
set Nn = {1, 2, . . . , n}. We think of permutation π as a sequence (π1, π2, . . . , πn), so, for
example, the permutation π = (1, 4, 2, 7, 5, 3, 6) has π1 = 1, π2 = 4, ect. Notice that π−1

i is the
position in the sequence of the number i; in our example, π−1

4 = 2, π−1
7 = 4, π−1

3 = 6, etc [12].

Definition 1. The inverse of a permutation (π1, π2, . . . , πn) is the permutation (q1, q2, . . . , qn)
with qπi

= πqi = i. A self-inverting permutation (or, involution) is a permutation that is its own
inverse: ππi

= i.

By definition, every permutation has a unique inverse, and the inverse of the inverse is
the original permutation. Clearly, a permutation is a self-inverting permutation if and only if
all its cycles are of length 1 or 2; hereafter, we shall denote a 2-cycle as c = (x, y) and an
1-cycle as c = (x), or, equivalently, c = (x, x).

International Conference on Computer Systems and Technologies – CompSysTech’12

Reducible Permutation Graphs

A flow-graph is a directed graph F with an initial node s from which all other nodes are
reachable. A directed graph G is strongly connected when there is a path x → y for all nodes
x, y in V (G). A node x is an entry for a subgraph H of the graph G when there is a path
p = (y1, y2, . . . , yk, x) such that p ∩H = {x}.

Definition 2. A flow-graph is reducible when it does not have a strongly connected subgraph
with two (or more) entries.

There are at least three other equivalent definitions [19, 20]; we give the following: F is
reducible iff F can be transformed into a single node by repeated application of the trans-
formations T1 and T2, where transformation T1 removes a cycle-edge (x, x), while T2 picks a
non-initial node y that has only one incoming edge (x, y) and glue nodes x and y.

Cographs and Cotrees

Cographs were introduced in the early 1970s by Lerchs [14] who studied their structural
and algorithmic properties. Along with other properties, Lerchs has shown that the cographs
admit a unique tree representation, up to isomorphism, called a cotree. The cotree of a
cograph G is a rooted tree such that:

(i) each internal node, except possibly for the root, has at least two children;

(ii) the internal nodes are labeled by either 0 (0-nodes) or 1 (1-nodes); the internal nodes
that are children of a 1-node (0-node resp.) are 0-nodes (1-nodes resp.);

(iii) the leaves of the cotree are in a 1-to-1 correspondence with the vertices of G, and two
vertices vi, vj are adjacent in G if and only if the least common ancestor of the leaves
corresponding to vi and vj is a 1-node (see, Figure 1).

The study of cographs led naturally to constructive characterizations that implied several
linear-time recognition algorithms that also enabled the construction of the corresponding
tree representation (cotree) in linear time [1]. The first linear-time recognition and cotree-
construction algorithm was proposed by Corneil, Perl, and Stewart in 1985 [9].

Encoding a Watermark Number into many Cographs

Recently, Chroni and Nikolopoulos presented the algorithm Encode_W.to.SIP for encod-
ing an integer as self-inverting permutation [2]. The authors also presented an extraction
algorithm which takes as input a self-inverting permutation π∗ and returns its corresponding
integer w; it is called Decode_SIP.to.W.

Based on the results of [2], the same authors proposed an algorithm for encoding a self-
inverting permutation as a cograph; the algorithm is called Encode_SIP.to.Cograph [3]. Their
algorithm takes as input a self-inverting permutation π∗ of length 2n + 1 produced by algo-
rithm Encode_W.to.SIP, and then constructs an arbitrary cograph G[π∗] on 2n+1 vertices by
preserving the cycle relation of permutation π∗. We next describe the encoding algorithm by
the help of an example:

Example (Encode a SiP into Cographs): Let π∗ = (3, 5, 1, 7, 2, 6, 4) be the input self-inverting
permutation in the algorithm Encode_SIP.to.Cograph which corresponds to watermark num-
ber w. The algorithm first constructs the graph H having V (H) = {v1, v2, v3, v4, v5, v6,
v7}, and E(H) = {(v1, v3), (v2, v5), (v4, v7)} and then computes its connected components
H1 = H[v1, v3], H2 = H[v2, v5], H3 = H[v4, v7], and H4 = H[v6]; note that H1 = H[v1, v3] is the

International Conference on Computer Systems and Technologies – CompSysTech’12

00

1

v7v4 11

v3v1 v5v2

v6

T1[π
∗]

1

T2[π
∗]

0

11

v5v2 v3v1

0

1v6

v7v4

v1

v6 v4

v3
v7

v2 v5

v1

v6 v4

v3
v7

v2 v5

G1[π
∗] G2[π

∗]

Figure 1: Two cographs G1[π
∗] and G2[π

∗] on 7 vertices which encode the same watermark number
w, and the corresponding cotrees T1[π

∗] and T2[π
∗].

subgraph of H induced by the nodes v1 and v3 (for the construction of the cographs G1[π
∗]

and G2[π
∗] of Figure 1, see [3]).

Chroni andNikolopoulos also presented a decoding algorithm for extracting a self-inverting
permutation from a cograph [3]. Their algorithm Decode_Cograph.to.SIP takes as input a co-
graph G[π∗] produced by algorithm Encode_SIP.to.Cograph and extracts the self-inverting
permutation π∗ from G[π∗] by constructing first its cotree T [π∗] and then finding the pairs of
nodes (x1, y1), (x2, y2), . . ., (xn, yn) such that the nodes xi and yi, 1 ≤ i ≤ n, have the same
internal node (0-node or 1-node) as parent; these pairs correspond to 2-cycles of the per-
mutation π∗. We next give a brief description of the decoding algorithm by the help of an
example:

Example (Extract a SiP from Cographs): LetG1[π
∗] andG2[π

∗] be two cographs produced by
the encoding algorithm Encode_SIP.to.Cograph (see Figure 1). The decoding algorithm con-
structs first the corresoding cotrees T1[π

∗] and T2[π
∗], and then computes the pairs of nodes

(v4, v7), (v1, v3) and (v2, v5). Then it constructs the identity permutation π∗ = (1, 2, 3, 4, 5, 6, 7),
which maps every element of the setNn to itself, and changes the positions of element 4 and
7, 1 and 3, and 2 and 5; it returns the self-inverting permutation π∗ = (3, 5, 1, 7, 2, 6, 4) which
corresponds to watermark number w.

MULTIPLE ENCODING OF A WATERMARK NUMBER INTO RPGs

Having presented an encoding algorithm which embeds a watermark number into sev-
eral deferent cographs [3], let us next propose an algorithm which embeds a cograph into
a reducible permutation graph (or, for short, RPG) using the structure and some important
properties of the class of cographs. Thus, having such an algorithm, we can encode a wa-
termark number w into many RPGs F1[π

∗], F2[π
∗], . . . , Fn[π

∗], where n ≥ 2.

International Conference on Computer Systems and Technologies – CompSysTech’12

Encoding a Cograph as Reducible Permutation Graph

We next propose the algorithm Encode_Cotree.to.RPG which takes as input the cotree
T [π∗] of a cograph G[π∗] produced by the algorithm Encode_SiP.to.Cograph [3], and con-
structs a reducible permutation graph F [π∗] by using an efficient node elimination and sub-
tree modification on T [π∗]. The whole encoding process takes O(n) time and requires O(n)
space, where n is the length of the input cotree T [π∗].

Given the cotree T [π∗] of a cograph G[π∗] on n vertices our encoding algorithm works on
two phases:

(I) it first uses a strategy based on node elimination and subtree modification to transform
the cotree T [π∗] into a binary tree R[π∗], which we call RPG-tree, having the property
that each node has value smaller than the value of its parent;

(II) then, it constructs a directed graph F [π∗] on n+2 nodes using the child-parent relation
of the nodes of the tree R[π∗].

Next, we describe in detail the encoding algorithm Encode_Cotree.to.RPG (see, Figure 2 and
Figure 3); the two phases of the algorithm work as follows:

Phase I: Construction of the RPG-tree R[π∗] from T [π∗]: We construct the RPG-tree
(rpgtree) R[π∗] by eliminating the internal nodes of the cotree T [π∗] and max-merging certain
subtrees in an appropriate way, as follows:

I.1. Let r be the root of the cotree T [π∗] and t be the internal node of T [π∗] with only one
leaf, say, v;

◦ Replace the label of the root r with the number n+1 and the label of each internal
node with the number −1;

◦ Create a new node with value 0 and make it child of the node v;

I.2. While the tree T [π∗] contains internal nodes u with value -1, do the following:
◦ Find such an internal node u of maximum high and let u1, u2, . . . , uk be

the children of u, k > 1;
◦ Max-merge the subtrees T (u1), T (u2), . . . , T (uk) and let T (um) be the

resulting subtree rooted at node um, 1 ≤ m ≤ k;
◦ Make the root um of the resulting subtree T (um) child of the parent of u;
◦ Delete the node u from the tree T [π∗];

where the function Max-merge works as follows:

◦ Order the subtrees T (u1), T (u2), . . . , T (uk) according to their root values, and
let u1 < u2 < . . . < uk;

◦ Make the root ui of T (ui) child of the root ui+1 of T (ui+1), for all i (1 ≤ i ≤ k − 1);

Phase II: Construction of the RPG F [π∗] fromR[π∗]: We construct the directed graph F [π∗]
by exploiting the child-parent relation of the nodes of the rpgtree R[π∗], as follows:

II.1. For every node ui of R[π∗], 0 ≤ i ≤ n+ 1, create a node vi and add it to V (F [π∗]); that
is, V (F [π∗]) = {s = vn+1, vn, vn−1, . . . , v1, , v0 = t};

II.2. For every pair of nodes (vi, vi−1) of the set V (F [π∗]) add the directed edge (vi, vi−1) in
E(F [π∗]), 1 ≤ i ≤ n+ 1; we call it list pointer;

International Conference on Computer Systems and Technologies – CompSysTech’12

00

1

v7v4 11

v3v1 v5v2

v6

-1

8

74 -1-1

31 52

8

7

4 3

1

5

2

6

8

7

4

3

5

2

6

0

1

T1[π
∗] T

′[π∗]

T
′′[π∗] R1[π

∗]

-1

0

6

0

-1

Figure 2: The cotree T1[π
∗] of Figure 1 and the resulting RPG-tree R1[π

∗]; trees T ′[π∗] and T ′′[π∗]
show the contraction process.

II.3. For every node ui of R[π∗] compute its parent node p(vi), 0 ≤ i ≤ n, and add the
directed edge (ui, p(ui)) in E(F [π∗]); we call it tree pointer.

Theorem 1. Let T [π∗] be the cotree of a cographG[π∗] on n vertices. The encoding algorithm
Encode_Cotree.to.RPG encodes the cotree T [π∗] into a reducible permutation graph F [π∗] in
O(n) time and space.

Algorithm Decode_RPG.to.SiP

Next, we present such a decoding algorithm, we call it Decode_RPG.to.SiP, which is ef-
ficient: it takes time and space linear in the size of the flow-graph F [π∗], and easily imple-
mented: the only operations used by the algorithm are edge modifications on F [π∗] and
inorder traversal on trees.

The algorithm takes as input a reducible permutation graph F [π∗] on n + 2 nodes and
produces a self-inverting permutation π∗ of length n; it works as follows:

Algorithm Decode_RPG.to.SiP

1. Delete the directed edges (vi+1, vi) from the edge set E(F [π∗]), 1 ≤ i ≤ n;

2. Flip all the remaining directed edges of the graph F [π∗]; let R[π∗] be the resulting tree
and let s = v0, v1, v2, . . . , vn, vn+1 = t be the nodes of R[π∗];

3. Make first the binary tree R[π∗] rooted at node s = v0 and ordered, and then perform
inorder traversal on R[π∗];

4. List the nodes s = v0, v1, v2, . . . , vn+1 of the tree R[π∗] by the order in which they are
visited; remove from the list the root node and let v′1, v′2, . . . , v′n+1 be the resulting list;

International Conference on Computer Systems and Technologies – CompSysTech’12

8

4

7

6

R2[π
∗]

5

3 2

8

7

4

3

5

2

6

0

1

R1[π
∗]

67 5 4 3 2 1 t

F2[π
∗]

s

67 5 4 3 2 1 t

F1[π
∗]

s

01

0

0

Figure 3: Two RPG-trees R1[π
∗] and R2[π

∗] and the corresponding reducible permutation graphs
F1[π

∗] and F2[π
∗], respectively, produced by the algorithm Encode_Cotree.to.RPG.

5. Compute the pairs (v′1, v′2), (v′3, v′4), . . . , (v′n, v′n+1) and remove the pair (v′i, v′i+1) for which
v′i = 0; let n′ be the remaining pairs;

6. Construct the identity permutation on N2n′, and then compute a self-inverting permuta-
tion π using the pairs of step 5; return π∗ = π;

Let us now describe the decoding process using the two RPGs F1[π
∗] and F2[π

∗] of Fig-
ure 3. Let F1[π

∗] be the input of the algorithm Decode_RPG.to.SiP. It first computes the rooted
ordered tree R1[π

∗] and then computes the inorder sequence I1 = (4, 7, 8, 0, 6, 1, 3, 5, 2); it
deletes the value 8 of the root resulting the sequence I ′1 = (4, 7, 0, 6, 1, 3, 5, 2); then the
algorithm computes the pairs C1 = {(4, 7), (0, 6), (1, 3), (5, 2)} and removes the pair (0, 6)
from C1. Then, it takes the identity permutation πI = (1, 2, 3, 4, 5, 6, 7) and using the pairs
(4, 7), (1, 3), (5, 2) as 2-cycles produces the SiP π∗ = (3, 5, 1, 7, 2, 6, 4).

If the algorithm takes as input the RPG F1[π
∗] then I1 = (1, 3, 5, 2, 8, 0, 6, 7, 4) and thus

I ′1 = (1, 3, 5, 2, 0, 6, 7, 4). It is easy to see that the 2-cycles in C2 are (1, 3), (5, 2), (7, 4), and
thus the identity permutation πI becomes π∗ = (3, 5, 1, 7, 2, 6, 4).

Theorem 2. Let T [π∗] be a cotree which encodes the self-inverting permutation π∗ and
let F [π∗] be a reducible permutation flow-graph of size O(n) produced by the algorithm
Encode_Cotree.to.RPG. The algorithm Decode_RPG.to.SIP extracts the permutation π∗ from
the flow-graph F [π∗] in O(n) time and space.

CONCLUDING REMARKS

An interesting open question is whether the approach and techniques used in this paper,
also in [3, 4], can help develop efficient codec algorithms and graph structures having “better”
properties with respect to resilience, size, and/or time and space efficiency; we leave it as
an open problem for future investigation.

International Conference on Computer Systems and Technologies – CompSysTech’12

REFERENCES
[1] A. Bretscher, D. Corneil, M. Habib, and C. Paul, “A simple linear time LexBFS cograph recog-

nition algorithm,” SIAM J. Discrete Math. 22 (2008) 1277–1296.
[2] M. Chroni and S.D. Nikolopoulos, “Encoding watermark integers as self-inverting permuta-

tions,” 11th Int’l Conference on Computer Systems and Technologies (CompSysTech’10),
ACM ICPS 471, 2010, pp. 125–130.

[3] M. Chroni and S.D. Nikolopoulos, “Encoding watermark numbers as cographs using self-
inverting permutations,” 12th Int’l Conference on Computer Systems and Technologies
(CompSysTech’11), ACM ICPS 578, 2011, pp. 142–148.

[4] M. Chroni and S.D. Nikolopoulos, “An embedding graph-basedmodel for software watermark-
ing,” 8th Int’l Conference on Intelligent Information Hiding and Multimedia Signal Processing
(IIH-MSP’12), IEEE Proceedings (to appear), 2012.

[5] C. Collberg and J. Nagra, “Surreptitious Software,” Addison-Wesley (2010).
[6] C. Collberg, E. Carter, S. Kobourov, and C. Thomborson, “Error-correcting graphs for software

watermarking,” Proc. 29th Workshop on Graphs in Computer Science (WG’03), LNCS 2880,
2003, pp. 156–167.

[7] C. Collberg, A. Huntwork, E. Carter, G. Townsend, and M. Stepp, “More on graph theoretic
software watermarks: Implementation, analysis, and attacks,” Information and Software Tech-
nology 51 (2009) 56–67.

[8] C. Collberg and C. Thomborson, “Software watermarking: models and dynamic embeddings,”
Proc. 26th ACM SIGPLAN-SIGACT on Principles of Programming Languages (POPL’99),
1999, pp. 311–324.

[9] D.G. Corneil, Y. Perl, and L.K. Stewart, “A linear recognition algorithm for cographs,” SIAM J.
Comput. 14 (1985) 926–984.

[10] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction to Algorithms (2nd edi-
tion), MIT Press, Inc., 2001.

[11] R.L. Davidson and N. Myhrvold, “Method and system for generating and auditing a signature
for a computer program,” US Patent 5.559.884, Microsoft Corporation, 1996.

[12] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York
(1980); Second edition, Annals of Discrete Math. 57, Elsevier (2004).

[13] D. Grover, “The Protection of Computer Software - Its Technology and Applications,” Cam-
bridge University Press, New York (1997).

[14] H. Lerchs, “On cliques and kernels,” Department of Computer Science, University of Toronto,
March 1971.

[15] G. Myles and C. Collberg, “Software watermarking via opaque predicates: Implementation,
analysis, and attacks,” Electronic Commerce Research 6 (2006) 155–171.

[16] J. Nagra and C. Thomborson, “Threading software watermarks,” Proc. 6th Int’l Workshop on
Information Hiding (IH’04), LNCS 3200, 2004, pp. 208–223.

[17] R. Venkatesan, V. Vazirani, and S. Sinha, “A graph theoretic approach to software watermark-
ing,” Proc. 4th Int’l Information Hiding Workshop (IH’01), LNCS 2137, 2001, pp. 157–168.

[18] L. Zhang, Y. Yang, X. Niu, and S. Niu, “A survey on software watermarking,” Journal of Soft-
ware 14 (2003) 268–277.

[19] M.S. Hecht and J.D. Ullman, “Flow graph reducibility,” SIAM J. Computing 1, pp. 188–202
(1972).

[20] M.S. Hecht and J.D. Ullman, “Characterizations of reducible flow graphs,” Journal of the
ACM 21, pp. 367–375 (1974).

ABOUT THE AUTHORS
Maria Chroni, MSc, PhD Candidate, Department of Computer Science, University of Ioan-

nina, Phone: +30-265-100-8832, e-mail: mchroni@cs.uoi.gr
Stavros D. Nikolopoulos, PhD, Professor, Department of Computer Science, University

of Ioannina, Phone: +30-265-100-8801, e-mail: stavros@cs.uoi.gr

