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Abstract. Motivated by the definition of linear coloring on simplicial
complexes, recently introduced in the context of algebraic topology, and
the framework through which it was studied, we introduce the colinear
coloring on graphs. We provide an upper bound for the chromatic num-
ber χ(G), for any graph G, and show that G can be colinearly colored
in polynomial time by proposing a simple algorithm. The colinear col-
oring of a graph G is a vertex coloring such that two vertices can be
assigned the same color, if their corresponding clique sets are associated
by the set inclusion relation (a clique set of a vertex u is the set of all
maximal cliques containing u); the colinear chromatic number λ(G) of
G is the least integer k for which G admits a colinear coloring with k
colors. Based on the colinear coloring, we define the χ-colinear and α-
colinear properties and characterize known graph classes in terms of these
properties.

Keywords: Colinear coloring, chromatic number, chordal graphs,
threshold graphs, quasi-threshold graphs, algorithms, complexity.

1 Introduction

A colinear coloring of a graph G is a coloring of its vertices such that two vertices
are assigned different colors, if their corresponding clique sets are not associated
by the set inclusion relation; a clique set of a vertex u is the set of all maximal
cliques in G containing u. The colinear chromatic number λ(G) of G is the least
integer k for which G admits a colinear coloring with k colors.

Motivated by the definition of linear coloring on simplicial complexes associ-
ated to graphs, first introduced by Civan and Yalçin [5] in the context of algebraic
topology, we studied linear colorings on simplicial complexes which can be rep-
resented by a graph. In particular, we studied the linear coloring problem on
a simplicial complex, namely independence complex I(G) of a graph G. The
independence complex I(G) of a graph G can always be represented by a graph
and, more specifically, is identical to the complement graph G of the graph G;
indeed, the facets of I(G) are exactly the maximal cliques of G. The outcome of
this study was the definition of the colinear coloring of a graph G; the colinear
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coloring of a graph G is a coloring of G such that for any set of vertices taking
the same color, the collection of their clique sets can be linearly ordered by in-
clusion. Note that, the two definitions cannot always be considered as identical
since not in all cases a simplicial complex can be represented by a graph; such
an example is the neighborhood complex N (G) of a graph G. Recently, Civan
and Yalçin [5] studied the linear coloring of the neighborhood complex N (G) of
a graph G and proved that the linear chromatic number of N (G) gives an upper
bound for the chromatic number χ(G) of the graph G. This approach lies in a
general framework met in algebraic topology.

In the context of algebraic topology, one can find much work done on provid-
ing boundaries for the chromatic number of an arbitrary graph G, by examining
the topology of the graph through different simplicial complexes associated to
the graph. This domain was motivated by Kneser’s conjecture, which was posed
in 1955, claiming that “if we split the n-subsets of a (2n + k)-element set into
k + 1 classes, one of the classes will contain two disjoint n-subsets” [9]. Kneser’s
conjecture was first proved by Lovász in 1978, with a proof based on graph
theory, by rephrasing the conjecture into “the chromatic number of Kneser’s
graph KGn,k is k + 2” [10]. Many more topological and combinatorial proofs
followed the interest of which extends beyond the original conjecture [13]. Al-
though Kneser’s conjecture is concerned with the chromatic numbers of certain
graphs (Kneser graphs), the proof methods that are known provide lower bounds
for the chromatic number of any graph [11]. Thus, this initiated the application
of topological tools in studying graph theory problems and more particularly in
graph coloring problems [6].

The interest to provide boundaries for the chromatic number χ(G) of an
arbitrary graph G through the study of different simplicial complexes associated
to G, which is found in algebraic topology bibliography, drove the motivation for
defining the colinear coloring on the graph G and studying the relation between
the chromatic number χ(G) and the colinear chromatic number λ(G). We show
that for any graph G, λ(G) is an upper bound for χ(G). The interest of this
result lies on the fact that we present a colinear coloring algorithm that can be
applied to any graph G and provides an upper bound λ(G) for the chromatic
number of the graph G, i.e. χ(G) ≤ λ(G); in particular, it provides a proper
vertex coloring of G using λ(G) colors. Additionally, recall that a known lower
bound for the chromatic number of any graph G is the clique number ω(G) of
G, i.e. χ(G) ≥ ω(G). Motivated by the definition of perfect graphs, for which
χ(GA) = ω(GA) holds ∀A ⊆ V (G), it was interesting to study those graphs for
which the equality χ(G) = λ(G) holds, and even more those graphs for which
this equality holds for every induced subgraph.

In this paper, we first introduce the colinear coloring of a graph G and study
the relation between the colinear coloring of G and the proper vertex coloring
of G. We prove that, for any graph G, a colinear coloring of G is a proper vertex
coloring of G and, thus, λ(G) is an upper bound for χ(G), i.e. χ(G) ≤ λ(G).
We present a colinear coloring algorithm that can be applied to any graph G.
Motivated by these results and the Perfect Graph Theorem [7], we study those
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graphs for which the equality χ(G) = λ(G) holds for every induce subgraph and
characterize known graph classes in terms of the χ-colinear and the α-colinear
properties. A graph G has the χ-colinear property if its chromatic number χ(G)
equals to the colinear chromatic number λ(G) of its complement graph G, and the
equality holds for every induced subgraph of G, i.e. χ(GA) = λ(GA), ∀A ⊆ V (G);
a graph G has the α-colinear property if its stability number α(G) equals to
its colinear chromatic number λ(G), and the equality holds for every induced
subgraph of G, i.e. α(GA) = λ(GA), ∀A ⊆ V (G). Note that the stability number
α(G) of a graph G is the greatest integer r for which G contains an independent
set of size r. We show that the class of threshold graphs is characterized by the
χ-colinear property and the class of quasi-threshold graphs is characterized by
the α-colinear property.

2 Preliminaries

Let G be a finite undirected graph with no loops or multiple edges. We denote
by V (G) and E(G) the vertex set and edge set of G. The subgraph of a graph
G induced by a subset S of vertices of G is denoted by G[S].

An edge is a pair of distinct vertices x, y ∈ V (G), and is denoted by xy if G
is an undirected graph and by −→xy if G is a directed graph. For a set A ⊆ V (G)
of vertices of the graph G, the subgraph of G induced by A is denoted by GA.
Additionally, the cardinality of a set A is denoted by |A|. The set N(v) = {u ∈
V (G) : uv ∈ E(G)} is called the open neighborhood of the vertex v ∈ V (G) in G,
sometimes denoted by NG(v) for clarity reasons. The set N [v] = N(v) ∪ {v} is
called the closed neighborhood of the vertex v ∈ V (G) in G.

The greatest integer r for which a graph G contains an independent set of
size r is called the independence number or otherwise the stability number of G
and is denoted by α(G). The cardinality of the vertex set of the maximum clique
in G is called the clique number of G and is denoted by ω(G). A proper vertex
coloring of a graph G is a coloring of its vertices such that no two adjacent
vertices are assigned the same color. The chromatic number χ(G) of G is the
least integer k for which G admits a proper vertex coloring with k colors. For
the numbers ω(G) and χ(G) of an arbitrary graph G the inequality ω(G) ≤ χ(G)
holds. In particularly, G is a perfect graph if the equality ω(GA) = χ(GA) holds
∀A ⊆ V (G).

Next, definitions of some graph classes mentioned throughout the paper follow.
A graph is called a chordal graph if it does not contain an induced subgraph
isomorphic to a chordless cycle of four or more vertices. A graph is called a co-
chordal graph if it is the complement of a chordal graph [7]. A hole is a chordless
cycle Cn if n ≥ 5; the complement of a hole is an antihole. A graph G is a split
graph if there is a partition of the vertex set V (G) = K + I, where K induces
a clique in G and I induces an independent set. Split graphs are characterized
as (2K2, C4, C5)-free. Threshold graphs are defined as those graphs where stable
subsets of their vertex sets can be distinguished by using a single linear inequality.
Threshold graphs were introduced by Chvátal and Hammer [4] and characterized
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as (2K2, P4, C4)-free. Quasi-threshold graphs are characterized as the (P4, C4)-
free graphs and are also known in the literature as trivially perfect graphs [7],
[12]. For more details on basic definitions in graph theory refer to [2], [7].

3 Colinear Coloring on Graphs

In this section we define the colinear coloring of a graph G, and we prove some
properties of the colinear coloring of G. It is worth noting that these properties
have been also proved for the linear coloring of the neighborhood complex N (G)
in [5].

Definition 1. Let G be a graph and let v ∈ V (G). The clique set of a vertex v
is the set of all maximal cliques of G containing v and is denoted by CG(v).

Definition 2. Let G be a graph and let k be an integer. A surjective map κ :
V (G) → {1, 2, . . . , k} is called a k-colinear coloring of G if the collection {CG(v) :
κ(v) = i} is linearly ordered by inclusion for all i ∈ {1, 2, . . . , k}, where CG(v) is
the clique set of v, or, equivalently, for two vertices v, u ∈ V (G), if κ(v) = κ(u)
then either CG(v) ⊆ CG(u) or CG(v) ⊇ CG(u). The least integer k for which G is
k-colinear colorable is called the colinear chromatic number of G and is denoted
by λ(G).

Next, we study the colinear coloring on graphs and its association to the proper
vertex coloring. In particular, we show that for any graph G the colinear chro-
matic number of G is an upper bound for χ(G).

Proposition 1. Let G be a graph. If κ : V (G) → {1, 2, . . . , k} is a k-colinear
coloring of G, then κ is a coloring of the graph G.

Proof. Let G be a graph and let κ : V (G) → {1, 2, . . . , k} be a k-colinear coloring
of G. From Definition 2, we have that for any two vertices v, u ∈ V (G), if
κ(v) = κ(u) then either CG(v) ⊆ CG(u) or CG(v) ⊇ CG(u) holds. Without loss
of generality, assume that CG(v) ⊆ CG(u) holds. Consider a maximal clique
C ∈ CG(v). Since CG(v) ⊆ CG(u), we have C ∈ CG(u). Thus, both u, v ∈ C
and therefore uv ∈ E(G) and uv /∈ E(G). Hence, any two vertices assigned the
same color in a k-colinear coloring of G are not neighbors in G. Concluding, any
k-colinear coloring of G is a coloring of G. 
�

It is therefore straightforward to conclude the following.

Corollary 1. For any graph G, λ(G) ≥ χ(G).

In Figure 1 we depict a colinear coloring of the well known graphs 2K2, C4
and P4, using the least possible colors, and show the relation between the chro-
matic number χ(G) of each graph G ∈ {2K2, C4, P4} and the colinear chromatic
number λ(G).
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1 2 1 2

1 2 4 3
1 1 2 2

2K2 C4 P4

λ(2K2) = 2 = χ(2K2) = χ(C4) λ(C4) = 4 �= 2 = χ(C4) = χ(2K2) λ(P4) = 2 = χ(P4) = χ(P4)

Fig. 1. Illustrating a colinear coloring of the graphs 2K2, C4 and P4 with the least
possible colors

Proposition 2. Let G be a graph. A coloring κ : V (G) → {1, 2, . . . , k} of G is
a k-colinear coloring of G if and only if either NG[u] ⊆ NG[v] or NG[u] ⊇ NG[v]
holds in G, for every u, v ∈ V (G) with κ(u) = κ(v).

Proof. Let G be a graph and let κ : V (G) → {1, 2, . . . , k} be a k-colinear coloring
of G. We will show that either NG[u] ⊆ NG[v] or NG[u] ⊇ NG[v] holds in G for
every u, v ∈ V (G) with κ(u) = κ(v). Consider two vertices v, u ∈ V (G), such that
κ(u) = κ(v). Since κ is a colinear coloring of G, we have either CG(u) ⊆ CG(v) or
CG(u) ⊇ CG(v) holds. Without loss of generality, assume that CG(u) ⊆ CG(v). We
will show that NG[u] ⊆ NG[v] holds in G. Assume the opposite. Thus, a vertex
z ∈ V (G) exists, such that z ∈ NG[u] and z /∈ NG[v] and, thus, zu ∈ E(G) and
zv /∈ E(G). Now consider a maximal clique C in G which contains z and u. Since
zv /∈ E(G), it follows that v /∈ C. Thus, there exists a maximal clique C in G
such that C ∈ CG(u) and C /∈ CG(v), which is a contradiction to our assumption
that CG(u) ⊆ CG(v). Therefore, NG[u] ⊆ NG[v] holds in G.

Let G be a graph and let κ : V (G) → {1, 2, . . . , k} be a coloring of G. Assume
now that either NG[u] ⊆ NG[v] or NG[u] ⊇ NG[v] holds in G, for every u, v ∈
V (G) with κ(u) = κ(v). We will show that the coloring κ of G is a k-colinear
coloring of G. Without loss of generality, assume that NG[u] ⊆ NG[v] holds in
G, and we will show that CG(u) ⊆ CG(v). Assume the opposite. Thus, a maximal
clique C exists in G, such that C ∈ CG(u) and C /∈ CG(v). Consider now a vertex
z ∈ V (G) (z �= v), such that z ∈ C and zv /∈ E(G). Such a vertex exists since
C is maximal in G and C /∈ CG(v). Thus, zv /∈ E(G) and either zu ∈ E(G) or
z = u, which is a contradiction to our assumption that NG[u] ⊆ NG[v]. 
�

4 An Algorithm for Colinear Coloring

In this section we present a polynomial time algorithm for colinear coloring
which can be applied to any graph G, and provides an upper bound for χ(G).
Although we have introduced colinear coloring through Definition 2, in our al-
gorithm we exploit the property proved in Proposition 2, since the problem of
finding all maximal cliques of a graph G is not polynomially solvable on general
graphs. Before describing our algorithm, we first construct a directed acyclic
graph (DAG) DG of a graph G, which we call DAG associated to the graph G,
and we use it in the proposed algorithm.

The DAG DG associated to the graph G. Let G be a graph. We first
compute the closed neighborhood NG[v] of each vertex v of G and, then, we
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construct the following directed acyclic graph D, which depicts all inclusion
relations among the vertices’ closed neighborhoods: V (D) = V (G) and E(D) =
{−→xy : x, y ∈ V (D) and NG[x] ⊆ NG[y]}, where −→xy is a directed edge from x
to y. In the case where the equality NG[x] = NG[y] holds, we choose to add
one of the two edges so that the resulting graph D is acyclic. To achieve this,
we consider a partition of the vertex set V (G) into the sets S1, S2, . . . , S�, such
that for any i ∈ {1, 2, . . . , �} vertices x and y belong to a set Si if and only if
NG[x] = NG[y]. For vertices x and y belonging to the same set Si we add the
edge −→xy if and only if x < y. For vertices x and y belonging to different sets Si

and Sj respectively, we add the edge −→xy if and only if NG[x] ⊂ NG[y]. It is easy
to see that the resulting graph D is unique up to isomorphism.

Additionally, it is easy to see that D is a transitive directed acyclic graph.
Indeed, by definition D is constructed on a partially ordered set of elements
(V (D), ≤), such that for some x, y ∈ V (D), x ≤ y ⇔ NG[x] ⊆ NG[y]. Through-
out the paper we refer to the constructed directed acyclic graph as the DAG
associated to the graph G and denote it by DG.

The algorithm for colinear coloring. The proposed algorithm computes a
colinear coloring and the colinear chromatic number of a graph G. The algorithm
works as follows:

(i) compute the closed neighborhood set of every vertex of G and, then, find
the inclusion relations among the neighborhood sets and construct the DAG
DG associated to the graph G.

(ii) find a minimum path cover P(DG), and its size ρ(DG), of the transitive
DAG DG (e.g. see [1],[8]).

(iii) assign a color κ(v) to each vertex v ∈ V (DG), such that vertices belonging
to the same path of P(DG) are assigned the same color and vertices of
different paths are assigned different colors; this is a surjective map κ :
V (DG) → [ρ(DG)].

(iv) return the value κ(v) for each vertex v ∈ V (DG) and the size ρ(DG) of the
minimum path cover of DG; κ is a colinear coloring of G and ρ(DG) equals
the colinear chromatic number λ(G) of G.

Correctness of the algorithm. Let G be a graph and let DG be the DAG
associated to the graph G, which is unique up to isomorphism. Consider the
value κ(v) for each vertex v ∈ V (DG) returned by the algorithm and the size
ρ(DG) of a minimum path cover of DG. We show that the surjective map κ :
V (DG) → [ρ(DG)] is a colinear coloring of the vertices of G, and prove that the
size ρ(DG) of a minimum path cover P(DG) of the DAG DG is equal to the
colinear chromatic number λ(G) of the graph G.

Proposition 3. Let G be a graph and let DG be the DAG associated to the graph
G. A colinear coloring of the graph G can be obtained by assigning a particular
color to all vertices of each path of a path cover of the DAG DG. Moreover,
the size ρ(DG) of a minimum path cover P(DG) of the DAG DG equals to the
colinear chromatic number λ(G) of the graph G.
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Proof. Let G be a graph, DG be the DAG associated to G, and let P(DG) be a
minimum path cover of DG. The size ρ(DG) of the DAG DG, equals to the min-
imum number of directed paths in DG needed to cover the vertices of DG and,
thus, the vertices of G. Now, consider a coloring κ : V (DG) → {1, 2, . . . , k} of the
vertices of DG, such that vertices belonging to the same path are assigned the
same color and vertices of different paths are assigned different colors. Therefore,
we have ρ(DG) colors and ρ(DG) sets of vertices, one for each color. For every
set of vertices belonging to the same path, their corresponding closed neigh-
borhood sets can be linearly ordered by inclusion. Indeed, consider a path in
DG with vertices {v1, v2, . . . , vm} and edges −−−→vivi+1 for i ∈ {1, 2, . . . , m}. From
the construction of DG, it holds that ∀i, j ∈ {1, 2, . . . , m}, −−→vivj ∈ E(DG) ⇔
NG[vi] ⊆ NG[vj ]. In other words, the corresponding neighborhood sets of the
vertices belonging to a path in DG are linearly ordered by inclusion. Thus, the
coloring κ of the vertices of DG gives a colinear coloring of G. This colinear
coloring κ is optimal, uses k = ρ(DG) colors, and gives the colinear chromatic
number λ(G) of the graph G. Indeed, suppose that there exists a different colin-
ear coloring κ′ : V (DG) → [k′] of G using k′ colors, such that k′ < k. For every
color given in κ′, consider a set consisted of the vertices assigned that color. It is
true that for the vertices belonging to the same set, their neighborhood sets are
linearly ordered by inclusion. Therefore, these vertices can belong to the same
path in DG. Thus, each set of vertices in G corresponds to a path in DG and,
additionally, all vertices of G (and therefore of DG) are covered. This is a path
cover of DG of size ρ′(DG) = k′ < k = ρ(DG), which is a contradiction since
P(DG) is a minimum path cover of DG. Therefore, we conclude that the colinear
coloring κ : V (DG) → [ρ(DG)] is optimal and, hence, ρ(DG) = λ(G). 
�

Complexity of the algorithm. Let G be a graph, V (G) = n, E(G) = m, and
let DG be the DAG associated to the graph G. Step (i) of the algorithm, which
includes the construction of the DAG DG, takes O(nm) time. In particular, it
takes O(nm) time to compute the closed neighborhood set of every vertex of G,
O(nm) time to find the inclusion relations among the neighborhood sets, and
O(n+m) time to construct the DAG DG. Note that, we only need to check pairs
of vertices that are connected by an edge in G. Step (ii) computes a minimum
path cover in the transitive DAG DG; the problem is known to be polynomially
solvable, since it can be reduced to the maximum matching problem in a bipartite
graph formed from the transitive DAG [1]. The maximum matching problem in
a bipartite graph takes O((m + n)

√
n) time, due to an algorithm by Hopcroft

and Karp [8]. Finally, both Steps (iii) and (iv) can be executed in O(n) time.
Therefore, the complexity of the algorithm is O(nm + n

√
n).

5 Graphs Having the χ-Colinear and α-Colinear
Properties

In Section 3 we showed that for any graph G, the colinear chromatic number
λ(G) of G is an upper bound for the chromatic number χ(G) of G, i.e. χ(G) ≤
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λ(G). Recall that a known lower bound for the chromatic number of G is the
clique number ω(G) of G, i.e. χ(G) ≥ ω(G). Motivated by the Perfect Graph
Theorem [7], in this section we exploit our results on colinear coloring and we
study those graphs for which the equality χ(G) = λ(G) holds for every induced
subgraph. The outcome of this study was the definition of the following two
graph properties and the characterization of known graph classes in terms of
these properties.

◦ χ-colinear property. A graph G has the χ-colinear property if for every
induced subgraph GA of the graph G, χ(GA) = λ(GA), A ⊆ V (G).

◦ α-colinear property. A graph G has the α-colinear property if for every
induced subgraph GA of a graph G, α(GA) = λ(GA), A ⊆ V (G).

Next, we show that the class of threshold graphs is characterized by the χ-
colinear property and the class of quasi-threshold graphs is characterized by
the α-colinear property. We also show that any graph that has the χ-colinear
property is perfect; actually, we show that any graph that has the χ-colinear
property is a co-chordal graph, and any graph that has the α-colinear property
is a chordal graph. We first give some definitions and show some interesting
results.

Definition 3. The edge uv of a graph G is called actual if neither NG[u] ⊆ NG[v]
nor NG[u] ⊇ NG[v]. The set of all actual edges of G will be denoted by Eα(G).

Definition 4. A graph G is called quasi-threshold if it has no induced subgraph
isomorphic to a C4 or a P4 or, equivalently, if it contains no actual edges.

More details on actual edges and characterizations of quasi-threshold graphs
through a classification of their edges can be found in [12]. The following result
directly follows from Definition 3 and Proposition 2.

Proposition 4. Let κ : V (G) → {1, 2, . . . , k} be a k-colinear coloring of the
graph G. If the edge uv ∈ E(G) is an actual edge of G, then κ(u) �= κ(v).

Based on Definition 3, the χ-colinear property and Proposition 5.1, we prove the
following result.

Proposition 5. Let G be a graph and let F be the graph such that V (F ) =
V (G) and E(F ) = E(G) ∪ Eα(G). The graph G has the χ-colinear property if
χ(GA) = ω(FA), ∀A ⊆ V (G).

Proof. Let G be a graph and let F be a graph such that V (F ) = V (G) and
E(F ) = E(G) ∪ Eα(G), where Eα(G) is the set of all actual edges of G. By
definition, G has the χ-colinear property if χ(GA) = λ(GA), ∀A ⊆ V (G). It
suffices to show that λ(GA) = ω(FA), ∀A ⊆ V (G). From Definition 2, it is
easy to see that two vertices which are not connected by an edge in GA belong
necessarily to different cliques and, thus, they cannot receive the same color in a
colinear coloring of GA. In other words, the vertices which are connected by an



Colinear Coloring on Graphs 125

edge in GA cannot take the same color in a colinear coloring of GA. Moreover,
from Proposition 4 vertices which are endpoints of actual edges in GA cannot
take the same color in a colinear coloring of GA.

Next, we construct the graph FA with vertex set V (FA) = V (GA) and edge
set E(FA) = E(GA) ∪ Eα(GA), where Eα(GA) is the set of all actual edges of
GA. Every two vertices in FA, which have to take a different color in a colinear
coloring of GA are connected by an edge. Thus, the size of the maximum clique
in FA equals to the size of the maximum set of vertices which pairwise must take
a different color in GA, i.e. ω(FA) = λ(GA) holds for all A ⊆ V (G). Concluding,
G has the χ-colinear property if χ(GA) = ω(FA), ∀A ⊆ V (G). 
�

Taking into consideration Proposition 5 and the structure of the edge set E(F ) =
E(G) ∪ Eα(G) of the graph F , it is easy to see that E(F ) = E(G) if G has no
actual edges. Actually, this will be true for all induced subgraphs, since if G is a
quasi-threshold graph then GA is also a quasi-threshold graph for all A ⊆ V (G).
Thus, χ(GA) = ω(FA), ∀A ⊆ V (G). Therefore, the following result holds.

Corollary 2. Let G be a graph. If G is quasi-threshold, then G has the χ-
colinear property.

From Corollary 2 we obtain a more interesting result.

Proposition 6. Any threshold graph has the χ-colinear property.

Proof. Let G be a threshold graph. It has been proved that an undirected graph
G is a threshold graph if and only if G and its complement G are quasi-threshold
graphs [12]. From Corollary 2, if G is quasi-threshold then G has the χ-colinear
property. Concluding, if G is threshold, then G is quasi-threshold and thus G
has the χ-colinear property. 
�

However, not any graph that has the χ-colinear property is a threshold graph.
Indeed, Chvátal and Hammer [4] showed that threshold graphs are (2K2, P4, C4)-
free and, thus, the graphs P4 and C4 have the χ-colinear property but they are
not threshold graphs (see Figure 1). We note that the proof that any threshold
graph G has the χ-colinear property can be also obtained by showing that any
coloring of a threshold graph G is a colinear coloring of G by using Proposition 2,
the basic set theory property that NG(u) = V (G)\NG[u], Corollary 1 and the
property that N(u) ⊆ N [v] or N(v) ⊆ N [u] for any two vertices u, v of G.
However, Proposition 5 and Corollary 2 actually give us a stronger result since
the class of quasi-threshold graphs is a superclass of the class of threshold graphs.

The following result is even more interesting, since it shows that any graph
that has the χ-colinear property is a perfect graph.

Proposition 7. Any graph that has the χ-colinear property is a co-chordal
graph.

Proof. Let G be a graph that has the χ-colinear property. It has been showed that
a co-chordal graph is (2K2, antihole)-free [7]. To show that any graph G that has
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the χ-colinear property is a co-chordal graph we will show that if G has a 2K2 or
an antihole as induced subgraph, then G is does not have the χ-colinear prop-
erty. Since by definition a graph G has the χ-colinear property if the equality
χ(GA) = λ(GA) holds for every induced subgraph GA of G, it suffices to show
that the graphs 2K2 and antihole do not have the χ-colinear property.

The graph 2K2 does not have the χ-colinear property, since χ(2K2) = 2 �= 4 =
λ(C4); see Figure 1. Now, consider the graph G = Cn which is an antihole of size
n ≥ 5. We will show that χ(G) �= λ(G). It follows that λ(G) = λ(Cn) = n ≥ 5,
i.e. if the graph G = Cn is to be colored colinearly, every vertex has to take a
different color. Indeed, assume that a colinear coloring κ : V (G) → {1, 2, . . . , k}
of G = Cn exists such that for some ui, uj ∈ V (G), i �= j, 1 ≤ i, j ≤ n,
κ(ui) = κ(uj). Since ui, uj are vertices of a hole, their neighborhoods in G are
N [ui] = {ui−1, ui, ui+1} and N [uj ] = {uj−1, uj, uj+1}, 2 ≤ i, j ≤ n − 1. For
i = 1 or i = n, N [u1] = {un, u2} and N [un] = {un−1, u1}. Since κ(ui) = κ(uj),
from Proposition 2 we obtain that one of the inclusion relations N [ui] ⊆ N [uj ]
or N [ui] ⊇ N [uj] must hold in G. Obviously this is possible if and only if i = j,
for n ≥ 5; this is a contradiction to the assumption that i �= j. Thus, no two
vertices in a hole take the same color in a colinear coloring. Therefore, λ(G) = n.
It suffices to show that χ(G) < n. It is easy to see that for the antihole Cn,
deg(u) = n − 3, for every vertex u ∈ V (G). Brook’s theorem [3] states that for
an arbitrary graph G and for all u ∈ V (G), χ(G) ≤ max{d(u)+1} = (n−3)+1 =
n−2. Therefore, χ(G) ≤ n−2 < n = λ(G). Thus the antihole Cn does not have
the χ-colinear property.

We have showed that the graphs 2K2 and antihole do not have the χ-
colinear property. It follows that any graph that has the χ-colinear property
is (2K2, antihole)-free and, thus, any graph that has the χ-colinear property is
a co-chordal graph. 
�

Although any graph that has the χ-colinear property is co-chordal, the reverse is
not always true. For example, the graph G in Figure 2 is a co-chordal graph but
it does not have the χ-colinear property. Indeed, χ(G) = 4 and λ(G) = 5. It is
easy to see that this graph is also a split graph. Moreover, not any graph that
has the χ-colinear property is a split graph, since the graph C4 has the χ-colinear
property but it is not a split graph. However, there exist split graph which have
the χ-colinear property; an example is the graph C3. Recall that a graph G is a
split graph if there is a partition of the vertex set V (G) = K + I, where K induces
a clique in G and I induces an independent set; split graphs are characterized as
(2K2, C4, C5)-free graphs.

Fig. 2. A graph G which is a split graph but it does not have the χ-colinear property,
since χ(G) = 4 and λ(G) = 5
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1 3

2 3 1 1 2 3 4 4

1 2
P6 and λ(P6) = 4

P6 and χ(P6) = 3

Fig. 3. Illustrating the graph P 6 which does not have the χ-colinear property, since
χ(P 6) �= λ(P6)

We have proved that graphs that satisfy the χ-colinear property do not contain
a 2K2 or an antihole. Note that, since C5 = C5 and also the chordless cycle Cn

is 2K2-free for n ≥ 6, it is easy to see that graphs that have the χ-colinear
property are hole-free. In addition, the graph P 6 does not have the χ-colinear
property (see Figure 3). Thus, we obtain the following result.

Proposition 8. If a graph G satisfies the χ-colinear property, then G is a
(2K2, antihole, P 6)-free graph.

Since graphs having the χ-colinear property are perfect, it follows that any
graph G having the χ-colinear property satisfies χ(GA) = ω(GA) = α(GA),
∀A ⊆ V (G). Therefore, the following result holds.

Proposition 9. A graph G has the α-colinear property if and only if the graph
G has the χ-colinear property.

From Corollary 1, and Proposition 9 we obtain the following characterization.

Proposition 10. The graphs that are characterized by the α-colinear property
are those graphs G for which the colinear chromatic number achieves its theo-
retical lower bound in every induced subgraph of G.

From Corollary 2 and Proposition 9 we can obtain the following result.

Proposition 11. Any quasi-threshold graph has the α-colinear property.

From Propositions 8 and 9 we obtain that graphs that are characterized by the
α-colinear property are (C4, hole, P6)-free. Therefore, the following result holds.

Proposition 12. Any graph that has the α-colinear property is a chordal graph.

Although any graph that has the α-colinear property is chordal, the reverse is
not always true, i.e. not any chordal graph graph has the α-colinear property. For
example, the complement G of the graph illustrated in Figure 2 is a chordal graph
but it does not have the α-colinear property. Indeed, α(G) = 4 and λ(G) = 5.
It is easy to see that this graph is also a split graph. Moreover, not any graph
having the α-colinear property is a split graph, since the graph 2K2 has the
α-colinear property but it is not a split graph. However, there exist split graphs
that have the α-colinear property; an example is the graph C3.
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6 Concluding Remarks

In this paper we introduced the colinear coloring on graphs, proposed a colin-
ear coloring algorithm that can be applied to any graph G, and defined two
graph properties, namely the χ-colinear and α-colinear properties. An interest-
ing question would be to study the graphs that are characterized completely by
the χ-colinear or the α-colinear property. In addition, it would be interesting
to study the relation between the colinear chromatic number and other coloring
numbers such as the harmonious number and the achromatic number on classes
of graphs.
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