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Abstract

A vertex subset D of a graph G is a dominating set if every vertex of G is either in D or is adjacent

to a vertex in D. The paired-domination problem on G asks for a minimum-cardinality dominating

set S of G such that the subgraph induced by S contains a perfect matching; motivation for this

problem comes from the interest in finding a small number of locations to place pairs of mutually

visible guards so that the entire set of guards monitors a given area. The paired-domination

problem on general graphs is known to be NP-complete.

In this paper, we consider the paired-domination problem on permutation graphs. We define an

embedding of permutation graphs in the plane which enables us to obtain an equivalent version of

the problem involving points in the plane, and we describe a sweeping algorithm for this problem;

given the permutation over the set Nn = {1, 2, . . . , n} defining a permutation graph on n vertices,

our algorithm computes a paired-dominating set of the graph in O(n) time, and is therefore

optimal.

Keywords: permutation graphs, paired-domination, domination, algorithms, complexity.

1 Introduction

A subset D of vertices of a graph G is a dominating set if every vertex of G either belongs to D or is
adjacent to a vertex in D; the minimum cardinality of a dominating set of G is called the domination
number of G and is denoted by γ(G). The problem of computing the domination number of a graph has
received and keeps receiving considerable attention by many researchers (see [10] for a long bibliography
on domination). The problem finds many applications, most notably in relation to area monitoring
problems by the minimum number of guards: the potential guard locations are vertices of a graph in
which two locations are adjacent if a guard in one of them monitors the other; then, the minimum
dominating set of the graph determines the locations to place the guards.

The domination problem admits many variants; the most basic ones include: domination, edge
domination, weighted domination, independent domination, connected domination, total/open domi-
nation, locating domination, and paired-domination [10, 11, 12, 13, 17, 29]. Among these, we will focus
on paired-domination: a vertex subset S of a graph G is a paired-dominating set if it is a dominating
set and the subgraph induced by the set S has a perfect matching; the minimum cardinality of a
paired-dominating set in G is called the paired-domination number and is denoted by γp(G). Paired-
domination was introduced by Haynes and Slater [12]; their motivation came from the variant of the
area monitoring problem in which each guard has another guard as a backup (i.e., we have pairs of
guards protecting each other). Haynes and Slater noted that every graph with no isolated vertices
has a paired-dominating set (on the other hand, it easily follows from the definition that a graph
with isolated vertices does not have a paired-dominating set). Additionally, they showed that the
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paired-domination problem is NP-complete on arbitrary graphs; thus, it is of theoretical and practical
importance to find classes of graphs for which this problem can be solved in polynomial time and to
describe efficient algorithms for its solution.

Trees have been one of the first targets of researchers working on paired-domination: Qiao et al.
[21] presented a linear-time algorithm for computing the paired-domination number of a tree and
characterized the trees with equal domination and paired-domination number; Henning and Plummer
[15] characterized the set of vertices of a tree that are contained in all, or in no minimum paired-
dominating sets of the tree. Kang et al. [16] considered “inflated” graphs (for a graph G, its inflated
version is obtained from G by replacing each vertex of degree d in G by a clique on d vertices), gave
an upper and a lower bound for the paired-domination number of the inflated version of a graph, and
described a linear-time algorithm for computing a minimum paired-dominating set of an inflated tree.
Bounds for the paired-domination number have been established also for claw-free cubic graphs [8], for
cartesian products of graphs [3], and for generalized claw-free graphs [6]. Very recently, Cheng et al.
[5] gave an O(n + m)-time algorithm for computing a paired-dominating set of an interval graph on
n vertices and m edges, when an interval model for the graph with endpoints sorted is available; they
also extended their result to circular-arc graphs giving an algorithm running in O(m(m + n)) time in
this case.

We consider the class of permutation graphs, a well-known subclass of perfect graphs. Given
a permutation π = (π1, π2, . . . , πn) over the set Nn = {1, 2, . . . , n}, we define the n-vertex graph
G[π] with vertex set V (G[π]) = Nn and edge set E(G[π]) such that ij ∈ E(G[π]) if and only if
(i− j)(π−1

i − π−1
j ) < 0, for all i, j ∈ V (G[π]), where π−1

i is the index of the element i in π. A graph G

on n vertices is a permutation graph if there exists a permutation π on Nn such that G is isomorphic
to G[π] (the graph G[π] is also known as the inversion graph of G [9]). We, therefore, assume in this
paper that a permutation graph G[π] is represented by the corresponding permutation π; see [9].

A lot of research work has been devoted to the study of permutation graphs, and several algorithms
have been proposed for recognizing permutation graphs and for solving combinatorial and optimization
problems on them. Pnueli et al. [20] gave an O(n3)-time algorithm for recognizing permutation graphs
using the transitive orientable graph test, where n is the number of vertices of the given graph. Later,
Spinrad [24] improved their results by designing an O(n2)-time algorithm for the same problem. In
the same paper, Spinrad also proposed an algorithm that determines whether two permutation graphs
are isomorphic in O(n2) time. In [25], Spinrad et al. proved that a bipartite permutation graph can
be recognized in linear time by using some nice algorithmic properties of such a graph; they also
studied other combinatorial and optimization problems on permutation graphs. Supowit [27] solved
the coloring problem, the maximum clique problem, the clique cover problem, and the maximum
independent set problem, all in O(n log n) time. Nikolopoulos et al. [19] studied the behavior of the
on-line coloring algorithm First-Fit (FF) on the class of permutation graphs and proved that this class
of graphs is not FF-bounded. We also note that many parallel algorithms have also been proposed for
the recognition problem and various optimization problems on permutation graphs; see [14, 18, 22].

Several variants of the domination problem have been considered on permutation graphs. Far-
ber and Keil [7] solved the weighted domination problem and the weighted independent domination
problem in O(n3) time, using dynamic programming techniques. Later, Brandstadt and Kratsch [2]
published an O(n2)-time algorithm for the weighted independent domination problem. Atallah et
al. [1] solved the independent domination problem in O(n log2 n) time, while Tsai and Hsu [28] solved
the domination problem and the weighted domination problem in O(n log log n) time and O(n2 log2 n)
time, respectively. Rhee et al. [23] described an O(n + m)-time algorithm for the minimum-weight
domination problem, where m is the number of edges of the given graph. Finally, Chao et al. [4]
gave an O(n)-time algorithm for the minimum cardinality domination problem. On bipartite permu-
tation graphs, Srinivasan et al. [26] described and O(mn+n2)-time algorithm for the edge domination
problem.

In this paper, we study the paired-domination problem on permutation graphs. We define an em-
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Figure 1: (a) The embedding of the permutation graph corresponding to the
permutation (4, 2, 6, 1, 9, 3, 7, 5, 12, 11, 8, 10); (b) A minimum paired-dominating set.

bedding of permutation graphs in the plane and show that every permutation graph G with no isolated
vertices admits a minimum-cardinality paired-dominating set of a particular form in the embedding
of G. We take advantage of this property to describe an algorithm which “sweeps” the vertices of the
embedding from left to right and computes a minimum-cardinality paired-dominating set if such a set
exists (”sweeping” is a well-known technique of computational geometry); given the permutation over
the set Nn = {1, 2, . . . , n} defining a permutation graph on n vertices, our algorithm runs in O(n) time
using O(n) space, and is therefore optimal.

2 Theoretical Framework

We consider finite undirected graphs with no loops or multiple edges; for a graph G, we denote its
vertex and edge set by V (G) and E(G), respectively.

Let π = (π1, π2, . . . , πn) be a permutation over the set Nn = {1, 2, . . . , n}. A subsequence of π is
a sequence α = (πi1 , πi2 , . . . , πik

) such that i1 < i2 < · · · < ik. If, in addition, πi1 < πi2 < · · · < πik
,

then we say that α is an increasing subsequence of π.
A left-to-right maximum of π is an element πi, 1 ≤ i ≤ n, such that πi > πj for all j < i. The first

element in every permutation is a left-to-right maximum. If the largest element is the first, then it is the
only left-to-right maximum; otherwise there are at least two (the first and the largest). The increasing
subsequence α = (πi1 , πi2 , . . . , πik

) is called a left-to-right maxima subsequence if it consists of all the
left-to-right maxima of π; clearly, πi1 = π1. For example, the left-to-right maxima subsequence of the
permutation (4, 2, 6, 1, 9, 3, 7, 5, 12, 11, 8, 10) is (4, 6, 9, 12).

The right-to-left minima subsequence of π is defined analogously: α′ = (πj1 , πj2 , . . . , πjk′ ) is called
a right-to-left minima subsequence if it is an increasing subsequence and consists of all the right-to-left
minima of π, where an element πi, 1 ≤ i ≤ n, is a right-to-left minimum if πi < πj for all j > i. The
last element in every permutation is a right-to-left minimum, and thus πjk′ = πn. For the permutation
(4, 2, 6, 1, 9, 3, 7, 5, 12, 11, 8, 10), the right-to-left minima subsequence is (1, 3, 5, 8, 10).

We will also be considering points in the plane. For such a point p, we denote by x(p) and y(p) the
x- and y-coordinate of p, respectively.

An embedding of permutation graphs. Given a permutation π over the set Nn = {1, 2, . . . , n},
we define and use an embedding of the vertices of the permutation graph G[π] in the plane based on
the mapping:

vertex corresponding to the integer i −→ point pi = (i, n + 1− π−1
i ); (1)

3



the x-coordinate is identical to the integer corresponding to the vertex of the graph, while an appro-
priate distinct y-coordinate is added by the mapping of Eq. (1). Because of this, all the points pi,
1 ≤ i ≤ n, are located in the first quadrant of the cartesian coordinate system and no two such points
have the same x- or the same y-coordinate (see Figure 1(a)). Let Pπ = {p1, p2, . . . , pn}. (Similar repre-
sentations have been used by other authors as well; see [1, 19].) The adjacency condition ij ∈ E(G[π])
iff (i− j)(π−1

i − π−1
j ) < 0 (for all i, j ∈ Nn) for the permutation graph G[π] implies that two points pi

and pj are adjacent iff
(
x(pi)− x(pj)

) · (y(pi)− y(pj)
)

> 0, i.e., the one of the points is below and to
the left of the other. Thus, all the edges have a down-left to up-right direction (Figure 1(a)).

Due to the bijection between the vertices of the permutation graph and the points pi, with a slight
abuse of notation, in the following, we will regard the points pi as the vertices of the permutation graph.

In terms of the above embedding, the notions of vertex domination, left-to-right-maxima, and
right-to-left minima become as follows:

• A vertex pi dominates all vertices p ∈ Pπ such that
(
x(p)− x(pi)

) · (y(p)− y(pi)
) ≥ 0, i.e., p is

either below and to the left or above and to the right of pi (the shaded area in Figure 2 (left)).
Then, a pair of adjacent vertices pi, pj dominate all the vertices in the portion of the plane

{ q ∈ R2 | (
x(q)− x(pi)

) · (y(q)− y(pi)
) ≥ 0 or

(
x(q)− x(pj)

) · (y(q)− y(pj)
) ≥ 0 }

(this is the shaded area in Figure 2 (right)); if the edge connecting pi, pj is e, we will say that
this portion of the plane is covered by e, and we will denote it by C(e). The part of the plane
not covered by e consists of two disjoint open quadrants, one occupying the upper left corner
and the other the bottom right corner; the latter will be important for our algorithm and we will
denote it by Q(e).

• A left-to-right maximum of a permutation π defining a permutation graph is mapped to a ver-
tex p ∈ Pπ that is a vertex of the upper envelope of the pointset Pπ (i.e., there does not exist
a point q ∈ Pπ − {p} for which x(p) ≤ x(q) and y(p) ≤ y(q)1. For example, the 4 left-to-right
maxima of the permutation defining the graph of Figure 1(a) correspond to the vertices (4, 12),
(6, 10), (9, 8), and (12, 4). Similarly, a right-to-left minimum is mapped to a vertex p ∈ Pπ that
is a vertex of the lower envelope of the pointset Pπ (i.e., there does not exist a point q ∈ Pπ−{p}
for which x(p) ≥ x(q) and y(p) ≥ y(q)); the 5 right-to-left minima of the graph of Figure 1(a)
correspond to the vertices (1, 9), (3, 7), (5, 5), (8, 2), and (10, 1) of the lower envelope of Pπ. For
convenience, each vertex in Pπ corresponding to a left-to-right-maximum (right-to-left minimum,
resp.) of a permutation π will be called left-to-right-maximum (right-to-left minimum, resp.) as
well.

Finally, the following result helps us focus on solutions to the paired-domination problem on per-
mutation graphs which are of a particular form, thus enabling us to obtain an efficient algorithm.

Lemma 2.1 Let G be an embedded permutation graph with no isolated vertices whose vertex set is
Pπ = {p1, p2, . . . , pn} (determined by the mapping in Eq. (1)), and let u1, u2, . . . , u` (v1, v2, . . . , v`′ ,
resp.) be the left-to-right maxima (right-to-left minima, resp.) in Pπ in order from left to right.
Then, for any set A of edges of G whose endpoints dominate the entire vertex set Pπ, there exists a
matching M of edges of G such that
• the endpoints of the edges in M dominate the entire Pπ,
• |M | ≤ |A|, and
• M = {vs1ut1 , vs2ut2 , . . . , vs|M|ut|M|} where s1 < s2 < . . . < s|M | ≤ `′ and t1 < t2 < . . . < t|M | ≤ `

(i.e., M is a matching which dominates Pπ and consists of at most |A| non-crossing edges each of
which connects a left-to-right maximum to a right-to-left minimum of Pπ).

1 When such inequalities hold for the coordinates of two points p and q, it is often said that q dominates p; however,

we will avoid using this term so that there is no confusion with the notion of vertex domination which is central to our

work.
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(The proof of the lemma can be found in the Appendix.) Lemma 2.1 readily implies the following
corollary.

Corollary 2.1 Let G be an embedded permutation graph with no isolated vertices whose vertex set is
Pπ = {p1, p2, . . . , pn}. Then, G has a paired-dominating set of minimum cardinality whose induced
subgraph admits a perfect matching consisting of non-crossing edges of G each of which connects a
left-to-right maximum to a right-to-left minimum.

Such a matching is of the form shown in Figure 1(b). As the edges in such a matching do not cross,
they exhibit an ordering from up-left to bottom-right. The following observation pertaining to two
non-crossing edges will be very useful:

Observation 2.1 Let G be an embedded permutation graph with vertex set Pπ = {p1, p2, . . . , pn}, and
let e and e′ be two edges which are incident on a left-to-right maximum and a right-to-left minimum,
and do not cross in the embedding of G (see Figure 1(b)). If e is to the left of e′, then for every
vertex pi ∈ Pπ for which pi 6∈ C(e) ∪Q(e), it holds that pi 6∈ C(e′) ∪Q(e′).

3 The Algorithm

As mentioned, Corollary 2.1 implies that for every permutation graph with no isolated vertices there
exists a minimum-cardinality paired-dominating set whose induced embedded subgraph admits a per-
fect matching of the form shown in Figure 1(b); for any given permutation graph G, our algorithm
precisely computes a minimum matching M of (the embedded) G of this form whose endpoints domi-
nate all the vertices of G. As the edges in such a matching exhibit an ordering from left to right, our
algorithm works by identifying candidates for each edge in M in order from left to right.

In particular, regarding the leftmost edge in M , Observation 2.1 implies that

• for each candidate e for the leftmost edge, every vertex in Pπ not dominated by the endpoints
of e has to lie in the bottom-right non-covered quadrant Q(e) of e, i.e,

(
R2 − C(e)

) ∩ Pπ = Q(e) ∩ Pπ. (2)

Furthermore, in order to obtain a minimum-size set M , we additionally require that

• the non-covered part Q(e) of the plane be minimized.

In order to formalize the latter condition, we give the following definition of redundant edges.

Definition 3.1 Let G be an embedded permutation graph, Q an open quadrant (bounded only from
above and left) which we wish to cover, and X = { e ∈ E(G) | (

Q− C(e)
) ∩ Pπ = Q(e) ∩ Pπ }. Then,

we say that an edge d ∈ X is redundant if there exists another edge d′ ∈ X such that Q(d) ⊂ Q(d′).
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For example, in Figure 3, the edges e1 and e2 are redundant in light of e3.
We note that we are interested in minimizing the non-covered part of the plane rather than min-

imizing the number of points that are not dominated. In light of Definition 3.1, the fact that we are
interested in edges e that minimize the non-covered part Q(e) of the plane is rephrased into that we
are interested in edges e that are not redundant. The following lemma enables us to identify redundant
edges among edges incident on a left-to-right maximum and a right-to-left minimum (see Figure 3):

Lemma 3.1 Let G be an embedded permutation graph and let u1, u2, . . . , u` (v1, v2, . . . , v`′ , resp.) be
the left-to-right maxima (right-to-left minima, resp.) among the vertices of G in order from left to
right. Moreover, let A be a subset of edges of G which cover the plane except for an open quadrant Q

(bounded only from above and left), and X = { e ∈ E(G)−A | (
Q−C(e)

) ∩ Pπ = Q(e) ∩ Pπ }. Then,
if X contains an edge d = viuj, any edge vi′uj′ ∈ X − {d} such that i′ ≤ i and j′ ≤ j is redundant.

Lemma 3.1 implies that for two edges viuj and vi′uj′ to be non-redundant, it has to be the case that
(i′ − i) · (j′ − j) < 0, that is, the edges form a crossing pattern like the one shown in Figure 4.

We give next an outline of our algorithm for computing a minimum matching M such that the
edges in M are of the form shown in Figure 1(b) and their endpoints dominate all the vertices of the
given permutation graph G. The algorithm identifies the non-redundant candidates for the leftmost
edge of M and constructs a set E1 = {e1,1, e1,2, . . . , e1,h1} of all these candidates. In the general step,
we have a set Ei = {ei,1, ei,2, . . . , ei,hi} of candidates for the i-th edge of the matching M . Then,
the algorithm constructs the set Ei+1 of candidates for the (i + 1)-st edge by selecting among the
edges in { e ∈ (

E(G) − ⋃i
r=1 Er

) | ∃ j such that
(
Q(ei,j) − C(e)

) ∩ Pπ = Q(e) ∩ Pπ } those that are
non-redundant. The algorithm uses two arrays Ax[ ] and Ay[ ] in which it stores the elements of
the set Pπ by increasing x-coordinate and by decreasing y-coordinate, respectively, and two arrays
lrmax above[ ] and rlmin left[ ] such that for a vertex p ∈ Pπ, lrmax above[p] (rlmin left[p], resp.)
stores the lowest left-to-right maximum (rightmost right-to-left minimum, resp.) above (to the left,
resp.) of p. Additionally, each collected candidate edge e ∈ Ei+1 (i > 1) has a pointer back which
points to an edge e′ ∈ Ei such that

(
Q(e′)−C(e)

)∩Pπ = Q(e)∩Pπ; these back-pointers help us collect
the matching M that we seek.

Algorithm Permut Paired-Domination

Input : a permutation π over the set Nn = {1, 2, . . . , n} defining a permutation graph G

Output : a solution to the paired-domination problem on G

1. Compute the set Pπ of points corresponding to the vertices of the graph G based on the mapping
in Eq. (1);
for i = 1, 2, . . . , n do

Ax[i] ← pi; {Ax stores Pπ sorted by increasing x-coordinate}
Ay[π−1(i)] ← pi; {Ay stores Pπ sorted by decreasing y-coordinate}

using the array Ay[ ], compute the left-to-right maxima (u1, u2, . . . , u`) of Pπ as well as the
contents of the array lrmax above[ ]; similarly, using the array Ax[ ], compute the right-to-left
minima (v1, v2, . . . , v`′) of Pπ and the contents of the array rlmin left[ ];
if there exists a point which is both a left-to-right maximum and a right-to-left minimum
then print(“There exist isolated vertices; the graph has no paired-dominating set”);

exit;

2. Compute the set E1 = {e1,1, e1,2, . . . , e1,h1} of candidates for the leftmost edge in a minimum
matching with endpoints that dominate all the vertices of the graph G;

3. i ← 1;
while each of the (non-covered) quadrants Q(ei,1), Q(ei,2), . . . , Q(ei,hi) of the edges ei,1, ei,2, . . . , ei,hi

contains at least one point of Pπ do
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3.1. compute the set Ei+1 = {ei+1,1, ei+1,2, . . . , ei+1,hi+1} of candidates for the (i + 1)-st edge
in a minimum matching (with endpoints dominating all the vertices of G), where each
edge ei+1,j (1 ≤ j ≤ hi+1) points to one edge in Ei (by means of a pointer back);
i ← i + 1;

4. let ei,ji be the element of Ei such that the quadrant Q(ei,ji) is empty;
M ← {ei,ji

};
for t = i, i− 1, . . . , 2 do

et−1,jt−1 ← the edge in Et−1 pointed to by the back pointer of et,jt
;

include et−1,jt−1 in the set M ;

5. Report the x-coordinates of the endpoints of the edges in M as a solution to the paired-domination
problem on the graph G.

The correctness of Algorithm Permut Paired-Domination follows from the correctness of Proce-
dures Compute E1 and Compute Ei+1 and is established by induction on the size of any solution to
the paired-domination problem on the input permutation graph G.

We give below the description of Procedure Compute LRMaxima for computing the left-to-right
maxima and for updating the contents of array lrmax above[ ]; the procedure for computing the right-
to-left minima and for updating the contents of array rlmin left[ ] is similar. In the next paragraphs,
we describe how we execute Steps 2 and 3.1.

Procedure Compute LRMaxima

1. p ← Ay[1]; {Ay stores Pπ sorted by decreasing y-coordinate}
W ← list containing a single node storing p; {W will store the left-to-right maxima}
lrmax above[p] ← NIL; {indicates that p is a left-to-right maximum}
x max ← x(p);
lowest lrmaximum ← p; {lowest left-to-right maximum seen so far}
for i = 2, 3, . . . , n do

p ← Ay[i];
if x(p) > x max

then {point p is a left-to-right maximum}
insert point p at the end of the list W ;
lrmax above[p] ← NIL;
x max ← x(p);
lowest lrmaximum ← p; {update lowest left-to-right maximum seen so far}

else lrmax above[p] ← lowest lrmaximum;

3.1 Computing the set E1

The goal in the construction of the set E1 is that each edge e ∈ E1 is incident on a left-to-right
maximum and a right-to-left minimum, is not redundant, and satisfies Eq. (2). For the construction
of E1, we take advantage of the following lemma:

Lemma 3.2 Let G be an embedded permutation graph with no isolated vertices whose vertex set is
Pπ = {p1, p2, . . . , pn}, and let u1, u2, . . . , u` (v1, v2, . . . , v`′ , resp.) be the left-to-right maxima (right-
to-left minima, resp.) in Pπ in order from left to right. If rlmin left[u1] = vr, we have:

(i) Consider vi, where i = 1, 2, . . . , r, and let p(vi) be the highest among the points in Pπ with x-
coordinate ≤ x(vi), and uqi = lrmax above[p(vi)]. Then, for any edge eq = viuq with 1 ≤ q ≤ qi,
it holds that

(
R2−C(eq)

)∩Pπ = Q(eq)∩Pπ; this equality does not hold for any edge eq = viuq

with q > qi.
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(ii) Among the edges referred to in the statement (i) of the lemma, the edges viuq (where 1 ≤ q < qi)
are all redundant in light of the existence of the edge viuqi

.

(iii) No edge e incident on a right-to-left minimum to the right of vr satisfies Eq. (2).

In Figure 1(a), v1 = (1, 9), v2 = (3, 7), and vr = v2; so, the edges considered are v1u1, v1u2, v2u1

(where u1 = (4, 12) and u2 = (6, 10)), among which v1u1 is redundant. We give below the outline of
this procedure: in Step 1, we use Lemma 3.2 to construct a list L of edges satisfying Eq. (2) where
L contains exactly one edge incident on each right-to-left minimum to the left of u1; in Step 2, we
obtain the desired set E1 by removing all the redundant edges from L. For the correctness of Step 2,
it is important to note that because the y-coordinate of point highest p never decreases during the
execution of Step 1, the edges vsiuti and vsj utj located in the i-th and j-th node of the list L (for any
i < j) have si < sj and ti ≥ tj .

Procedure Compute E1

1. p ← Ax[1]; {the leftmost point}
L ← a list containing a single node storing the edge connecting p to lrmax above[p];
highest p ← p; {the highest point seen so far}
i ← 2;
while Ax[i] does not coincide with the leftmost left-to-right maximum u1 do

p ← Ax[i];
if p is a right-to-left minimum
then insert at the end of L the edge connecting p to lrmax above[highest p];
if y(p) > y(highest p)
then highest p ← p; {update highest point seen so far}
i ← i + 1;

2. E1 ← ∅;
let the list L contain the edges e1, e2, . . . , e|L| in order and suppose that ei = vsiuti , where vsi is
a right-to-left minimum and uti is a left-to-right maximum;
i ← 1; {i indicates the position in L of edge checked for inclusion in E1}
while i < |L| do

j ← i + 1;
while j <= |L| and utj = uti do

j ← j + 1; {ignore all edges incident on the same left-to-right maximum except...}
add the edge ej−1 in E1 with its back-pointer pointing to NIL; {...for the last one}
i ← j;

if i = |L| {i = |L| ⇐⇒ e|L|−1 is the last edge included in E1 and ut|L|−1 6= ut|L|}
then add the edge e|L| in E1 with its back-pointer pointing to NIL;

The correctness of Step 1 follows from Lemma 3.2; in accordance with statement (ii), for each vi, we
consider only the edge viuqi where uqi = lrmax above[p(vi)]. The correctness of Step 2 follows from
Lemma 3.1; the edges in the resulting set E1 form a crossing pattern like the one shown in Figure 4.

3.2 Computing the set Ei+1 from Ei

Let Ei = {ei,1, ei,2, . . . , ei,h} be the set of candidate edges for the i-th edge in a minimum matching M

such that the edges in M are of the form shown in Figure 1(b) and their endpoints dominate all the
vertices of the given permutation graph G. For the construction of Ei+1, we are interested in non-
redundant edges e incident on a left-to-right maximum and on a right-to-left minimum such that there
exists ei,j ∈ Ei for which (

Q(ei,j)− C(e)
) ∩ Pπ = Q(e) ∩ Pπ. (3)
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Figure 4: Ei+1 = {va+1ua′+4, va+2ua′+2, vcua′+1}; redundant candidates: vaua′+4, vbua′+1, va+4ua′+1.

(Eq. (3) follows from Observation 2.1 as no edge to the right of e can dominate a vertex not in
C(e) ∪Q(e).) In order to find such edges, we take advantage of the following lemma:

Lemma 3.3 Let G be an embedded permutation graph with no isolated vertices whose vertex set is
Pπ = {p1, p2, . . . , pn}, and let u1, u2, . . . , u` (v1, v2, . . . , v`′ , resp.) be the left-to-right maxima (right-
to-left minima, resp.) in Pπ in order from left to right. Suppose further that the set Ei contains
the edges ei,1, ei,2, . . . , ei,h where ei,j = vsj utj . If rlmin left[ut1 ] = va, lrmax above[vsh

] = ua′ ,
rlmin left[ua′ ] = vb, and rlmin left[ua′+1] = vc (see Figure 4), we have:

(i) The edge connecting va to lrmax above[va] satisfies Eq. (3) for j = 1.

(ii) Consider vk, where k = a+1, a+2, . . . , b. Let Q(ei,r) be a quadrant that contains a point p ∈ Pπ

such that x(p) < x(vk) and y(p) > y(vsh
). If Eq. (3) is satisfied for Q(ei,j) = Q(ei,r) and an

edge e incident on vk, then Eq. (3) is also satisfied for Q(ei,j) = Q(ei,h) and that edge e.

(iii) Consider vk, where k = a + 1, a + 2, . . . , b. Suppose that there exist quadrants Q( ) of edges
in Ei that do not contain points p ∈ Pπ such that x(p) < x(vk) and y(p) > y(vsh

); let Q(ei,r)
be the rightmost among these quadrants (i.e., its left side is to the right of the left sides of the
other quadrants), and let uqk

= lrmax above[p(vk)] where p(vk) is the highest point in Pπ which
belongs to Q(ei,r) and is not to the right of vk. Then, Eq. (3) is satisfied for Q(ei,j) = Q(ei,r)
and the edge e = vkuqk

; this does not hold for any edge e = vkuq with q > qk.

(iv) Consider vk, where k = b + 1, b + 2, . . . , c. Suppose that there exists a quadrant Q(ei,r) that
contains no points p ∈ Pπ such that y(p) > y(ua′+1), and let uqk

= lrmax above[p(vk)] where
p(vk) is the highest point in Pπ which belongs to Q(ei,r) and is not to the right of vk. Then,
Eq. (3) is satisfied for Q(ei,j) = Q(ei,r) and the edge e = vkuqk

; this does not hold for any edge
eq = vkuq with q > qk.

(v) Each edge incident on a right-to-left minimum to the left of va is redundant. Moreover, if every
quadrant Q( ) contains points p ∈ Pπ such that y(p) > y(ua′+1), then for any edge e incident
on a right-to-left minimum to the right of vb, there does not exist ei,r ∈ Ei such that e satisfies
Eq. (3) for Q(ei,j) = Q(ei,r); if there exists a quadrant Q( ) containing no points p ∈ Pπ such
that y(p) > y(ua′+1), then for any edge e incident on a right-to-left minimum to the right of vc,
there does not exist ei,r ∈ Ei such that e satisfies Eq. (3) for Q(ei,j) = Q(ei,r).

Statement (ii) follows from the fact that if Eq. (3) is satisfied for Q(ei,j) = Q(ei,r) and an edge e =
vkuk′ , then y(uk′) > y(vsh

). As an example for statement (iii), consider vk = va+2 in Figure 4: then all
4 quadrants Q(ei,1), . . . , Q(ei,4) contain no points p ∈ Pπ such that x(p) < x(vk) and y(p) > y(vsh

); the
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rightmost quadrant Q(ei,r) is Q(ei,1), p(vk) = q, and uqk
= ua′+2. As an example for statement (iv), we

may consider vk = va+4 or vc in Figure 4: in either case, Q(ei,r) = Q(ei,4), p(vk) = p, and uqk
= ua′+1.

Our procedure for computing Ei+1 takes advantage of Lemma 3.3. In Step 1, it constructs a list L

containing at most one edge incident on each of the right-to-left minima from va (inclusive) to vb

(inclusive) and potentially to vc (inclusive) depending on whether the conditions of statement (iv) of
the lemma hold. The procedure processes the points in Pπ from left to right, and maintains among
the quadrants whose left side is not to the right of the point currently being processed (which we will
call active quadrants) only those that do not contain any point above the line y = y(vsh

); in light of
statement (ii), the quadrants containing points above the line y = y(vsh

) do not provide solutions in
addition to those from Q(ei,h). Note that if the currently processed point belongs to a quadrant Q( ),
it also belongs to the active quadrants whose left side is to the right of the left side of Q( ). Thus, the
procedure stores the active quadrants in a stack S in order from left to right (the rightmost is at the
top of the stack); for each such quadrant Q(ei,j), the stack stores ei,j (field edge), the y-coordinate
of the line bounding Q(ei,j) from above (field top edge y), and the highest point in Q(ei,j)− R (field
highest p) where R either is the quadrant stored in the stack record immediately above the record
storing Q(ei,j) or is the halfplane to the right of the point that is currently being processed if Q(ei,j)
is at the top of S. The initialization of the list L implements statement (i) of Lemma 3.3, Step 1.2
implements statement (ii) (quadrants containing points above the line y = y(vsh

) are popped from the
stack), Step 1.4 implements statement (iii), and Step 1.5 implements statement (iv). Step 2 removes
any redundant edges. (By top(S) we denote the record at the top of the stack S and by top(S).edge,
top(S).highest p, and top(S).top edge y the values of its fields edge, highest p, and top edge y.)

Procedure Compute Ei+1

1. let the set Ei contain the edges ei,1, ei,2, . . . , ei,h where ei,j = vsj utj with vsj (utj , resp.) being
right-to-left minima (left-to-right maxima, resp.) (note that ∀ j < j′, sj < sj′ and tj > tj′);
let the right-to-left minimum rlmin left[ut1 ] be va (i.e., va = rlmin left[ut1 ]);
L ← a list containing a single node storing the edge connecting va to lrmax above[va] with its
back-pointer pointing to the edge ei,1;
S ← empty stack;
for each point p ∈ Pπ from uth

to lrmax above[vsh
] in order of increasing x-coordinate do

if p = utj for an edge ei,j = vsj utj ∈ Ei

1.1 then create a stack record storing edge ← ei,j , highest p ← NIL, and top edge y ← y(vsj );
push the record in the stack S;

else if y(p) > y(vsh
)

1.2 then q ← top(S).highest p;
while y(p) < top(S).top edge y do

if q = NIL or
(
top(S).highest p 6= NIL and y(top(S).highest p) > y(q)

)

then q ← top(S).highest p; {q: highest highest p of popped quadrants}
pop the record at the top of S;

top(S).highest p ← q;
1.3 else if top(S).highest p = NIL or y(p) > y(top(S).highest p)

then top(S).highest p ← p; {update highest point}
if p is a right-to-left minimum to the right of va

1.4 then add the edge connecting p to lrmax above[top(S).highest p] at the end of
the list L with its back-pointer pointing to the edge top(S).edge ∈ Ei;

if top(S).highest p = NIL or y(top(S).highest p) < y(ua′+1) where ua′ = lrmax above[vsh
]

then for each p ∈ Pπ : x(ua′) < x(p) ≤ x(ua′+1) in order of increasing x-coordinate do
1.5 if top(S).highest p = NIL or y(p) > y(top(S).highest p)

then top(S).highest p ← p; {update highest point}
if p is a right-to-left minimum
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then add the edge connecting p to lrmax above[top(S).highest p] at the end of the
list L with its back-pointer pointing to the edge top(S).edge ∈ Ei;

2. perform Step 2 of procedure Compute E1 to remove redundant edges from the list L;

Note that after a record has been pushed in the stack S (which happens in the first iteration of the
for-loop), the stack is never empty because the record corresponding to the edge ei,h is never popped
during Step 1.2. For the case shown in Figure 4, at the end of Step 1, the list L contains the edges
vaua′+4, va+1ua′+4, va+2ua′+2, vbua′+1, va+4ua′+1, and vcua′+1.

3.3 Complexity of Algorithm Permut Paired-Domination

Regarding the time and space complexity of the Algorithm Permut Paired-Domination (the anal-
ysis is given in the Appendix ), the following theorem holds:

Theorem 3.1 Let G be a permutation graph with no isolated vertices determined by a permutation π

over the set Nn. Then, given π, Algorithm Permut Paired-Domination computes a minimum-
cardinality paired-dominating set of G in O(n) time using O(n) space.
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APPENDIX

Proof of Lemma 2.1

Lemma 2.1 Let G be an embedded permutation graph with no isolated vertices whose vertex set is
Pπ = {p1, p2, . . . , pn} (determined by the mapping in Eq. (1)), and let u1, u2, . . . , u` (v1, v2, . . . , v`′ ,
resp.) be the left-to-right maxima (right-to-left minima, resp.) in Pπ in order from left to right. Then,
for any set A of edges of G whose endpoints dominate the entire vertex set Pπ, there exists a matching M

of edges of G such that
• the endpoints of the edges in M dominate the entire Pπ,
• |M | ≤ |A|, and
• M = {vs1ut1 , vs2ut2 , . . . , vs|M|ut|M|} where s1 < s2 < . . . < s|M | ≤ `′ and t1 < t2 < . . . < t|M | ≤ `

(i.e., M is a matching which dominates Pπ and consists of at most |A| non-crossing edges each of
which connects a left-to-right maximum to a right-to-left minimum of Pπ).

Proof: First, we replace each edge pipj ∈ A (i < j) that does not connect a left-to-right maximum to
a right-to-left minimum of Pπ by an edge pi′pj′ (i′ < j′) that does so: if pi is a right-to-left minimum,
then pi′ = pi, otherwise pi′ is a right-to-left minimum that is adjacent to pi (such a point always exists);
similarly, if pj is a left-to-right maximum, then pj′ = pj , otherwise pj′ is a left-to-right maximum that
is adjacent to pj . The replacement of edges in A yields an equal-cardinality set A′ of edges which are
incident on a left-to-right maximum and a right-to-left minimum, and whose endpoints dominate G;
yet, the edges in A′ do not necessarily form a matching.

Next, let us collect the endpoints of the edges in A′ which are right-to-left minima and let V =
(vs′1 , vs′2 , . . . , vs′|A|

) be the ordering of these endpoints from left to right (i.e., s′1 ≤ s′2 ≤ . . . ≤ s′|A|).
We work similarly with the endpoints which are left-to-right maxima and let their ordering from left
to right be U = (ut′1 , ut′2 , . . . , ut′|A|

). We show that for each i = 1, 2, . . . , |A|, the points vs′i and ut′i are
adjacent. Let vs′j ut′i be the edge in the set A′ that contributed the endpoint ut′i ; we distinguish the
following cases:

• j = i: Trivially true.

• j < i: Then, y(vs′i) ≤ y(vs′j ) < y(ut′i). Moreover, since there exist i − 1 edge endpoints to the
left of ut′i in the ordering U and i − 2 edge endpoints, other than vs′j to the left of vs′i in the
ordering V, there exists an edge vs′hut′

h′
in A′ with h′ < i < h (Figure 5(a)). This implies that

x(vs′i) ≤ x(vs′h) < x(ut′
h′

) ≤ x(ut′i). The two inequalities relating the coordinates of the points
vs′i and ut′i imply that these two points are adjacent.
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Figure 5: For the proof of Lemma 2.1: (a) the case for j < i; (b) the case for j > i.
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• j > i: Then, x(vs′i) ≤ x(vs′j ) < x(ut′i). Moreover, since there exist n − i edge endpoints to the
right of ut′i in the ordering U and n− i− 1 edge endpoints, other than vs′j to the right of vs′i in
the ordering V, there exists an edge vs′hut′

h′
in A′ with h < i < h′ (Figure 5(b)). This implies

that y(vs′i) ≤ y(vs′h) < y(ut′
h′

) ≤ y(ut′i). Again, the two inequalities relating the coordinates of
the points vs′i and ut′i imply that these two points are adjacent.

Thus, we consider the set of edges {vs′1ut′1 , vs′2ut′2 , . . . , vs′|A|
ut′|A|

} whose endpoints dominate all the
vertices of G; next, from this set, we remove any duplicate edges and let the resulting set of edges be
A′′ = {vs′′1 ut′′1 , vs′′2 ut′′2 , . . . , vs′′|A′′|

ut′′|A′′|
} where |A′′| ≤ |A|.

Finally, we construct the desired matching M (which initially is equal to the empty set) by pro-
cessing the edges vs′′i ut′′i of the set A′′ for i = 1, 2, . . . , |A′′| in order as follows: If i = |A′′| or both
vs′′i 6= vs′′i+1

and ut′′i 6= ut′′i+1
, then we include the edge vs′′i ut′′i in M and proceed with the next edge, if

one exists. If vs′′i = vs′′i+1
, let ji ≥ i + 1 be such that vs′′i = vs′′i+1

= . . . = vs′′ji
and either ji = |A′′| or

vs′′ji+1
6= v′′si

(i.e., vs′′i , vs′′i+1
, . . . , vs′′ji

is a maximal subsequence of values equal to vs′′i in the ordered
sequence of the endpoints of the edges in A′′ that are right-to-left minima); note that because there
are no duplicate edges in A′′, it holds that ut′′i < ut′′i+1

< . . . < ut′′ji
. Then, we include the edge vs′′i ut′′i

in M , and if ji 6= |A′′| we replace the edge vs′′ji
ut′′ji

by vs′′ji+1
ut′′ji

and continue by processing this edge,
or if ji = |A′′| and vsji

< v`′ we include in M the edge v`′ut′′ji
and stop, whereas if ji = |A′′| and

vsji
= v`′ we stop without including any edge in M . It is not difficult to see that the resulting set M

indeed meets the requirements in the statement of the lemma.

Algorithm Permut Paired-Domination: Time and Space Com-
plexity

It is not difficult to see that Procedure Compute LRMaxima takes O(n) time, and similarly, computing
the right-to-left minima and filling the array rlmin left[ ] can be done within the same time complexity.
Then, Step 1 of Algorithm Permut Paired-Domination takes O(n) time and space.

From its description, it follows that Procedure Compute E1 also takes O(n) time and space: Step 1
processes the points from the leftmost up to the point preceding u1 and spends constant time for
each one of them, collecting (in a list L) one edge for each right-to-left minimum among these points
(thus, the time spent is O(n) and |L| = O(n)); Step 2 spends constant time for each of the edges
collected in the list L (note that the assignment “i ← j” implies that the two nested while-loops
help traverse the list L exactly once). Thus, the entire Procedure Compute E1 and hence Step 2 of
Algorithm Permut Paired-Domination takes O(n) time and space.

In Step 3, we need to be able to determine whether a quadrant contains at least one point of the
set Pπ. We can efficiently do this check by using an auxiliary array lowest at right[1..n− 1] where

lowest at right[i] = the lowest element of Pπ to the right of point pi, 1 ≤ i < n.

By processing the points in Pπ by decreasing value of their x-coordinate (i.e., by traversing the ar-
ray Ax[ ] from its end to its start), we can fill the array lowest at right[ ] in O(n) time. Then, for a
quadrant Q bounded from left by the line x = xQ and from above by the line y = yQ, we have that

Q contains a point in Pπ iff xQ < n and yQ > y(lowest at right[xQ]);

this can be checked in O(1) time.
Now let us compute the time and space complexity of Procedure Compute Ei+1. Let ni+1 be the

number of points p ∈ Pπ processed in both for-loops of Step 1 of the procedure. It is not difficult to see
that, if we ignore the time taken by stack operations, the body of each of the for-loops can be executed in
O(1) time. Additionally, because the number of stack pops does not exceed the number of stack pushes,
and at most one stack push is performed per point processed in the first for-loop performs, we conclude
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that the total time for all stack operations is O(ni+1) as well. In addition to the for-loops, Step 1 involves
a constant number of constant-time operations; thus, Step 1 of Procedure Compute Ei+1 takes O(ni+1)
time. Similarly to Procedure Compute E1, Step 2 of Procedure Compute Ei+1 takes O(|L|) = O(ni+1)
time; thus, the procedure takes a total of O(ni+1) time. In order to bound the total time taken by all
the executions of Procedure Compute Ei+1, we observe (i) that uth

is the highest endpoint of an edge
in Ei and (ii) that the highest endpoint of the edges in Ei+1 is a left-to-right maximum which either
coincides with or is to the right of ua′ if the 2nd for-loop is not executed, or coincides with or is to
the right of ua′+1 if the 2nd for-loop is executed. In light of the definition of ni+1, this observation
implies that

∑
i(ni − 1) ≤ n, from which we conclude that the total time taken by all the executions

of Procedure Compute Ei+1 is O(n). The space required for the stack S is O(|Ei|) = O(n). Therefore,
Step 3 of Algorithm Permut Paired-Domination takes O(n) time and space.

Finally, Steps 4 and 5 take O(|M |) = O(n) time and space; note that the set M contains at most
one edge per right-to-left minimum.
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