Optimal Algorithms for Detecting Network Stability
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Abstract: A packet-switching network is universally stable if, for any greedy protocol and
any adversary of injection rate less than 1, the number of packets in the network remains
bounded at all times. A very natural question that arises in the context of network stability
is whether there is a fast way to detect the existence of the universal stability property
of a network based on the network structure. In this work, we embark on a systematic
study of this question in the context of Adversarial Queueing Theory, which assumes that
an adversary controls the rates of packet injections and determines packet paths. Also, the
adversary can restrict packets to follow non-simple paths (paths do not contain repeated
edges, but they contain repeated vertices) or simple paths (paths do not contain repeated
edges and vertices). Within this framework, we consider the number of edges and the number
of vertices as crucial structural parameters of the network, and we present a comprehensive
collection of results for the detection of network universal stability in the form of optimal
algorithms. In addition, we extend the proposed algorithms to show that the preservation
or not of the stability properties of a network when it undergoes malicious attacks of an
adversary/intruder whose power is to try to add links can be detected in constant time.

Keywords: Packet-Switched Communication Networks, Network Stability, Linear Algo-
rithms, Graph Theory, Intrusion Detection, Adversarial Queueing Theory.

1 Introduction

Motivation-Framework. A lot of research has been done in the field of packet-switched communication
networks for the specification of their behavior. In such networks, packets arrive dynamically at the
nodes and they are routed in discrete time steps across the edges. A major issue that arises in such
a setting is that of universal stability— will the number of packets in the network remain bounded at
all times against any adversary and any protocol? The answer to this question is non-trivial; since the
property of universal stability of networks is a predicate quantified over all protocols and adversaries,



it might at first appear that it is not a decidable property. But, this is not the case. Alvarez et al.
in [4] show that detecting the universal stability of networks requires polynomial time. However, from
a practical standpoint, the detection of universal stability in polynomial time maybe not enough. It
remains open if there is an algorithm that can detect the universal stability of networks in linear time.

A key feature of contemporary large-scale platforms for distributed communication and computation,
such as the Internet, is their survivability: the ability of computers and networks to be resilient in the
face of an attack [6, 33]. However, there are no short-term solutions to eliminate attacks. Thus,
it is impossible to close all security loopholes in a computer system by building firewalls or using
cryptographic techniques. As a result, intrusion detection has emerged as a key technique for network
survivability and, consequently, Internet security [27]. An algorithm that performs intrusion detection
should be fast enough in order to eliminate the damage a network can suffer by an intruder. The
universal stability property of a network is related to the time delay a packet suffers to reach its
destination. Consequently, universal stability is also related to the quality of service that a network
provides to its end-users. Thus, there is a necessity for fast detection of any change this network property
can undergo by a malicious adversary /intruder. Such a change can be provoked by the dynamic addition
of links on the network topology.

Objectives. The underlying goal of our study is to investigate the computational complexity of detecting
universal stability of networks when packets are injected by an adversary. It may depend on the network
structure, the traffic pattern defined by the adversary and the protocol employed to resolve packet
conflicts. The traffic pattern controls where and how packets are injected into the network, and defines
their path (trajectory). We choose, as a test-bed, the case of dynamic adversarial addition of links on a
universally stable network. We ask, in particular, how fast can be detected any change in the universal
stability property of a network under such an adversarial/intrusion attack.

Framework of Adversarial Queueing Theory. We consider a packet-switched communication network
in which packets arrive dynamically at the nodes with predetermined paths, and they are routed at
discrete time steps across the edges (links). We focus on a basic adversarial model for packet arrival
and path determination that has been introduced in a pioneering work by Borodin et al. [10], under
the name Adversarial Queueing Theory. Roughly speaking, this model views the time evolution of a
packet-switched communication network as a game between an adversary and a protocol. At each time
step, the adversary may inject a set of packets into some nodes. For each packet, the adversary specifies
a path that the packet must traverse; when the packet arrives to destination, it is absorbed by the
system. When more than one packets wish to cross a queue at a given time step, a contention-resolution
protocol is employed to resolve the conflict. The protocols considered are usually greedy— ones that
always advance a packet across a queue (but one packet at each discrete time step) whenever there
resides at least one packet in the queue. A crucial parameter of the adversary is its injection rate p,
where 0 < p < 1. Among the packets that the adversary injects in any time interval I, at most [p|I|] can
have paths that contain any particular edge. Such a model allows for adversarial injection of packets,
rather than for injection according to a randomized, oblivious process (cf. [12]).

In this work, we embark on a study of the impact of the topological structure of the networks and
its dynamic changes on their correctness and performance properties. More specifically, we wish to pose
the general question of whether it would be possible to detect universal stability from the knowledge of
the topological structure of the network. This subfield of study was initiated by Andrews et al. in [7]
where they show that the family of undirected-path universally stable graphs is minor-closed and that
there exists a finite set of basic undirected graphs such that a graph is stable, if and only if it does
not contain as a minor any of the graphs in that set. Additionally, we wish to investigate of which
correctness and performance properties of packet-switched networks are maintained and which are not
in the presence of dynamic additions of links.



Stability. Roughly speaking, a protocol P is stable [10] on a network G against an adversary A of rate
p if there is a constant B (which may depend on G and .A) such that the number of packets in the
system is bounded at all times by B. On the other hand, a protocol P is universally stable [10] if it is
stable against every adversary of rate less than 1 and on every network. We also say that a network
G is universally stable [10] if every greedy protocol is stable against every adversary of rate less than 1
on G. Moreover, the property of universal stability can be viewed under two different approaches; we
refer to simple-path universal stability when packets follow simple paths (paths do not contain repeated
edges, and vertices), while we refer to universal stability when packets follow not simple paths (paths do
not contain repeated edges, but they can contain repeated vertices) [4].

Contribution. Our work interestingly shows how network structure precisely affects the universal sta-
bility of networks. In particular, we study the universal stability property of networks in the Adversarial
Queueing model. Our results are three-fold; they are summarized as follows:

1 First, we present an algorithm that detects whether a network where packets are adversarially
injected with not simple paths, is universally stable or not in linear time O(m + n) where m is
the number of network edges and n is the number of network vertices. This result improves the
result of Alvarez et al. [4, Theorem 13] which states that checking the universal stability of a given
directed graph can be done in polynomial time.

2 Additionally, we propose an algorithm that detects whether a network where packets are adver-
sarially injected with simple paths, is universally stable or not in linear time O(m + n). This
result improves the result of Alvarez et al. [4, Theorem 16] where a polynomial time algorithm is
presented for checking the universal stability of a given directed graph.

3 We demonstrate two linear algorithms for handling attacks of an intruder/adversary that inserts
dynamically additional links on a universally stable network. These algorithms check the preser-
vation of the universal stability property of networks under such attacks when packets are injected
into the network with non-simple or simple paths correspondingly. The proposed algorithms here
are extensions of the ones that are proposed for the universal stability detection.

Related Work. Adversarial Queueing Theory was developed by Borodin et al. [10] as a more realistic
model that replaces traditional stochastic assumptions in Queueing Theory [12] by more robust, worst-
case ones. It received a lot of interest and attention in the study of stability and instability issues
(see, e.g., [7, 4, 14, 23, 24, 25, 28]). Universal stability of various natural greedy protocols has been
established by Andrews et al. [7]. Additionally, certain well-known network topologies (DAGs, trees,
ring) have been proved universally stable in [7, 10].

The subfield of proposing a characterization for universally stable networks was first initiated in [7]
proving that there exists a finite set of basic undirected graphs such that a graph is stable, if and only
if it does not contain as a minor any of the graphs in that set. This result guarantees decidability in
polynomial time; however a constructive proof is not presented. This result was significantly improved
in [16, 18, 4]. Especially, in [4] a tight characterization of stable topologies for directed graphs is given.
In particular, a digraph where packets are injected in non-simple paths is universally stable if and only
if it does not contain as subgraph any of the extensions of Uy or Uy (see Figures 1, 2) [4, Lemma 7].
Moreover, a digraph where packets are injected in simple paths is universally stable if and only if it does
not contain as subgraph any of the extensions of S; or Sz or S3 or Sy (see Figures 3, 4) [4, Theorem 12].
Furthermore, in [4] they show that detecting universal stability of networks requires polynomial time.
Recently, Blesa [9] presented a polynomial-time algorithm for both FIFO stability and FIFO simple-path
stability of directed multigraphs.



Universal Stability in Dynamic Adversarial Settings-Intrusion Detection. Dynamic adversarial environ-
ments can be used to model intrusion attacks as an intruder can behave like an adversary that tries to
change network environment parameters concerning network topology, packet service rate or the used
contention-resolution protocol. In the community of Security, the study of intrusion detection received
a lot of interest [8, 15, 17, 21, 27, 34]. Thus, there are more than 100 commercial tools and research
prototypes for intrusion detection [29, 30]. Furthermore, there is a number of techniques for identifying
sources of intrusion [31, 32]. On the other hand, in the community of Stability there are a few works
considering dynamic adversarial settings [3, 11, 22]. However, to the best of our knowledge this is the
first work that uses stability theory as a tool for detecting an intrusion attack.

2 Theoretical Framework

The model definitions are patterned after those in [10, Section 3]. We consider that a routing network
is modelled by a finite multi-digraph G on n vertices and m edges; the term multi-digraph is used when
multiple edges are allowed in a digraph. Each node x € V(G) represents a communication switch, and
each edge e € E(G) represents a link between two switches. In each node, there is a buffer (queue)
associated with each outgoing link. Time proceeds in discrete time steps. Buffers store packets that
are injected into the network with a route, which is a simple directed path in G. A packet is an atomic
entity that resides at a buffer at the end of any step. It must travel along paths in the network from
its source to its destination, both of which are nodes in the network. When a packet is injected, it is
placed in the buffer of the first link on its route. When a packet reaches its destination, we say that
it is absorbed. During each step, a packet may be sent from its current node along one of the outgoing
edges from that node.

We consider finite directed and undirected simple graphs and multi-digraphs with no loops. A
directed (resp. undirected) edge is a directed (resp. undirected) pair of distinct vertices z,y € V(G),
and is denoted zy. The multiplicity of a vertex-pair ay of a digraph G, denoted by A(zy), is the number
of edges joining the vertex x to y in G. For a set C C V(G) of vertices of the graph G, the subgraph
of G induced by C is denoted G[C]; for a set S C E(G) of edges, the subgraph of G spanned by S is
denoted G(S5).

Any packets that wish to travel along an edge e at a particular time step, but are not sent, wait
in a queue for the edge e. At each step, an adversary generates a set of requests. A request is a path
specifying the route that will be followed by a packet. We say that the adversary generates a set of
packets when it generates a set of requested paths.

A path in G is a sequence of vertices (vg,v1,...,vx) such that v;v,41 € E(GQ) for i =0,1,...,k — 1;
we say that this is a path from vy to vy (for short, vo—vy path) of length k. A path is called simple if
none of its vertices occurs more than once; it is called trivial if its length is equal to 0. A path is closed
(resp. open) if vg = vg (resp. vy # vi). A closed path (vg,v1,...,vk—1,v9) is a cycle of length k; the
closed path (vg,v1,v9) is called 2-cycle.

A connected component (or component) of an undirected graph G is a maximal set of vertices, say,
C C V(G), such that for every pair of vertices z,y € C, there exists a x—y path in the subgraph G[C]
of GG induced by the vertices in C. A component is called non-trivial if it contains two or more vertices;
otherwise, it is called trivial. A biconnected component (or bicomponent) of an undirected graph G is
a maximal set of edges such that any two edges in the set lie on a simple cycle of G [13]; G is called
biconnected if it is connected and contains only one biconnected component.

A strongly connected component (or scc) of a directed graph G is a maximal set of vertices C C V(QG)
such that for every pair of vertices « and y in the set C, there exists both a (directed) x—y path and a



(directed) y—=x path in the subgraph of G induced by the vertices in C; the graph G is called strongly
connected if it is connected and contains only one scc. The acyclic component graph G, of the digraph G
is an acyclic digraph obtained by contracting all edges within each strongly connected component of G
so that only a single vertex remains in each component. The underlined graph G, of the digraph G
is an undirected graph which results after making all the edges of G undirected and consolidating any
duplicate edges.

A strongly biconnected component (or bi-scc) of a directed graph G is a maximal set of edges S C
E(G) such that G(S) is a strongly connected graph and its underlined graph G(S), is biconnected;
the graph G is called strongly biconnected if it is strongly connected and contains only one bi-scc. The
graph U; of Fig. 1 is strongly biconnected, while the graph U, contains two bi-scc.

The subdivision operation on an edge xy of a digraph G consists of the addition of a new vertex
w and the replacement of xy by the two edges xw and wy; hereafter, we shall call it edge-subdivision
operation.

Given a digraph G on n vertices and m edges, £(G) denotes the family of digraphs which contains
the digraph G and all the digraphs obtained from G by successive edge-subdivisions.

It has been proved that the digraphs U; and Us of Fig. 1 are not universally stable; they are
the minimum forbidden subgraphs characterizing universal stability. Moreover, the family of digraphs
obtained from U; and Us by successive edge-subdivisions are also not universally stable, i.e., the digraphs
in £(U1) UE(Uz) [4] (see Fig. 2). The following result holds:

Lemma 2.1. (Alvarez, Blesa, and Serna [4]): A digraph G is universally stable if and only if G does
not contain as a subgraph any of the digraphs in E(Uy) U E(Us).

= A

U1 U2

Figure 1: Not universally stable digraphs.

~a_ -

Figure 2: Family of digraphs formed by extensions of U; and Uy, where a > 1, b> 1, d > 0, £ > 0, and
k> 0. (a) a digraph in £(U;); (b) a digraph in £(Us).

Observation 2.1. Let G be a directed graph of the family £(U;) U £(Us). Then, the graph G has the
following structure:

(a) it consists of a cycle C' = (xg, 21, 22,...,2¢,20), £ > 1, and

(b) apath P=(xi,y1,¥2,...,Yk ;) such that, y1,92,...,yx ¢ C, z;,z; € C and k > 0.



It is easy to see that, if P is an open path, i.e, z; # z;, then G € £(U;), whereas if P is a closed path,
ie, z; = x;, then G € £(Us).

Let G be a digraph on n vertices and m edges. We denote by G* the element of £(G) which obtained
from G by applying an edge-subdivision operation on each edge uv € E(G). Obviously, G* has n +m
vertices and 2m edges. Moreover, G* does not contain 2-cycles; in particular, every cycle in G* has
length greater than or equal to 4. We call G* one-subdivided graph of G.

Below we present some results on which our algorithm for detecting universal stability rely.

Lemma 2.2. Let G be a directed graph and let G* be its one-subdivided graph. The graph G is not
universally stable if and only if G* contains a subgraph H € £(Uy) U E(Us).

Lemma 2.3. Let G be a directed graph and let G* be its one-subdivided graph. Let Sy, S, ..., Sk be the
strongly connected components of G* and let n; and m; be the number of vertices and edges of the strong
component S;, respectively. Then, G is not universally stable if and only if G* has a strong component
S; such that m; >n;, 1 <i<k.

According to the classification introduced in [4], we will also differentiate and refer to the property of
universal stability in the case in which packets follow simple paths (paths do not contain repeated edges,
and vertices) as simple-path universal stability, leaving then the term wniversal stability to refer to the
case in which packets follow not simple paths (paths do not contain repeated edges, but they can contain
repeated vertices). We say forbidden subgraphs for network stability when the packets follow non-simple
paths [4, 18] any graph obtained by replacing any edge of the graphs U; and U (see Figure 1) by
disjoint directed paths. We say forbidden subgraphs for network stability when the packets follow simple
paths [4] any graph obtained by replacing any edge of the graphs Si, Sa, S3, and Sy (see Figures 3
and 4) by disjoint directed paths.

It has been showed that all the digraphs in £(S1) U £(S2) U £(S3) U £(S4) are not simple-path
universally stable [4].

Lemma 2.4. (Alvarez, Blesa, and Serna [4]): A digraph G is simple-path universally stable if and only
if G does not contain as a subgraph any of the digraphs in £(S1) U E(S2) UE(S3) U E(Sy).

Let G be a digraph on n vertices and m edges. We denote by G the digraph which is obtained from G
by setting the multiplicity of each edge zy of G to 1, if A(zy) > 2. Obviously, G is simple digraph and
it has n vertices and m’ < m edges. We call G reduced graph of the graph G.

Below we present some results on which our algorithm for detecting simple-path universal stability relies.

Lemma 2.5. Let G be a directed graph, G be the reduced graph of G, and S1,Ss,...,Sk be the scc of
G. Let Sit, Si2, ..., Sik, be the bi-scc of the scc S; and let n;; and m;; be the number of vertices and
edges of the bi-scc S;j, respectively. Then, G is not simple-path universally stable if and only if G has
a strong component S; which satisfies one of the following conditions:

(1) S; contains a bi-scc S;j such that: n;; > 3, G(Si;j)ue is a cycle, and there exists an edge xy in
G(S;;) such that \(zy) > 2;

(i7) S; contains a bi-scc S;; such that: n;; > 3 and G(S;j)ue is not a cycle;

(t4i) S; contains two bi-scc Si, and Siq such that: n;, > 3, nig > 3, and both graphs G(Sip)ue and
G(Siq)ue are cycles;

where 1 <i<kand1 <jp,q<k;.
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Figure 3: Not simple-path universally stable digraphs.
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Figure 4: Family of digraphs formed by extensions of Sy, S2, S3, and Sy, where a > 1, b > 1, d > 0,
$>0,t>0,¢>1,and k > 1. (a) a digraph in £(S1); (b) a digraph in £(S2); (¢) a digraph in £(S3);
(d) a digraph in £(S4).

Sketch of Proof: By definition, a bi-scc S;; of the scc S; of the digraph G consists of either a cycle
C = (xo,21,%2,...,Tr,%0), T > 2, or a cycle C = (xg,21,%2,...,2Lr,xg), 7 > 2, and a path P =
(@i, y1,Y2, - - -, Y, z;) such that y1,y2, ...,y ¢ C, x; # x; and v’ > 1.

(«<=) It is easy to see that if condition (i) holds, then the graph G(S;;) contains a subgraph H €
E(S1). If condition (ii) holds, then the bi-scc S;; consists of a cycle C' = (zo,z1,22,...,%r,20), 7 >
2, and a path P = (x;,y1,%2,-..,Yr, ;) such that z; # z; and ' > 1. Thus, the graph G(S;;)
contains a subgraph H € £(S2). If condition (iii) holds, then the graph G(S;;) contains a subgraph
H e 5(52) U 5(54)

(=) Suppose now that G is not simple-path universally stable. Then, G contains a subgraph
H € £(S1)UE(S2) UE(S3) UE(Sy), and, thus, H contains a cycle C' = (xg, x1, %2, ..., Tpr,xg), r > 2. Tt
follows that C belongs to a scc S; of the graph @, 1 <i < k. Let S;; be the bi-scc of S; which contains
the cycle C. Since r > 2, the bi-scc S;; has at least three vertices, i.e., n;; > 3. We distinguish two
cases:

Case (a): S;; contains the cycle C and a path P = (z,y1,92,...,yr, 2;), 7’ > 1. Then, H € £(S) and
G(Sij)ue is not a cycle. Thus, the condition (ii) holds.

Case (b): S;; contains only the cycle C' = (zo, 1, 2, . . ., &, xo), r > 2. If there exists an edge ;% +1modr
in C such that A(@;iZit1moar) > 2 in G, then H € £(S1) and, since G(S;;)w¢ is a cycle, the condition
(i) holds. If there exists no such edge in C, then H € £(S3) U E(S4). Thus, H contains another cycle
C" = (xy, 2,25, ..., 2., (), r > 2, which belongs to a bi-scc, say, Siq, of S;. If the conditions (i) and

(ii) do not hold for the bi-scc Siq, then the graph G(S;;)ue is a cycle and n;, > 3. Thus, the condition
(iii) holds. &

3 Detecting Universal Stability

In this section we present optimal algorithms for detecting universal and simple-path universal stability
on a digraph G. Both algorithms take as input a digraph G on n vertices and m edges, and decide if G



is universally stable or simple-path universally stable, resp., in O(n + m) time using O(n 4+ m) space.

3.1 Universal stability
Our algorithm for detecting universal stability on a digraph G relies on the result stated in Lemma 2.3;

it works as follows:

Algorithm Univ_Stability
Input: a digraph G on n vertices and m edges;

Output: yes, if G is universally stable; otherwise, no.

1. Construct the one-subdivided graph G* of the input digraph G;

2. Compute the strongly connected components Sy, So, ..., Sk of the digraph G*,
and the number of vertices n; and edges m; of each strong component S;, 1 < i < k;

3. fori=1tok do
if m; > n; then return no; exit;

4. return yes;

The correctness of the algorithm Univ_Stability follows from Lemma 2.3. We next compute its time and
space complexity. The one-subdivided graph G* of the input graph G can be constructed in O(n + m)
time, where n is the number of vertices and m is the number of edges of the graph G. The graph G* has
n + m vertices and 2m edges, and, thus, the computation of the strong components of G* can be done
in O(n + m) time. Thus, the whole algorithm runs in O(n + m) time; the space needed is O(n + m).

From the above description we conclude that the detection algorithm Univ_Stability runs in linear
time and requires linear space. Hence, we have:

Theorem 3.1. Let G be a digraph on n vertices and m edges. The algorithm Univ_Stability decides
whether G is universal stable in O(n 4+ m) time and space.

Theorem 3.2. Let G be a digraph on n vertices and m edges. The universal stability of G can be
decided in O(n +m) time and space.
3.2 Simple-path universal stability

Our simple-path universal stability detection algorithm relies on the result of Lemma 2.5; it works as
follows:

Algorithm Simple-Path_Univ_Stability
Input: a digraph G on n vertices and m edges;

Output: yes, if G is simple-path universally stable; otherwise, no.
1. Construct the reduced graph G of the input digraph G
2. Compute the strong components S1,.5, ..., S of the graph @, 1<i<k;

3. Compute the bi-scc Si1, Sia, - .., Sik; of each strong component S;, 1 <14 <k,
and the number of vertices n;; and edges m;; of the bi-scc S5, 1 < j < kj;



4. fori =1 to k do

for j =1 to k; do

if n;; > 3 and G(S;;)ue is a cycle, and
there exists an edge xy in G(S;;) such that A(ry) > 2, then return no; exit;

if n;; > 3 and G(S;;)ue is not a cycle, then return noj; exit;
it n;; > 3 and G(S;;)ue is a cycle, then mark the bi-scc S;;;

end-for

if S; contains at least two marked bi-scc then return no; exit;

5. return yes;

The correctness of the algorithm Simple-Path_Univ_Stability follows from Lemma 2.5. It is easy to see
that the construction of the reduced graph G of the input graph G can be done in O(n +m) time. The
graph G has n vertices and m/ < m edges, and, thus, the computation of the strong components of
G can be completed in O(n 4+ m) time. The the bi-scc S;1, S;o, ..., S, of each strong component S;,
1 < i <k, can be computed in O(n + m) time because ijl’k m;; < m; and n;; < m;; since the bi-scc
are biconnected and do not share edges. It is easy to see that all the operation of step 4 are executed
in linear time. Thus, the algorithm runs in O(n + m) time; the space needed is O(n + m).

Thus, we can state the following results:

Theorem 3.3. Let G be a digraph on n vertices and m edges. The algorithm Simple- Path_Univ_Stability
decides whether G is simple-path universal stable in O(n + m) time and space.

Theorem 3.4. Let G be a digraph on n vertices and m edges. The simple-path universal stability of G
can be decided in O(n + m) time and space.

4 Detecting Intrusion Attacks

In this section, we prove that the malicious intentions of an adversary /intruder to lead a stable network
in instability by adding links in specific parts of the network can be detected in constant time after a
preprocessing phase in which we compute path information. In particular, given a universally stable
digraph G and a pair of distinct vertices x,y € V(G), we want to decide whether the graph G + zy is
also universally stable, where xy is the directed edge from x to y.

Based on the results of Section 3, we can decide whether G + zy is universally stable in linear time
without any preprocessing by executing algorithm Univ_Stability. Thus, we can state the following
result.

Theorem 4.1. Let G be a (simple-path) universally stable digraph on n wvertices and m edges. The
preservation or not of (simple-path) universal stability of G after the dynamic addition of a link into
the topology of G by an intruder can be decided in O(n + m) time and space.

We are interested in contracting a structure such that queries of the form “is the graph G + xy
universally stable?” can be answered in O(1) time.

Let G be a universally stable digraph on n vertices and m edges, and let G be the reduced graph of
G recall that G has n vertices and m’ < m edges. As in Lemma 2.3, each non-trivial strong component
of G forms a cycle; a trivial strong component consists of only one vertex. Thus, we have the following
observation.



Observation 4.1. Let G be a universally stable digraph, G be its reduced graph, and let S1,.55,..., Sk
be the strong components of (A?, 1 < i < k. The acyclic component graph (A?SCC of the digraph G has
the following property: it consists of k vertices vy, vs,..., v, the vertex v; corresponds to the strong
component S; of G , and the strong component S; is either a cycle, i.e., m; = n;, or a trivial component,
i.e.,, n; =1 and m; = 0.

Let G be a multi-digraph and let 2,y € V(G) be a pair of distinct vertices. We say that the
vertices z and y form an zy-pair if there exists a directed path from x to y in G, and we say that they
form an xy-multi-pair if there exist more than one directed path from = to y in G, or a directed path
(x = ug,u1,...,ur = y) containing an edge u;u;+1 with A(u;u;41) > 1, £ > 1. Then, we can prove the
following lemma.

Lemma 4.1. Let G be a universally stable digraph and let x,y € V(G) be a pair of distinct vertices.
Let G be the reduced graph of G, S1,59,...,Sk be the strongly connected components of G and let n;
and m; be the number of vertices and edges of the strong component S;, respectively. The graph G + zy
is mot universally stable if and only if one of the following conditions holds:

(i) zyeSi,1<i<k

(t1) x € S; andy € S; where i # j and at least one of n;,n; is larger than 1, and x,y form an yx-pair
in G;

(i5i) x € S; and y € S; where i # j and n; =n; =1, and z,y form an yx-multi-path in G.

Based on this lemma, we next present an algorithm for detecting whether a graph G preserves its
universal stability after the addition of a link xy into the topology of G. Our algorithm works on
the acyclic component graph @scc of the digraph G and uses path information of @scc which we have
computed in a preprocessing stage. Let v1, v, ..., v be the vertices of (A?SCC. We say that an edge v;v; in

Gsce 18 thick if the exists more than one edge in G with their start-points in S; and their end-points in .S;.
We say that there is a v;v;-path in G if there is a (directed) path from v; to v;, where v;,v; € V(Gsec)-

We can keep all the information regarding the types of directed paths connecting the vertex v; to
v; in Goce using O(n?) space; hereafter, we call this information path-information. Our algorithm takes
as input the path-information of a universally stable digraph G on n vertices and m edges and a pair
of vertices z,y € V(G), and detects in O(1) time whether the graph G + zy is universally stable; the
description of our algorithm is as follows:

Algorithm Test_Link

Input: the path-information of a universally stable digraph G on n vertices and m edges and
an (ordered) pair of vertices z,y € V(G);

Output: yes, if G + zy is universally stable; otherwise, no.
1. if z,y belong to the same strong component of the digraph @, then return no; exit;

2. if x € S; and y € S, where i # j, and at least one of n;,n; is larger than 1 then
if there exists a v;v;-path in G, then return no; exit;

3. if x € S; and y € S}, where 7 # j, and n; = n; = 1 then
if there exist more than one v;v;-path in Gy, then return no; exit;
if there exists a v;v;-path in G with a thick edge, then return no; exit;

4. return yes;
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The correctness of the algorithm follows from Lemma 4.1. Moreover, the time taken by the algorithm to
test the addition of a (directed) link zy takes O(1) time thanks to the stored path-information and the
information on the strong components of G (their sizes and the vertices participating in them). Hence,
we state the following theorem.

Theorem 4.1. Let G be a universally stable digraph on n vertices and m edges. Given the path-
information of the acyclic component graph Gg.. of the digraph G, the preservation or not of universal
stability of G after the addition of a link into the topology of G by an intruder can be decided in O(1)
time.

Algorithm Test_Link only tells us whether the addition of a link on the same base network will
preserve its universal stability; this has the advantage of guaranteeing constant time complexity but
also the limitation that the much more interesting approach of dynamically maintaining the network
under the addition of links that would not lead to instability is not supported (note that such a dynamic
maintenance does not seem possible in constant time). We are currently working on exploiting ideas and
results for the poly-logarithmic dynamic maintenance of the biconnected components of an undirected
graph [20] in order to achieve dynamic maintenance of a universally stable network under the addition
of links in poly-logarithmic time.

5 Directions for Further Research

In this work, we studied how efficiently the property of network universal stability can be detected
considering directed graphs where packets are injected with non-simple or simple paths under the Ad-
versarial Queueing Model. A lot of problems remain open. First, an interesting question concerning
stability is that of deciding the stability of a network under a fixed protocol. In the literature there
are only three results: deciding stability under FFS [2], NTG-LIS [4] and FIFO [9] protocol is polyno-
mially solvable. Another interesting problem is whether there are upper bounds on injection rate that
guarantee stability for forbidden subgraphs for universal stability.
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