An Efficient Graph Codec System for Software
Watermarking

Maria Chroni and Stavros D. Nikolopoulos
Department of Computer Science
University of Ioannina
Toannina, Greece
{mchroni, stavros}@cs.uoi.gr

Abstract—In this paper we propose an efficient and easily
implemented codec system for encoding watermark numbers as
reducible permutation flow-graphs. More precisely, in light of our
recent encoding algorithms which encode a watermark value w as
a self-inverting permutation 7", we present an efficient algorithm
which encodes a self-inverting permutation 7* as a reducible
permutation flow-graph F'[7*] by exploiting domination relations
on the elements of 7* and using an efficient DAG representation
of 7*. The whole encoding process takes O(n) time and space,
where n is the binary size of the number w or, equivalently,
the number of elements of the permutation 7. We also propose
efficient decoding algorithms which extract the permutation 7*
from the reducible permutation flow-graph F'[7*] within the same
time and space complexity. The two main components of our
proposed codec system, i.e., the self-inverting permutation 7* and
the reducible permutation graph F[r*], incorporate important
structural properties which make our codec system resilient to
attacks.

Index Terms—software watermarking; codec systems, self-
inverting permutations; reducible permutation graphs; encod-
ing/decoding algorithms; performance.

I. INTRODUCTION

Software watermarking is a technique that is currently
being studied to prevent or discourage software piracy and
copyright infringement. The idea is similar to digital (or,
media) watermarking where a unique identifier is embedded in
image, audio, or video data through the introduction of errors
not detectable by human perception [4], [10].

The software watermarking problem can be described as
the problem of embedding a structure w into a program P
such that w can be reliably located and extracted from P even
after P has been subjected to code transformations such as
translation, optimization and obfuscation [16].

A lot of research has been done on software watermarking.
The major software watermarking algorithms currently avail-
able are based on several techniques, among which the register
allocation, spread-spectrum, opaque predicate, threading, dy-
namic path techniques (see, [1], [8], [9], [15], [17]).

Recently, several software watermarking algorithms have
been appeared in the literature that encode watermarks as
graph structures (see Collberg and Nagra [4] for an exposition
of the main results). In general, such encodings make use of
an encoding function encode which converts a watermarking
number w into a graph G, encode(w) — G, and also
of a decoding function decode that converts the graph G

into the number w, decode(G) — w; we usually call the
pair (encode,decode) along with the graph G, denoted by
(encode, decode)q, as graph codec system [5].

In 1996, Davidson and Myhrvold [11] proposed the first
software watermarking algorithm which is static and embeds
the watermark by reordering the basic blocks of a control
flow-graph. Based on this idea, Venkatesan, Vazirani and
Sinha [18] proposed the first graph-based software watermark-
ing algorithm which embeds the watermark by extending a
method’s control flow-graph through the insertion of a directed
subgraph; it is a static algorithm and is called VVS or GTW. In
[18] the construction of a directed graph G (or, watermark
graph () is not discussed. Collberg et al. [6] proposed an
implementation of GTW, which they call GTWg,, and it is the
first publicly available implementation of the algorithm GTW.
In GTW,, the watermark is encoded as a reducible permutation
graph (RPG) [5], which is a reducible control flow-graph [13],
[14] with maximum out-degree of two, mimicking real code.
Note that, for encoding integers the GTWg, method uses only
those permutations that are self-inverting. The first dynamic
watermarking algorithm (CT) was proposed by Collberg and
Thomborson [7]; it embeds the watermark through a graph
structure which is built on a heap at runtime.

Attacks: A successful attack against the watermarked pro-
gram P, prevents the recognizer from extracting the wa-
termark while not seriously harming the performances or
correctness of the program P,. There are four main ways
to attack a watermark in a software: (a) Additive attacks,
(b) Subtractive attacks, (c¢) Distortive attacks, and (d)
Recognition attacks: Modify or disable the watermark de-
tector, or its inputs, so that it gives a misleading result.
For example, an adversary may assert that “his” watermark
detector is the one that should be used to prove ownership in
a courtroom test.

Attacks against graph-based software watermarking algo-
rithms can mainly occur in the following two ways: (i) Node-
modification attacks, and (ii) Edges-modification attacks.

Our Contribution: Recently, we have presented two algo-
rithms, namely Encode_W.to.SIP and Decode_SIP.to.W, for
encoding an integer w into a self-inverting permutation 7* and
extracting it from 7*; both algorithms run in O(n) time, where
n is the length of the binary representation of w [3].

In this paper we present an efficient and easily implemented
algorithm for encoding numbers as reducible permutation
flow-graphs through the use of self-inverting permutations (or,
for short, SiP).

More precisely, having designed an efficient method for
encoding integers as self-inverting permutations, we here de-
scribe an algorithm for encoding a self-inverting permutation
into a directed graph structure having properties capable to
match real program graphs. In particular, we propose the al-
gorithm Encode_SIP.to.RPG which encodes the self-inverting
permutation 7* as a reducible permutation flow-graph F'[r*]
by exploiting domination relations on the elements of 7*
and using an efficient DAG representation of 7*. The whole
encoding process takes O(n) time and requires O(n) space,
where n is the length of the permutation 7*. We also propose
the decoding algorithm Decode_RPG.to.SIP, which extract
the self-inverting permutation 7* from the reducible permu-
tation flow-graph F'[7*] by converting first the graph F[r*]
into a directed tree T[7*] and then applying DFS-search on
T[r*]. The decoding process takes time and space linear
in the size of the flow-graph F[r*], that is, the algorithm
Decode_RPG.to.SIP takes O(n) time and space. We point out
that the only operations used by the decoding algorithm are
edge modifications on F[r*] and DFS-search on trees.

It is worth noting that our codec (encode,decode) Flr]
system incorporates several important properties which char-
acterize it as an efficient and easily implemented software
watermarking component. In particular, the reducible per-
mutation flow-graph F[n*] does not differ from the graph
data structures built by real programs since its maximum
outdegree does not exceed two and it has a unique root
node so the program can reach other nodes from the root
node. The function Decode_RPG.to.SIP is high insensitive
to edge-changes and node-changes of F[n*]. Moreover, the
self-inverting permutation 7* captures important structural
properties, due to the bitonic property used in the construction
of 7*, which make our codec system resilient to attacks.

II. PRELIMINARIES

Next, we introduce some definitions that are key-objects in
our algorithms for encoding numbers as graphs. Let 7 be a
permutation over the set N,, = {1,2,...,n} [12].

Definition 1. The inverse of a permutation (7, w2, ..., T,) is
the permutation (q1,qs2,...,¢,) With ¢r, = 74, = i. A self-
inverting permutation (or, involution) is a permutation that is
its own inverse: T, = i.

By definition, every permutation has a unique inverse, and
the inverse of the inverse is the original permutation. Clearly,
a permutation is a self-inverting permutation if and only if all
its cycles are of length 1 or 2; hereafter, we shall denote a 2-
cycle as ¢ = (z,y) and an 1-cycle as ¢ = (), or, equivalently,
c=(z,z).

Let m be a permutation on N,,. We say that an element 3
of m dominates the element j if i > j and 7; LS 7rj_1. An

element ¢ directly dominates (or, for short, didominates) the
element j if ¢ dominates j and there exists no element & in
m such that ¢ dominates k and k£ dominates j. For example,
inm=(6,3,2,9,8,1,11,5,4, 10, 7), the element 9 dominates
the elements 8,1,5,4,7 and it didominates the element 8.

Definition 2. The domination (resp. didomination) set dom(z)
(resp. didom(z)) of the element ¢ of a permutation 7 is the set
of all the elements of 7 that dominate (resp. didominate) the
element 4.

A flow-graph is a directed graph F' with an initial node s
from which all other nodes are reachable. A directed graph
G is strongly connected when there is a path z — y for all
nodes z, y in V(G). A node w is an entry for a subgraph H
of the graph G when there is a path p = (y1,¥2,..., Yk, T)
such that p N H = {z} (see, [13], [14]).

Definition 3. A flow-graph is reducible when it does not have
a strongly connected subgraph with two (or more) entries.

Throughout the paper we shall denote a self-inverting per-
mutation 7 over the set IN,, as 7*.

III. ENCODE SELF-INVERTING PERMUTATIONS AS
REDUCIBLE PERMUTATION GRAPHS

Having proposed an efficient method for encoding inte-
gers as self-inverting permutations [3], we next describe an
algorithm for encoding a self-inverting permutation 7* into
a reducible permutation graph F[n*]. We also describe a
decoding algorithm for extracting the permutation 7* from
the graph F[n*].

A. Algorithm Encode_SIP.to.RPG

Given a self-inverting permutation 7* of length n our
decoding algorithm works on two phases:

(D it first uses a strategy to transform the permutation

7 into a directed acyclic graph D[n*] using certain
combinatorial properties of the elements of 7*;

an

then, it constructs a directed graph F'[7*] on n+ 2 nodes
using the adjacency relation of the nodes of D[r*].

Next, we first describe the main ideas behind the two phases of
the encoding algorithm Encode_SIP.to.RPG (see, Figure 1).

Phase I: Construction of the DAG D[r*| from 7*: We
construct the directed acyclic graph D[r*] by exploiting the
didomination relation of the elements of 7*, as follows:

(i) for every element ¢ of 7*, create a vertex v; and add it

in the vertex set V(D[r*]) = {v1,v2,...,0n};

compute the didomination relation of each element ¢ of
7*; that is, the didomination set didomn(i) of the element

1 (see Definition 3);

for every pair of vertices (v;,v;) of the set V(D[n*]) do
the following: add the edge (v;,v;) in E(D[r*]) if the
element ¢ didominates the element j in 7*;

(i)

(iii)

(iv) create two dummy vertices s = v,,4+1 and t = vy and add
both in V(D[n*]); then, add the edge (s, v;) in E(D[r*]),
for every v; with indeg(v;) = 0, and the edge (v;,t) in
E(D[r*]), for every v; with outdeg(v;) = 0.

Phase II: Construction of the RPG F[7*] from D[7*]: We
construct the directed graph F'[7*] by exploiting the adjacency
relation of the nodes of the dag D[r*], as follows:

(i) for every vertex v; of D[r*], 0 < i < n+ 1, create a
node u; and add it to V(F[r*]); that is, V(F[r*]) =
{8 = Unt1,Un,Un—1,...,u1,,ug =t};

(ii) for every pair of nodes (u;, u;—1) of the set V (F[r*]) add
the directed edge (u;,u;—1) in E(F[r*]), 1 <i<n+1;
we call it list pointer;

(ifi) for every vertex v; of D[r*], 0 < i < n, com-

pute p(v;) to be the maximum-labeled node of the set

P(v;) = {viy, viy, - . ., v;,, }, Where (v;,,v;) € E(D[r*]),

1< ¢<k and k = indeg(v;);

add the directed edge (wn,,u;) in E(EF[n*]) if (vp,v;) €

E(D[r*]), 1 < i < n+1, and vy, is the maximum-

labeled node of the set P(v;), that is, p(v;) = vy,; we

call it max-didomitation pointer,

(iv)

Time and Space Performance. The most time- and space-
consuming steps of the algorithm are the construction of the
directed graph D[n*] (Steps Li-Liv) and the computation of
the function p for each vertex v; € V(D[r*]), 1 < i < n
(Step ILiii); recall that p(v;) equals the maximum-labeled
vertex v, of the set P(v;) containing all the vertices of
D[rn*] which didominate vertex v;. On the other hand, the
construction of the reducible permutation flow-graph F[r*]
(Steps ILii and ILiv) requires only the list pointers, which
can be trivially computed, and the max-didomitation pointers,
which can be computed using the function p.

Looking at the permutation 77*, we observe that the element
m which corresponds to vertex v, of D[r*] is the max-
indexed element on the left of the element ¢ in 77* that is greater
than 4. Thus, the function p can be alternatively computed
using the input permutation as follows:

(i) insert the element s with value n + 1 into a stack S;

top_S is the element on the top of the stack;

(ii) for each element m; € «n*, ¢ = 1,2,...,n, do the
following:
while top_S < m; remove the top_S from S;
p(u;) = top_S;

insert 7; in stack .S
Since each element of the input permutation 7* is inserted
once in the stack S and is compered once with each new
element the whole computation of the function p takes O(n)
time and space, where n is the length of the permutation 7.
Thus, we obtain the following result:

Theorem 1. Let 7 be a self-inverting permutation of length n.
The algorithm Encode_SIP.to.RPG for encoding the permuta-
tion ™ as a reducible permutation flow-graph F|r*] requires
O(n) time and space.

=(6,3,2,9,8,1,11,5,4,10,7)

e
o0
D]

° o

©
>, e
.o\/,a(oo M

@@oooeooee

Fig. 1. The main structures used or constructed by the algo-
rithms Encode_SIP.to.RPG and Decode_RPG.to.SIP; that is, the
self-inverting permutation 7, the dag D[n*], the reducible graph
F[r*], and the tree T'[r"]

B. Algorithm Decode_RPG.to.SIP

Next, we present a decoding algorithm, we call it
Decode_RPG.to.SIP, which takes as input a reducible per-
mutation flow-graph F[7*] on n + 2 nodes and produces a
self-inverting permutation 7* of length n; it works as follows:

Algorithm Decode_RPG.to.SIP

1. Delete the directed edges (v;41,v;) from E(F|[r
i <n, and the node t = vy from V(F[r*]);

2. Flip all the remaining directed edges of the graph F[r*];
note that, flipping the directed edge (v;,v;) results the
directed edge (v;,v;); Let T'[r*] be the resulting tree
and let s = vy, v1,vs, ..., v, be the nodes of T'[r*];

3. Perform DFS-search on tree T'[7*] starting at node s by

always proceeding to the min-labeled child and compute
the DFS discovery time d[v] of each node v of T'[r*];

4. Order the nodes s = wg,v1,v2,...,V, of the tree
T[r*] by their DFS discovery time d[] and let 7 =
(v6,v], V5, ..., vl) be the resulting order, where d[v}] <
d[vﬁ fori<j,0<i,7<nm;

5. Delete node s from the order 7;

.1 <

6. Return 7* = ;

Time and Space Performance. Our decoding algorithm
Decode_RPG.to.SIP takes time and space linear in the size
of the flow-graph F[n*], that is, O(n); the only operations
used by the algorithm are edge modifications on F[n*] and
DFS-search on trees. Thus, the following theorem holds:

Theorem 2. Let F[n*| be a reducible permutation flow-graph
of size O(n) produced by the algorithm Encode_SIP.to.RPG.
The algorithm Decode_RPG.to.SIP decodes the flow-graph
F[n*] in O(n) time and space.

IV. SYSTEM’S PROPERTIES

In this section, we analyze the structures of the two main
components of the proposed codec system, that is, the self-
inverting permutation (SiP) 7* produced by the algorithm
Encode_W.to.SIP and the reducible permutation graph F[r*]
produced by the algorithm Encode_SIP.to.RPG, and present
properties which make our codec system resilient to attacks.

A. Properties of permutation m*

Our codec system encodes an integer w as a SiP 7* using
a particular construction technique which captures into 7*
important structural properties. These properties enable us
to identify with hight probability edge-changes made by an
attacker to flow-graph F[7*].

The main structural properties of our permutation 7 pro-
duced by the algorithm Encode_W.to.SIP are the following
three:

e SiP property: By construction the permutation 7* is

self-inverting permutation of odd length;

e 1l-cycle property: The self-inverting permutation 7*
always contains one, and only one, cycle of length 1;

e Bitonic property: The self-inverting permutation 7* is
constructed from a bitonic sequence (see, [3]), in such
a way that the bitonic property is encapsulated in the
cycles of 7*.

The above properties can be efficiently used in order to identify
whether the graph F'[r*] suffer an attack on its edges.

B. Properties of the Flow-graph F[r*]

We next describe the main properties of our codec system
(encode,decode) p[,+1; we mainly focus on the properties of
the reducible permutation graph F[r*] with respect to graph-
based software watermarking attacks.

1) Structural Properties: In graph-based encoding algo-
rithms, the watermark w is encoded into some special kind
of graphs G. Generally, the watermark graph G should not
differ from the graph data structures built by real programs.
Important conditions are that the maximum outdegree of G
should not exceed two or three, and that the graph G have
a unique root node so the program can reach other nodes
from the root node. Moreover, GG should be resilient to attacks
against edge and/or node modifications. Finally, G should be
efficiently constructed.

The reducible permutation graph F[r*] produced by our
codec system has all the above properties; in particular, the
graph F[n*] and the corresponding codec have the following
properties:

e Appropriate graph types: The graph F[7*] is directed
on n+2 nodes with outdegree exactly two; that is, it has
low max-outdegree, and, thus, it matches real program
graphs;

e High resiliency: Since each node in the reducible per-
mutation graph F[r*] has exactly one list out-pointer

and exactly one max-didomination out-pointer, any sin-
gle edge modification, i.e., edge-flip, edge-addition, or
edge-deletion, will violate the out-pointer condition of
some nodes, and thus the modified edge can be easily
identified and corrected. Thus, the graph F[7*] enable
us to correct single edge changes;

o Efficient codecs: The codec (encode, decode) p(,+] has
low time and space complexity; indeed, we have showed
(see Theorem 1 and Theorem 2) that the encoding
algorithm Encode_SIP.to.RPG requires O(n) time and
space, where n is the size of the input permutation
w*, while the decoding algorithm Decode_RPG.to.SIP
decodes the flowgraph F'[7*] in O(n) time and space.

It is worth noting that our encoding and decoding algorithms
use basic data structures and basic operations, and, thus, they
can be easily implemented.

2) Unique Hamiltonian Path: It has been shown that any
reducible flow-graph has at most one Hamiltonian path [5].
The reducible permutation graph F'[7*] produced by the algo-
rithm Encode_SIP.to.RPG has always a unique Hamiltonian
path, denoted by HP(F[r*]), and this Hamiltonian path can
be found in O(n) time, where n is the number of nodes of
Flr*].

V. DETECTING ATTACKS

In this section, we show that the malicious intentions of
an attacker to lead a reducible permutation graph F[7*] in
incorrect-stage by modifying some node-labels or edges of
the graph F'[7*] can be efficiently detected.

A. Node-label Modification

By construction, our reducible flow-graph F[7*] is a labeled
graph; indeed, the labels of F[r*] are numbers of the set
{0,1,...,n+ 1}, where the label n + 1 is assigned to header
node s = u,+1, the label 0 is assigned to footer node t = wug,
and the label n — ¢ is assigned to the ¢th body node w41,
1<i<n.

Let F'[7*] be the graph which results after making some
label modifications on the flow-graph F[7*]. Since the extrac-
tion of the watermark w relies on the labels of the flow-graph
F[r*] (see algorithm Decode_RPG.to.SIP), it follows that our
codec system (encode,decode)p;+] is susceptible to node
modification attacks.

We show that, after any node-label modification attack on
graph F[r*], we can efficiently reassign the initial labels to
nodes of F[n*] using the structure of the unique Hamiltonian
path HP(F[n*]). More precisely, given the graph F'[r*] we
can construct the flow-graph F[7*] in O(n) time and space.
In addition, if F’[7*] is the unlabeled graph of the flow-graph
F[n*] we can also construct the graph F[7*] in O(n) time
and space.

B. Edge Modification

We show that, given a reducible permutation graph F[m*]
produced by our codec system (algorithms Encode_W.to.SIP
and Encode_SIP.to.RPG), we can decide with high probability
whether the graph F[r*] suffer an attack on its edges.

Let F[r*] be a flow-graph which encodes the integer w
and let F'[r*] be the graph resulting from F[7*] after an edge
modification. Then, we say that F”[7*] is in a T-incorrect-stage
if the following properties hold:

(i) RPG property: F'[r*] is a directed graph on n + 2
nodes s, u1,us,...,Un,t; node s (resp. t) has indegree 0
(resp. 1) and outdegree 1 (resp. 0), and each node u; has
outdegree exactly two, 1 < i < n;

(ii) SiP property: The permutation 7* of length n produced

by algorithm Decode_RPG.to.SIP is a self-inverting per-

mutation (SiP);

(iii) 1-cycle SIP property: The SiP 7* contains only one 1-
cycle;
(iv) Bitonic property: The 1-cycle SiP n* has the bitonic

property;
The graph F'[r*] is in F-incorrect-stage if one of the above
properties does not hold. Based on these properties, we next
show that the malicious intentions of an attacker to lead a
flow-graph F'[7*] in F-incorrect-stage by modifying some of
its edges can be detected with high probability.

We first show the resilience of the structure of the flow-
graph F[r*] in edge changes. To this end, we have produced
RPG’s F[r*] on n = 11,21,31,...,91 nodes and computed
the probability for the graph F;[7*] to be in F-incorrect-
stage, where F;[7*] is the graph resulting from F[r*] after
a modification of 7 edges, 1 < i < 4. Figures 2 and 3 depict
the high-resilience of the graph F[7*] in edge-changes.

We next consider the scenario where the attacker makes
appropriate edge changes to RPG F[r*] so that the resulting
graph F’[r*] still has the RPG property. Although the RPG
property is maintained in F’[r*], the permutation 7* produced
by our decoding algorithm Decode_RPG.to.SIP may contain
one or more c-cycles (¢ > 3) or more than one l-cycle, or
it may not incorporate the bitonic property. In this case, the
permutation 7* does not encapsulate one or more of the SiP,
1-cycle SiP, and Bitonic properties, and thus we can conclude
that the flow-graph F'[7*] has undergone an attack on its edges.

In order to obtain a clear view of the resilience of our
codec system to edge attacks, we evaluate it in a simulation
environment using the following scenarios:

(1) Scenario S1: The attacker knows that the graph F'[7*] has
the RPG property and makes appropriate edge changes so
that it still has the RPG property. We want to compute
the probability for the permutation 7* to have the SiP
property;

(2) Scenario S2: The attacker knows that the graph F'[r*]
has the RPG property and also the permutation 7* has
the SiP property, and makes appropriate edge changes so

P(n)

0,02000

0,01500 +

0,01000

0,00500 -+

0,00000 -+ T T T T ~
11 21 31 41 51 61 71 81 91

Fig. 2. The probability P(n) for a RPG flow-graph F[7*] on n nodes to
have the RPG property after a modification of 1 edge, forn = 11,21,...,91.

P(r)
0,00040
0,00035 -
0,00030
0,00025 +
0,00020
0,00015
0,00010 -
0,00005

0,00000

Fig. 3. The probability P(n) for a RPG flow-graph F'[7*] on n nodes to have
the RPG property after a modification of 2 edges, for n = 11,21, ...,91.

that F'[r*] and 7* still have the RPG and SiP properties,
respectively. We want to compute the probability for the
SiP 7* to have the 1-cycle SiP property;

(3) Scenario S3: The attacker knows that F'[7*] has the RPG
property and the permutation 7w* has the 1-cycle SiP prop-
erty, and makes appropriate edge changes so that F[r*]
and 7* still have the RPG and 1-cycle SiP properties,
respectively. We want to compute the probability for the
1-cycle SiP 7* to have the Bitonic property;

We have computed the probability of each scenario by design-
ing the following experiments:

S1: We produce 1.000.000 SiPs of length n, we randomly
permute 4 elements in each permutation, and then count
the number of the resulting permutations that are still
SiPs;

S2: We produce 1.000.000 1-cycle SiPs of length n, we
randomly permute 4 elements in each permutation, and
then count the number of the resulting permutations that
are still 1-cycle SiPs;

S3: We produce 1.000.000 bitonic 1-cycle SiPs of length n,
we randomly permute 4 elements in each permutation,
and then count the number of the resulting permutations
that are still bitonic 1-cycle SiPs;

where, n = 9,19,29,...,89.
The experimental results of the above three scenarios are

TABLE I
EXPERIMENTAL RESULTS FOR S1, S2, AND S3 SCENARIOS.

9 19 29 39 49 59 69 79 89
S1 0,0475 0,0093 0,0037 0,0020 0,0012 0,0009 0,0007 0,0004 0,0003
S2 0,0315 0,0062 0,0025 0,0014 0,0008 0,0006 0,0004 0,0003 0,0002
S3 0,0317 0,0061 0,0025 0,0013 0,0008 0,0006 0,0005 0,0003 0,0002

showed in Table 1. The fist row gives the probability for a SiP
m* of length 9,19, 29, ...,89 to remain SiP after permuting 4
elements of 7* (Scenario S1). The second and the third rows
give similar results for a 1-cycle SiP and bitonic 1-cycle SiP
permutations (Scenarios S1 and S2, respectively).

VI. DISCUSSION

Collberg et al. [5], [7] describe several techniques for
encoding watermark integers in graph structures among which
an RPG structure; hereafter, we shall refer to their RPG
structure as R[7*].

Based on the fact that there is a one-to-one correspondence
between self-inverting permutations and isomorphism classes
of RPGs, Collberg et al. [5] proposed a polynomial algorithm
for encoding any integer w as R[r] corresponding to the wth
self-inverting permutation 7 in this correspondence. This en-
coding exploits only the fact that a self-inverting permutation
is its own inverse; it does not incorporate any other structural
property.

On the other hand, in our codec system an integer w is
encoded as self-inverting permutation 7* using a particular
construction technique which incorporates into 7* important
structural properties. These properties enable us to identify
with hight probability edge-changes made by an attacker to
flow-graph F'[7*]; indeed, based on the SiP, 1-cycle, or the
Bitonic property we can easily identify with high probability
any edge-modification on F[r*].

In addition, since each node in our graph F'[7*] has exactly
one list out-pointer and exactly one max-didomination out-
pointer, any single edge modification, i.e., edge-flip, edge-
addition, or edge-deletion, will violate the out-pointer condi-
tion of some nodes, and thus the modified edge can be easily
identified and corrected. Thus, the graph F[7*] enable us to
correct single edge changes. Note that, the graph R[r]| does
not incorporate such a degree property.

It is worth noting that our codec system has low time and
space complexity; indeed, we have showed that our encoding
and decoding algorithms require time and space linear in the
size of the input permutation 7*. The codec system in [5] has
polynomial time performance.

Summarizing, our codec algorithms are very simple, use
elementary operations on sequences and linked structures,
have very low time and space complexity, and the flow-
graph F'[7*] incorporates important structural properties which
make it resilient to attacks by enabling us to identify edge-
changes made by an attacker to F[r*]. Thus, in light of

these properties we could propose F[r*] as a good choice
for encoding watermark numbers for practical purposes.

VII. CONCLUDING REMARKS

The evaluation of our codec system in a simulation envi-
ronment on other types of attacks in order to obtain a more
clear view of their practical behavior is a problem for future
investigation.

Finally, designing and testing a model for embedding the
watermark flow-graph F[7*] into an application program P is
also a problem for future investigation (see, [2]).

REFERENCES

[1] G. Arboit, “A method for watermarking Java programs via opaque pred-
icates,” 5th International Conference on Electronic Commerce Research
(ICECR-5), 2002.

[2] M. Chroni and S.D. Nikolopoulos, “An embedding graph-based model
for software watermarking,” Proc. 8th Int’l Conference on Intelligent
Information Hiding and Multimedia Signal Processing (IIH-MSP’12),
IEEE Proceedings, 2012.

[3] M. Chroni and S.D. Nikolopoulos, “Encoding watermark integers as self-
inverting permutations,” 11th Int’l Conference on Computer Systems and
Technologies (CompSysTech’10), ACM ICPS 471, pp. 125-130, 2010.

[4] C. Collberg and J. Nagra, Surreptitious Software, Addison-Wesley, 2010.

[5] C. Collberg, S. Kobourov, E. Carter, and C. Thomborson, “Error-
correcting graphs for software watermarking,” Proc. 29th Workshop on
Graph-Theoretic Concepts in Computer Science (WG’03), LNCS 2880,
pp. 156-167, 2003.

[6] C. Collberg, A. Huntwork, E. Carter, G. Townsend, and M. Stepp, “More
on graph theoretic software watermarks: Implementation, analysis, and
attacks,” Information and Software Technology 51, pp. 56-67, 2009.

[7] C. Collberg and C. Thomborson, “Software watermarking: models and
dynamic embeddings,” Proc. 26th ACM SIGPLAN-SIGACT Symp. on
Principles of Program. Languages (POPL’99), pp. 311-324, 1999.

[8] P. Cousot and R. Cousot, “An abstract interpretation-based framework
for software watermarking,” Proc. 31st ACM SIGPLAN-SIGACT Symp.
on Principles of Program. Languages (POPL’04), pp. 173-185, 2004.

[9] D. Curran, N. Hurley and M. Cinneide, “Securing Java through software

satermarking,” Proc. Int’l Conference on Principles and Practice of

Programming in Java (PPPJ’03), pp. 145-148, 2003.

I. Cox, J. Kilian, T. Leighton, and T. Shamoon, “A secure, robust

watermark for multimedia,” Proc. 1st Int’l Workshop on Information

Hiding, LNCS 1174, pp. 317-333, 1996.

R.L. Davidson and N. Myhrvold, “Method and system for generating

and auditing a signature for a computer program” US Patent 5.559.884,

Microsoft Corporation, 1996.

M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Aca-

demic Press, New York (1980). Second edition, Annals of Discrete

Math. 57, Elsevier, 2004.

M.S. Hecht and J.D. Ullman, “Flow graph reducibility,” SIAM J.

Computing 1, pp. 188-202, 1972.

M.S. Hecht and J.D. Ullman, “Characterizations of reducible flow

graphs,” Journal of the ACM 21, pp. 367-375, 1974.

A. Monden, H. Iida, K. Matsumoto, K. Inoue and K. Torii, “A practical

method for watermarking Java programs,” Proc. 24th Computer Software

and Applications Conference (COMPSAC’00), pp. 191-197, 2000.

G. Myles and C. Collberg, “Software watermarking via opaque pred-

icates: Implementation, analysis, and attacks,” Electronic Commerce

Research 6, pp. 155-171, 2006.

J. Nagra and C. Thomborson, “Threading software watermarks,” Proc.

6th Int’l Workshop on Information Hiding (IH’04), LNCS 3200, pp.

208-223, 2004.

R. Venkatesan, V. Vazirani, and S. Sinha, “A graph theoretic approach

to software watermarking,” Proc. 4th Int’l Workshop on Information

Hiding (IH’01), LNCS 2137, pp. 157-168, 2001.

[10]

(11]

[12]

[13]
[14]

[15]

[16]

(17]

(18]

