
Join-Reachability Problems in Directed Graphs�

Loukas Georgiadis1, Stavros D. Nikolopoulos2, and Leonidas Palios2

1 Department of Informatics and Telecommunications Engineering,
University of Western Macedonia, Greece

lgeorg@uowm.gr
2 Department of Computer Science, University of Ioannina, Greece

{stavros,palios}@cs.uoi.gr

Abstract. For a given collection G of directed graphs we define the join-
reachability graph of G, denoted by J (G), as the directed graph that, for
any pair of vertices a and b, contains a path from a to b if and only if
such a path exists in all graphs of G. Our goal is to compute an efficient
representation of J (G). In particular, we consider two versions of this
problem. In the explicit version we wish to construct the smallest join-
reachability graph for G. In the implicit version we wish to build an
efficient data structure (in terms of space and query time) such that we
can report fast the set of vertices that reach a query vertex in all graphs
of G. This problem is related to the well-studied reachability problem
and is motivated by emerging applications of graph-structured databases
and graph algorithms. We consider the construction of join-reachability
structures for two graphs and develop techniques that can be applied to
both the explicit and the implicit problem. First we present optimal and
near-optimal structures for paths and trees. Then, based on these results,
we provide efficient structures for planar graphs and general directed
graphs.

1 Introduction

In the reachability problem our goal is to preprocess a (directed or undirected)
graph G into a data structure that can quickly answer queries that ask if a
vertex b is reachable from a vertex a. This problem has numerous and diverse
applications, including internet routing, geographical navigation, and knowledge-
representation systems [13]. Recently, the interest in graph reachability problems
has been rekindled by emerging applications of graph data structures in areas
such as the semantic web, bio-informatics and social networks. These develop-
ments together with recent applications in graph algorithms [4,5,7] have moti-
vated us to introduce the study of the join-reachability problem that we define as
follows. We are given a collection G of λ directed graphs Gi = (Vi, Ai), 1 ≤ i ≤ λ,
where each graph Gi represents a binary relation Ri over a set of elements V ⊆ Vi

in the following sense: For any a, b ∈ V , we have aRib if and only if b is reachable

� This research project has been funded by the John S. Latsis Public Benefit Founda-
tion. The sole responsibility for the content of this paper lies with its authors.

A. Kulikov and N. Vereshchagin (Eds.): CSR 2011, LNCS 6651, pp. 195–208, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

196 L. Georgiadis, S.D. Nikolopoulos, and L. Palios

from a in Gi. Let R ≡ R(G) be the binary relation over V defined by: aRb if
and only if aRib for all i ∈ {1, . . . , λ} (i.e., b is reachable from a in all graphs in
G). We can view R as a type of join operation on graph-structured databases.
Our objective is to find an efficient representation of this relation. To the best
of our knowledge, this problem has not been previously studied. We will restrict
our attention to the case of two input graphs (λ = 2).

Contribution. In this paper we explore two versions of the join-reachability
problem. In the explicit version we wish to represent R with a directed graph
J ≡ J (G), which we call the join-reachability graph of G, i.e., for any a, b ∈ V ,
we have aRb if and only if b is reachable from a in J . Our goal is to minimize
the size (i.e., the number of vertices plus arcs) of J . We consider this problem
in Sections 2 and 3, and present results on the computational and combinatorial
complexity of J . In the implicit version we wish to represent R with an efficient
data structure (in terms of space and query time) that can report fast all elements
a ∈ V satisfying aRb for any query element b ∈ V . We deal with the implicit
problem in Section 4. First we describe efficient join-reachability structures for
simple graph classes. Then, based on these results, we consider planar graphs and
general directed graphs. Although we focus on the case of two directed graphs
(λ = 2), we note that some of our results are easily extended for λ ≥ 3 with the
use of appropriate multidimensional geometric structures.

Applications. Instances of the join-reachability problem appear in various ap-
plications. For example, in the rank aggregation problem [3] we are given a
collection of rankings of some elements and we may wish to report which (or
how many) elements have the same ranking relative to a given element. This is
a special version of join-reachability since the given collection of rankings can
be represented by a collection of directed paths with the elements being the
vertices of the paths. Similarly, in a graph-structured database with an associ-
ated ranking of its vertices we may wish to find the vertices that are related to
a query vertex and have higher or lower ranking than this vertex. Instances of
join-reachability also appear in graph algorithms arising from program optimiza-
tion. Specifically, [4] uses a data structure that reports fast vertices that satisfy
certain ancestor-descendant relations in a collection of rooted trees. Moreover,
in [7] it is shown that any directed graph G with a distinguished source vertex
s has two spanning trees rooted at s such that a vertex a is a dominator of a
vertex b (meaning that all paths in G from s to b pass through a) if and only if a
is an ancestor of b in both spanning trees. This generalizes the graph-theoretical
concept of independent spanning trees. Two spanning trees of a graph G are
independent if they are both rooted at the same vertex r and for each vertex v
the paths from r to v in the two trees are internally vertex disjoint. Similarly,
λ spanning trees of G are independent if they are pairwise independent. In this
setting, we can apply a join-reachability structure to decide if λ given spanning
trees are independent. Finally we note that a variant of the join-reachability
problem we defined here appears in the context of a recent algorithm for com-
puting two internally vertex-disjoint paths for any pair of query vertices in a
2-vertex connected directed graph [5].

Join-Reachability Problems in Directed Graphs 197

Preliminaries and Related Work. The reachability problem is easy in the undi-
rected case since it suffices to compute the connected components of the input
graph. Similarly, the undirected version of the join-reachability problem is also
easy, as given the connected components of two undirected graphs G1 and G2

with n vertices, we can compute the connected components of J ({G1, G2}) in
O(n) time. On the other hand, no reachability data structure is currently known
to simultaneously achieve o(n2) space and o(n) query time for a general directed
graph with n vertices [13]. Nevertheless, efficient reachability structures do exist
for several important cases. First, asymptotically optimal structures exist for
rooted trees [1] and planar directed graphs with one source and one sink [8,11].
For general planar graphs Thorup [12] gives an O(n log n)-space structure with
constant query time. Talamo and Vocca [10] achieve constant query time for
lattice partial orders with an O(n

√
n)-space structure.

Notation. In the description of our results we use the following notation and
terminology. We denote the vertex set and the arc set of a directed graph (di-
graph) G by V (G) and A(G), respectively. Without loss of generality we assume
that V (G) = V for all G ∈ G. The size of G, denoted by |G|, is equal to the
number of arcs plus vertices, i.e., |G| = |V | + |A|. We use the notation a �G b
to denote that b is reachable from a in G. (By definition a �G a for any a ∈ V .)
The predecessors of a vertex b are the vertices that reach b, and the successors
of a vertex b are the vertices that are reached from b. Let P be a directed path
(dipath); the rank of a ∈ P , rP (a), is equal to the number of predecessors of a in
P minus one, and the height of a ∈ P , hP (a), is equal to the number of successors
of a in P minus one. For a rooted tree T , we let T (a) denote the subtree rooted
at a. We will deal with two special types of directed rooted trees: In an in-tree,
each vertex has exactly one outgoing arc except for the root which has none; in
an out-tree, each vertex has exactly one incoming arc except for the root which
has none. We use the term unoriented tree for a directed tree with no restriction
on the orientation of its arcs. Similarly, we use the term unoriented dipath to
refer to a path in the undirected sense, where the arcs can have any orientation.
In our constructions we map the vertices of V to objects in a d-dimensional space
and use the notation xi(a) to refer to the ith coordinate that vertex a receives.
Finally, for any two vectors ξ = (ξ1, . . . , ξd) and ζ = (ζ1, . . . , ζd), the notation
ξ ≤ ζ means that ξi ≤ ζi for i = 1, . . . , d.

1.1 Preprocessing: Computing Layers and Removing Cycles

Thorup’s Layer Decomposition. In [12] Thorup shows how to reduce the reach-
ability problem for any digraph G to reachability in some digraphs with special
properties, called 2-layered digraphs. A t-layered spanning tree T of G is a rooted
directed tree such that any path in T from the root (ignoring arc directions) is
the concatenation of at most t dipaths in G. A digraph G is t-layered if it has
such a spanning tree. Now we provide an overview of Thorup’s reduction. The
vertices of G are partitioned into layers L0, L1, . . . , Lμ−1 that define a sequence
of digraphs G0, G1, . . . , Gμ−1 as follows. An arbitrary vertex v0 ∈ V (G) is chosen
as a root. Then, layer L0 contains v0 and the vertices that are reachable from v0.

198 L. Georgiadis, S.D. Nikolopoulos, and L. Palios

For odd i, layer Li contains the vertices that reach the previous layers Lj , j < i.
For even i, layer Li contains the vertices that are reachable from the previous
layers Lj , j < i. To form Gi for i > 0 we contract the vertices in layers Lj for
j ≤ i− 1 to a single root vertex r0; for i = 0 we set r0 = v0. Then Gi is induced
by Li, Li+1 and r0. It follows that each Gi is a 2-layered digraph. Let ι(v) denote
the index of the layer containing v, that is, ι(v) = i if and only if v ∈ Li. The
key properties of the decomposition are: (i) all the predecessors of v in G are
contained in Gι(v)−1 and Gι(v), and (ii)

∑
i |Gi| = O(|G|).

Removing Cycles. In the standard reachability problem, a useful preprocessing
step that can reduce the size of the input digraph is to contract its strongly
connected components (strong components) and consider the resulting acyclic
graph. When we apply the same idea to join-reachability we have to deal with the
complication that the strong components in the two digraphs may differ. Still,
we can construct two acyclic digraphs Ĝ1 and Ĝ2 such that, for any a, b ∈ V ,
a �J (G1,G2) b if and only if a �J (Ĝ1,Ĝ2)

b, and |Ĝi| ≤ |Gi|, i = 1, 2. This is
accomplished as follows. First, we compute the strong components of G1 and
G2 and order them topologically. Let G′

i, i = 1, 2, denote the digraph produced
after contracting the strong components of Gi. (We remove loops and duplicate
arcs so that each G′

i is a simple digraph.) Also, let Cj
i denote the jth strong

component of Gi. We partition each component Cj
i into subcomponents such

that two vertices are in the same subcomponent if and only if they are in the
same strong component in both G1 and G2. The subcomponents are the vertices
of Ĝ1 and Ĝ2. Next we describe how to add the appropriate arcs. The process
is similar for the two digraphs so we consider only Ĝ1.

Let Cj,1
1 , Cj,2

1 , . . . , C
j,lj
1 be the subcomponents of Cj

1 , which are ordered with
respect to the topological order of G′

2. That is, if x ∈ Cj,i
1 and y ∈ Cj,i′

1 , where i <
i′, then in the topological order of G′

2 the component of x precedes the component
of y. We connect the subcomponents by adding the arcs (Cj,i

1 , Cj,i+1
1) for 1 ≤

i < lj. Moreover, for each arc (Ci
1, C

j
1) in A(G′

1) we add the arc (Ci,li
1 , Cj,1

1)
to A(Ĝ1), where Ci,li

1 is the last subcomponent of Ci
1. It is straightforward to

verify that a �J b if and only if a and b are in the same subcomponent or
the subcomponent of a is a predecessor of the subcomponent of b in both Ĝ1

and Ĝ2.

2 Computational Complexity

We explore the computational complexity of computing the smallest J ({G1, G2}):
Given two digraphs G1 = (V, A1) and G2 = (V, A2) we wish to compute a di-
graph J ≡ J ({G1, G2}) of minimum size such that for any a, b ∈ V , a �J b
if and only if a �G1 b and a �G2 b. We consider two versions of this problem,
depending on whether J is allowed to have Steiner vertices (i.e., vertices not in
V) or not: In the unrestricted version V (J) ⊇ V , while in the restricted version
V (J) = V . Computing J is NP-hard in the unrestricted case. This is implied
by a straightforward reduction from the reachability substitute problem, which

Join-Reachability Problems in Directed Graphs 199

was shown to be NP-hard by Katriel et al. [9]. In this problem we are given a
digraph H and a subset U ⊆ V (H), and ask for the smallest digraph H∗ such
that for any a, b ∈ U , a �H∗ b if and only if a �H b. For the reduction, we
let G1 = H and let G2 contain all the arcs connecting vertices in U only, that
is, A(G2) = U × U . Clearly, for any a, b ∈ U we have a �J b if and only if
a �H b. Therefore computing the smallest join-reachability graph is equivalent
to computing H∗. In the restricted case, on the other hand, we can compute
J using transitive closure and transitive reduction computations, which can be
done in polynomial time [2].

Theorem 1. Let J be the smallest join-reachability graph of a collection of
digraphs. The computation of J is feasible in polynomial time if Steiner vertices
are not allowed, and NP-hard otherwise.

Note that allowing Steiner vertices can reduce the size of J significantly. In
Section 3 we explore the combinatorial complexity of the unrestricted join-
reachability graph and provide bounds for |J | in several cases.

3 Combinatorial Complexity

In this section we provide bounds on the size of J ({G1, G2}) for several types
of graphs. These are summarized in the next theorem.

Theorem 2. Given two digraphs G1 and G2 with n vertices, the following bounds
on the size of the join-reachability graph J ({G1, G2}) hold:

(a) Θ(n log n) in the worst case when G1 is an unoriented tree and G2 is an
unoriented dipath.

(b) O(n log2 n) when both G1 and G2 are unoriented trees.
(c) O(n log2 n) when G1 is a planar digraph and G2 is an unoriented dipath.
(d) O(n log3 n) when both G1 and G2 are planar digraphs.
(e) O(κ1n log n) when G1 is a digraph that can be covered with κ1 vertex-disjoint

dipaths and G2 is an unoriented dipath.
(f) O(κ1n log2 n) when G1 is a digraph that can be covered with κ1 vertex-disjoint

dipaths and G2 is a planar graph.
(g) O(κ1κ2n log n) when each Gi, i = 1, 2, is a digraph that can be covered with

κi vertex-disjoint dipaths.

In the following sections we prove Theorem 2. In each case we provide a con-
struction of the corresponding join-reachability graph that achieves the claimed
bound. In Section 4 we provide improved space bounds for the implicit rep-
resentation of J ({G1, G2}), i.e., data structures that answer join-reachability
reporting queries fast. Still, a process that computes an explicit representation
of J ({G1, G2}) can be useful, as it provides a natural way to handle collections
of more than two digraphs (i.e., it allows us to combine the digraphs one pair at
a time).

200 L. Georgiadis, S.D. Nikolopoulos, and L. Palios

G1

g[6]

a[0]

b[1]

c[2]

d[3]

e[4]

f [5]

h[7]

a[0]

e[1]

c[2]

g[3]

b[4]

f [5]

d[6]

h[7]

G2

0 1 2 3 4 6 7

1

2

5

4

3

7

6

5

x1

x2

0 a

c

b

g

e

f

d

h

e′

g′

f ′

h′

�

Fig. 1. The mapping of the vertices of two dipaths to a 2d rank space and the con-
struction of J�; Steiner vertices in J� are shown white

3.1 Two Paths

We start with the simplest case where G1 and G2 are dipaths with n vertices.
First we show that we can construct a join-reachability graph of size O(n log n).
Given this result we can provide bounds for trees, planar and general digraphs.
Then we show this bound is tight, i.e., there are instances for which Ω(n log n)
size is needed. We begin by mapping the vertices of V to a two-dimensional rank
space: Each vertex a receives coordinates (x1(a), x2(a)) where x1(a) = rG1(a)
and x2(a) = rG2(a). Note that these ranks are integers in the range [0, n − 1].
Now we can view these vertices as lying on an n×n grid, such that each row and
each column of the grid contains exactly one vertex. Clearly, aRb if and only if
(x1(a), x2(a)) ≤ (x1(b), x2(b)).

Upper bound. We use a simple divide-and-conquer method. Let 	 be the ver-
tical line with x1-coordinate equal to n/2. A vertex z is to the right of 	 if
x1(z) ≥ n/2 and to the left of 	 otherwise. The first step is to construct a sub-
graph J� of J that connects the vertices to the left of 	 to the vertices to the
right of 	. For each vertex b to the right of 	 we create a Steiner vertex b′ and
add the arc (b′, b). Also, we assign to b′ the coordinates (n/2, x2(b)). We connect
these Steiner vertices in a dipath starting from the vertex with the lowest x2-
coordinate. Next, for each vertex a to the left of 	 we locate the Steiner vertex b′

with the smallest x2-coordinate such that x2(a) ≤ x2(b′). If b′ exists we add the
arc (a, b′). See Figure 1. Finally we recurse for the vertices to the left of 	 and
for the vertices to the right of 	. It is easy to see that J contains a path from
a to b if and only if (x1(a), x2(a)) ≤ (x1(b), x2(b)). To bound |J | note that we
have O(log n) levels of recursion, and at each level the number of added Steiner
vertices and arcs is O(n). Hence, the O(n log n) bound for two dipaths follows.

The case of two unoriented dipaths G1 and G2 can be reduced to that of
dipaths, yielding the same O(n log n) bound. This is accomplished by splitting

Join-Reachability Problems in Directed Graphs 201

G1 and G2 to maximal subpaths that consist of arcs with the same orientation.
Then J is formed from the union of separate join-reachability graphs for each
pair of subpaths of G1 and G2. The O(n log n) bound follows from the fact that
each vertex appears in at most two subpaths of each unoriented dipath, so in
at most four subgraphs. We remark that our construction can be generalized to
handle more dipaths, with an O(log n) factor blowup per additional dipath.

Lower bound. Let G1 be any dipath, and let x1(a) = rG1(a). Also let xi
1(a)

denote the ith bit in the binary representation of x1(a) and let β = 	log2 n

be the number of bits in this representation. We use similar notation for x2(a).
We define G2 such that the rank of a in G2 is x2(a) = x1(a)R, where x1(a)R is
the integer formed by the bit-reversal in the binary representation of x1(a), i.e.,
xi

2(a) = xβ−1−i
1 (a) for 0 ≤ i ≤ β − 1. Let P be the set that contains all pairs of

vertices (a, b) that satisfy xi
1(a) = 0, xi

1(b) = 1 and xj
1(a) = xj

1(b), j �= i, for 0 ≤
i ≤ β − 1. Notice that for a pair (a, b) ∈ P , x1(a) < x1(b) and x1(a)R < x1(b)R.
Hence (x1(a), x2(a)) < (x1(b), x2(b)), which implies a �J b. Now let G be the
digraph that is formed by the arcs (a, b) ∈ P . Then a �G b only if a �J b.
Moreover, the transitive reduction of G is itself and has size Ω(n log n). We
also observe that any two vertices in G share at most one immediate successor.
Therefore the size of G cannot be reduced by introducing Steiner vertices. This
implies that size of J is also Ω(n log n).

3.2 Tree and Path

Let G1 be a rooted (in- or out-)tree and G2 a dipath. First we note that the
ancestor-descendant relations in a rooted tree can be described by two linear
orders (corresponding to a preorder and a postorder traversal of the tree) and
therefore we can get an O(n log2 n) bound on the size of J using the result of
Section 3.1. Here we provide an O(n log n) bound, which also holds when G1

is unoriented. This upper bound together with the Ω(n log n) lower bound of
Section 3.1 implies Theorem 2(a).

Let T be the rooted tree that results from G1 after removing arc directions.
We associate each vertex x ∈ T with a label h(x) = hG2(x), the height of x
in G2. If G1 is an out-tree then any vertex b must be reachable from all its
ancestors a in T with h(a) > h(b). Similarly, if G1 is an in-tree then any vertex b
must be reachable from all its descendants a in T with h(a) > h(b). We begin by
assigning a depth-first search interval to each vertex in T . Let I(a) = [s(a), t(a)]
be the interval of a vertex a ∈ T ; s(a) is the time of the first visit to a (during
the depth-first search) and t(a) is the time of the last visit to a. These times
are computed by incrementing a counter after visiting or leaving a vertex during
the search. This way all the s() and t() values that are assigned are distinct
and for any vertex a we have 1 ≤ s(a) < t(a) ≤ 2n. Moreover, by well-known
properties of depth-first search, we have that a is an ancestor of b in T if and only
if I(b) ⊆ I(a); if a and b are unrelated in T then I(a) and I(b) do not intersect.
Now we map each vertex a to the x1-axis-parallel segment S(a) = I(a) × h(a).

As in Section 3.1 we use a divide-and-conquer method to build J . We will
consider G1 to be an out-tree; the in-tree case is handled similarly and yields the

202 L. Georgiadis, S.D. Nikolopoulos, and L. Palios

same asymptotic bound. Let 	 be the horizontal line with x2-coordinate equal to
n/2. A vertex x is above 	 if h(x) ≥ n/2; otherwise (h(x) < n/2), x is below 	.
We create a subgraph J� of J that connects the vertices above 	 to the vertices
below 	. To that end, for each vertex u above 	 we create a Steiner vertex u′

together with the arc (u, u′). Let z be the nearest ancestor of u in T that is
above 	. If z exists then we add the arc (z′, u′). Then, for each vertex y below 	
we locate the nearest ancestor u of y in T that is above 	. If u exists then we add
the arc (u′, y). Finally, we recurse for the vertices above 	 and for the vertices
below 	.

It is not hard to verify the correctness of the above construction. The size of
the resulting graph can be bounded by O(n log n) as in Section 3.1. Furthermore,
we can generalize this construction for an unoriented tree and an unoriented
path, and accomplish the same O(n log n) bound as required by Theorem 2(a).
We omit the details which are similar to the more complicated construction of
Section 3.4.

3.3 Two Trees

The construction of Section 3.2 can be extended to handle more than one dipath.
We show how to apply this extension in order to get an O(n log2 n) bound for
the join-reachability graph of two rooted trees. We consider the case where G1

is an out-tree and G2 is an in-tree; the other two cases (two out-trees and two
in-trees) are handled similarly.

Let T1 and T2 be the corresponding undirected trees. We assign to each vertex
a two depth-first search intervals I1(a) = [s1(a), t1(a)] and I2(a) = [s2(a), t2(a)],
where Ij(a) corresponds to Tj, j = 1, 2. We create two linear orders (i.e., di-
paths), P1 and P2, from the I2-intervals as follows: In P1 the vertices are ordered
by decreasing s2-value and in P2 by increasing t2-value. Each vertex a is mapped
to an x1-axis-parallel segment I1(a)×x2(a)×x3(a) (in three dimensions), where
x2(a) = hP1(a) and x3(a) = hP2(a). Then b is reachable from a in J if and only
if I1(b) ⊆ I1(a) and (x2(b), x3(b)) ≤ (x2(a), x3(a)). See Figure 2.

Again we employ a divide-and-conquer approach and use the method of Sec-
tion 3.2 as a subroutine. The details are as follows. Let p be the plane with
x3-coordinate equal to n/2. We construct a subgraph Jp of J that connects the
vertices above p (i.e., vertices z with x3(z) ≥ n/2) to the vertices below p (i.e.,
vertices z with x3(z) < n/2). Then we use recursion for the vertices above p and
the vertices below p.

We construct Jp using the method of Section 3.2 with some modifications. Let
	 be the horizontal line with x2-coordinate equal to n/2. We create a subgraph
Jp,� of Jp that connects the vertices above p and 	 to the vertices below p and
	. To that end, for each vertex z with (x2(z), x3(z)) ≥ (n/2, n/2) we create a
Steiner vertex z′ together with the arc (z, z′). Let u be the nearest ancestor of
z in T1 such that (x2(u), x3(u)) ≥ (n/2, n/2). If u exists then we add the arc
(u′, z′). Finally, for each vertex y with (x2(y), x3(y)) < (n/2, n/2) we locate the
nearest ancestor z of y in T1 such that (x2(z), x3(z)) ≥ (n/2, n/2). If z exists
then we add the arc (z′, y). Finally, we recurse for the vertices above 	 and for

Join-Reachability Problems in Directed Graphs 203

2

f [2]

e[0]

P2

G2

1 2 3 4 6 7

1

5

4

3

7

6

5

x1

x2

0

h[2, 3]

a[4, 13]

f [14, 15]

c[5, 8] e[9, 12]

g[6, 7] d[10, 11]

f [7]

a[6]

c[5]

g[4]

d[3]

b[2]

h[1]

e[0]G1

8 9 10 11 12 14 1513 16

a[4]

b[7]

h[6]

g[3]

f [2]

d[1]

e[0]

c[5]

b[7]

h[6]

c[5]

a[4]

g[3]

d[1]

P1

g[7, 12]

c[8, 9]

d[6, 15]

b[3, 4]

h[2, 5]

a[10, 11]

f [13, 14]

e[1, 16]b[1, 16]

Fig. 2. The mapping of the vertices of two rooted trees to horizontal segments in 3d.
The value in brackets above the segments correspond to the x3-coordinates.

the vertices below 	. The above construction implies that a �J b if and only if
I1(b) ⊆ I1(a) and (x2(b), x3(b)) ≤ (x2(a), x3(a)), as required.

Now we bound the size of our construction. From Section 3.2 we have that
the size of each substructure Jp is O(n log n). Since each vertex participates in
O(log n) such substructures, the total size is bounded by O(n log2 n).

3.4 Unoriented Trees

We can reduce the case of unoriented trees to that of rooted trees by applying
Thorup’s layer decomposition (see Section 1.1). We apply this decomposition to
both G1 and G2. Let G0

i , G
2
i , . . . , G

μi−1
i be the sequence of rooted trees produced

from Gi, i = 1, 2, where each Gj
i is a 2-layered tree. See Figure 3. For even j, Gj

i

consists of a core out-tree, formed by the arcs directed away from the root, and
a collection of fringe in-trees. The situation is reversed for odd j, where the core
tree is an in-tree and the fringe trees are out-trees. We call a vertex of the core
tree a core vertex ; we call a vertex of a fringe tree (excluding its root) a fringe
vertex.

204 L. Georgiadis, S.D. Nikolopoulos, and L. Palios

L1

L2

L3

L0
a

b

c d

e f

g

i j

k
l

o

n

m

s

t

u

v

w

h

a

b

c
d

h

i
j

k

m

sn

o p

r

u

v

w

b

c d

e f

i j

l

p

q r

s

t

w e f

g

l

q

q t

G0

G1

G

g

G3

G2
k

r

p

Fig. 3. An unoriented tree and its sequence of 2-layered trees. Fringe trees are encircled.

We build J as the union of join-reachability graphs Ji,j for each pair (Gi
1, G

j
2).

Each graph Ji,j is constructed similarly to Section 3.3, with the exception that
we have to take special care for the fringe vertices. (We also remark that in
general Ji,j �= J (Gi

1, G
j
2).) A vertex z ∈ V (Gi

1)∩V (Gj
2) is included in Ji,j if one

of the following cases hold: (i) z is a core vertex in at least one of Gi
1 and Gj

2,
or (ii) z is a fringe vertex in both Gi

1 and Gj
2 and the corresponding fringe trees

containing z are either both in-trees or both out-trees. Let Vi,j be the vertices
in V (Gi

1) ∩ V (Gj
2) that satisfy the above condition.

If Vi,j = ∅ then Ji,j is empty. Now suppose Vi,j �= ∅. First consider the case
where the core of Gi

1 is an out-tree. We contract each fringe in-tree to its root and
let the new core supervertex correspond to the vertices of the contracted fringe
tree. Let Ĝi

1 be the out-tree produced from this process. Equivalently, if the core
of Gi

1 is an in-tree then the contraction of the fringe out-trees produces an in-
tree Ĝi

1. We repeat the same process for Gj
2. Next, we assign a depth-first search

interval I1(z) to each vertex z in Ĝi
1 and a depth-first search interval I2(z) to

each vertex z in Ĝj
2, as in Section 3.3. The vertices in Vi,j are assigned a depth-

first search interval in both trees, and therefore can be mapped to horizontal
segments in a 3d space, as in Section 3.3. Hence, we can employ the method
of Section 3.3 with some necessary changes that involve the fringe vertices. Let
z ∈ Vi,j be a fringe vertex in at least one of Gi

1 and Gj
2. If the fringe tree

containing z is an in-tree then we only include in Ji,j arcs leaving z; otherwise
we only include arcs entering z.

Finally we need to show that the size of the resulting graph is O(n log2 n).
This follows from the fact that each subgraph Ji,j has size O(n log2 n) and that
each vertex can appear in at most four such subgraphs. Theorem 2(b) follows.

Join-Reachability Problems in Directed Graphs 205

3.5 Planar Digraphs

Now we turn to planar digraphs and combine our previous constructions with
Thorup’s reachability oracle [12]. From this combination we derive the bounds
stated in Theorem 2(c) and (d). First we need to provide some details for the
reachability oracle of [12].

Let G be a planar digraph, and let G0, G1, . . . , Gμ−1 be the sequence of 2-
layered digraphs produced from G as described in Section 1.1. Consider one
of these digraphs Gi. The next step is to obtain a separator decomposition of
Gi. To that end, we treat Gi as an undirected graph and compute a separator
S whose removal separates Gi into components, each with at most half the
vertices. The separator S consists of three root paths of a spanning tree of Gi

rooted at r0. Because Gi is 2-layered, each root path in S corresponds to at
most two dipaths in Gi. The key idea now is to process each separator dipath
Q and find the connections between V (Gi) and Q. For each v ∈ V (Gi) two
quantities are computed: (i) fromv[Q] which is equal to rQ(u), where u ∈ Q is
the vertex with the highest rank in Q such that u �Gi v, and (ii) tov[Q] which
is equal to rQ(u), where u ∈ Q is the vertex with the lowest rank in Q such
that v �Gi u. Clearly there is a path from a to b that passes though Q if and
only if toa[Q] ≤ fromb[Q]. The same process is carried out recursively for each
component of Gi \ V (S). The depth of this recursion is O(log n), so each vertex
is connected to O(log n) separator dipaths. The space and construction time for
this structure is O(n log n).

Now we consider how to construct a join-reachability graph when G1 is a
planar digraph. We begin with the case where G2 is a dipath. First we perform
the layer decomposition of G1 and construct the corresponding graph sequence
G0

1, G
1
1, . . . , G

μ−1
1 . Then we form pairs of digraphs Pi = {Gi

1, G
i
2} where Gi

2

is a dipath containing only the vertices in V (Gi
1) in the order they appear in

G2. Clearly a �J b if and only if a �Jι(b)−1 b or a �Jι(b) b, where Ji is the
join-reachability graph of Pi. Then J is formed from the union of J0, . . . ,Jμ−1.

To construct Ji we perform the separator decomposition of Gi
1, so that each

vertex is associated with O(log n) separator dipaths. Let Q be such a separator
dipath. Also, let VQ be the set of vertices that have a successor or a predecessor
in Q. We build a subgraph Ji,Q of Ji for the vertices in VQ; Ji is formed from the
union of the subgraphs Ji,Q for all the separator dipaths of Gi

1. The construction
of Ji,Q is carried out as follows. Let z ∈ VQ. If z has a predecessor in Q then
we create a vertex z− which is assigned coordinates x1(z−) = fromz[Q] and
x2(z−) = rG2(z), and add the arc (z, z−). Similarly, if z has a successor in Q
then we create a vertex z+ which is assigned coordinates x1(z+) = toz[Q] and
x2(z+) = rG2(z), and add the arc (z+, z).

Now we can use the method of Section 3.1 to build the rest of Ji,Q, so that
a �Ji,Q b if and only if (x1(a+), x2(a+)) ≤ (x1(b−), x2(b−)). Let 	 be the vertical
line with x1-coordinate equal to n/2. The first step is to construct the subgraph
of Ji,Q that connects the vertices a+ with x1(a+) ≤ n/2 to the vertices b−

with x1(b−) ≥ n/2. For each such b− we create a Steiner vertex b′ and add
the arc (b′, b−). Also, we assign to b′ the coordinates (n/2, x2(b−)). We connect

206 L. Georgiadis, S.D. Nikolopoulos, and L. Palios

these Steiner vertices in a dipath starting from the vertex with the lowest x2-
coordinate. Next, for each vertex a+ with x1(a+) ≤ n/2 we locate the Steiner
vertex b′ with the smallest x2-coordinate such that x2(a+) ≤ x2(b′). If b′ exists
we add the arc (a+, b′). Finally we recurse for the vertices with x1-coordinate in
[1, n/2) and for the vertices with x1-coordinate in (n/2, n].

It remains to bound the size of J . From Section 3.1, we have |Ji,Q| =
O(|VQ| log |VQ|). Moreover, the bound

∑
Q |VQ| = O(|V (Gi

1)| log |V (Gi
1)|), where

the sum is taken over all separator paths of Gi
1, implies |Ji| ≤

∑
Q |Ji,Q| =

O(|V (Gi
1)| log2 |V (Gi

1)|). Finally, since
∑

i |V (Gi
1)| = O(n) we obtain |J | ≤∑

i |Ji| = O(n log2 n).
We handle the case where G2 is an unordered dipath as noted in Section

3.1, which implies Theorem 2(c). The methods we developed here in combina-
tion with the structures of Section 3.4 result to a join-reachability graph of size
O(n log3 n) for a planar digraph and an unoriented tree. The same bound of
O(n log3 n) is achieved for two planar digraphs, as stated in Theorem 2(d).

3.6 General Digraphs

A technique that is used to speed up transitive closure and reachability com-
putations is to cover a digraph with simple structures such as dipaths, chains,
or trees (e.g., see [1]). Such techniques are well-suited to our framework as they
can be combined with the structures we developed earlier. We also remark that
the use of the preprocessing steps of Section 1.1 reduces the problem from gen-
eral digraphs to acyclic and 2-layered digraphs. In this section we describe how
to obtain join-reachability graphs with the use of dipath covers. This gives the
bounds stated in Theorem 2(e)-(g); similar results can be derived with the use of
tree covers. Again for simplicity, we first consider the case where G1 is a general
digraph and G2 is a dipath.

A dipath cover is a decomposition of a digraph into vertex-disjoint dipaths.
Let P 1

1 , P 2
1 , . . . Pκ1

1 be a dipath cover of G1. For each vertex v and each path
P i

1 we compute fromv[P i
1], i.e., rP i

1
(z) where z ∈ P i

1 is the vertex with the
highest rank in P i

1 such that z �G1 v. Let P i
2 be the dipath that consists of the

vertices in P i
1 ordered by increasing rank in G2. Also, set fromv[P i

2] = rP i
2
(z)

where z ∈ P i
2 is the vertex with the largest rank such that rG2(z) ≤ rG2(v).

Let VP i
1

be set of vertices that have a predecessor in P i
1 . We build a subgraph

Ji of J that connects the vertices of P i
1 to VP i

1
. Then J is formed from the

union of the subgraphs Ji. For each z ∈ VP i
1

we create a vertex z− which is
assigned coordinates x1(z−) = fromz[P i

1] and x2(z−) = fromz[P i
2], and add

the arc (z−, z). Also, for each z ∈ P i
1 we create a vertex z+ which is assigned

coordinates x1(z+) = rP i
1
(z) and x2(z+) = rP i

2
(z), and add the arc (z, z+).

Now we can build a join-reachability graph, so that a �Ji b if and only if
(x1(a+), x2(a+)) ≤ (x1(b−), x2(b−)), as in Section 3.5.

The size of this graph is bounded by
∑

i |VP i
1
| log |VP i

1
| = O(κ1n log n), which

implies the result of Theorem 2(e). We can extend this method to handle two
general digraphs and obtain the bound of Theorem 2(g). The case where G2 is

Join-Reachability Problems in Directed Graphs 207

planar digraph is handled by combining the above method with the techniques
of Section 3.5, resulting to Theorem 2(f).

4 Data Structures

Now we deal with the data structure version of the join-reachability problem.
Our goal is to construct an efficient data structure for J = J (G1, G2) such that
given a query vertex b it can report all vertices a satisfying a �J b. We state
the efficiency of a structure using the notation 〈s(n), q(n, k)〉 which refers to a
data structure with O(s(n)) space and O(q(n, k)) query time for reporting k
elements. In order to design efficient join-reachability data structures we apply
the techniques we developed in Section 3. The bounds that we achieve this way
are summarized in the following theorem. The proof is given in the full version
of the paper [6].

Theorem 3. Given two digraphs G1 and G2 with n vertices we can construct
join-reachability data structures with the following efficiency:
(a) 〈n, k〉 when G1 is an unoriented tree and G2 is an unoriented dipath.
(b) 〈n, log n + k〉 when G1 is an out-tree and G2 is an unoriented tree.
(c) 〈n logε n, log log n+k〉 (for any constant ε > 0), when G1 and G2 are unori-

ented trees.
(d) 〈n log n, k log n〉 when G1 is planar digraph and G2 is an unoriented tree.
(e) 〈n log2 n, k log2 n〉 when both G1 and G2 are planar digraphs.
(f) 〈nκ1, k〉 when G1 is a general digraph that can be covered with κ1 vertex-

disjoint dipaths and G2 is an unoriented tree.
(g) 〈n(κ1 + log n), kκ1 log n〉 or 〈nκ1 log n, k log n〉 when G1 is a general digraph

that can be covered with κ1 vertex-disjoint dipaths and G2 is planar digraph.
(h) 〈n(κ1 +κ2), κ1κ2 +k〉 or 〈nκ1κ2, k〉 when each Gi, i = 1, 2, is a digraph that

can be covered with κi vertex-disjoint dipaths.

5 Conclusions and Open Problems

We considered the computational and combinatorial complexity of the join-
reachability graph, and the design of efficient join-reachability data structures
for a variety of graph classes. We believe that several open problems deserve
further investigation. For instance, from the combinatorial complexity aspect, it
would be interesting to prove or disprove that an O(m · polylog(n)) bound on
the size of the join-reachability graph J ({G1, G2}) is attainable when G1 is a
general digraph with n vertices and m arcs and G2 is a dipath. Another direction
is to consider the problem of approximating the smallest join-reachability graph
for specific graph classes. From the data structures side, one can investigate how
to support the following type of counting queries: Given a pair of query ver-
tices compute the number of their common predecessors in J . While some of
our structures can be easily extended in order to support such counting queries,
there are several cases (e.g., for planar digraphs) where we need to overcome
various technical difficulties.

208 L. Georgiadis, S.D. Nikolopoulos, and L. Palios

Acknowledgements. We would like to thank Li Zhang for several useful discus-
sions.

References

1. Agrawal, R., Borgida, A., Jagadish, H.V.: Efficient management of transitive re-
lationships in large data and knowledge bases. In: SIGMOD 1989: Proceedings of
the 1989 ACM SIGMOD International Conference on Management of Data, pp.
253–262 (1989)

2. Aho, A.V., Garey, M.R., Ullman, J.D.: The transitive reduction of a directed graph.
SIAM J. Comput. 1(2), 131–137 (1972)

3. Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank aggregation methods for
the web. In: WWW 2001: Proceedings of the 10th International Conference on
World Wide Web, pp. 613–622 (2001)

4. Georgiadis, L.: Computing frequency dominators and related problems. In: Hong,
S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp.
704–715. Springer, Heidelberg (2008)

5. Georgiadis, L.: Testing 2-vertex connectivity and computing pairs of vertex-disjoint
s-t paths in digraphs. In: Proc. 37th Int’l. Coll. on Automata, Languages, and
Programming, pp. 738–749 (2010)

6. Georgiadis, L., Nikolopoulos, S.D., Palios, L.: Join-reachability problems in directed
graphs. Technical Report arXiv:1012.4938v1 [cs.DS] (2010)

7. Georgiadis, L., Tarjan, R.E.: Dominator tree verification and vertex-disjoint paths.
In: Proc. 16th ACM-SIAM Symp. on Discrete Algorithms, pp. 433–442 (2005)

8. Kameda, T.: On the vector representation of the reachability in planar directed
graphs. Information Processing Letters 3(3), 75–77 (1975)

9. Katriel, I., Kutz, M., Skutella, M.: Reachability substitutes for planar digraphs.
Technical Report MPI-I-2005-1-002, Max-Planck-Institut Für Informatik (2005)

10. Talamo, M., Vocca, P.: An efficient data structure for lattice operations. SIAM J.
Comput. 28(5), 1783–1805 (1999)

11. Tamassia, R., Tollis, I.G.: Dynamic reachability in planar digraphs with one source
and one sink. Theoretical Computer Science 119(2), 331–343 (1993)

12. Thorup, M.: Compact oracles for reachability and approximate distances in planar
digraphs. Journal of the ACM 51(6), 993–1024 (2004)

13. Wang, H., He, H., Yang, J., Yu, P.S., Yu, J.X.: Dual labeling: Answering graph
reachability queries in constant time. In: ICDE 2006: Proceedings of the 22nd
International Conference on Data Engineering, p. 75 (2006)

	Join-Reachability Problems in Directed Graphs
	Introduction
	Preprocessing: Computing Layers and Removing Cycles

	Computational Complexity
	Combinatorial Complexity
	Two Paths
	Tree and Path
	Two Trees
	Unoriented Trees
	Planar Digraphs
	General Digraphs

	Data Structures
	Conclusions and Open Problems
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

