The 2-terminal-set Path Cover Problem and
its Polynomial Solution on Cographs*

Katerina Asdre and Stavros D. Nikolopoulos

Department of Computer Science, University of Ioannina
P.O.Boz 1186, GR-45110 Ioannina, Greece

{katerina, stavros}@cs.uoi.gr

Abstract: In this paper, we study a generalization of the path cover problem, namely, the
2-terminal-set path cover problem, or 2TPC for short. Given a graph G and two disjoint
subsets 71 and 72 of V(G), a 2-terminal-set path cover of G with respect to 7' and 72 is a
set of vertex-disjoint paths P that covers the vertices of G such that the vertices of 7' and
T? are all endpoints of the paths in P and all the paths with both endpoints in 7' U 72
have one endpoint in 7' and the other in 72. The 2TPC problem is to find a 2-terminal-set
path cover of G of minimum cardinality; note that, if 7' U772 is empty, the stated problem
coincides with the classical path cover problem. The 2TPC problem generalizes some path
cover related problems, such as the 1THP and 2HP problems, which have been proved to
be NP-complete even for small classes of graphs. We show that the 2TPC problem can be
solved in linear time on the class of cographs. The proposed linear-time algorithm is simple,
requires linear space, and also enables us to solve the 1HP and 2HP problems on cographs
within the same time and space complexity.

Keywords: path cover, fixed-endpoint path cover, perfect graphs, complement reducible
graphs, cographs, linear-time algorithms.

1 Introduction

Framework—Motivation. A well studied problem with numerous practical applications in graph
theory is to find a minimum number of vertex-disjoint paths of a graph G that cover the vertices of G.
This problem, also known as the path cover problem (PC), finds application in the fields of database
design, networks, code optimization among many others (see [1, 2, 19, 24]); it is well known that the
path cover problem and many of its variants are NP-complete in general graphs [11]. A graph that
admits a path cover of size one is referred to as Hamiltonian. Thus, the path cover problem is at least
as hard as the Hamiltonian path problem (HP), that is, the problem of deciding whether a graph is
Hamiltonian.

Several variants of the HP problem are also of great interest, among which is the problem of deciding
whether a graph admits a Hamiltonian path between two points (2HP). The 2HP problem is the same
as the HP problem except that in 2HP two vertices of the input graph G are specified, say, u and

*The research Project is co-funded by the European Union - European Social Fund (ESF) & National Sources, in the
framework of the program ”Pythagoras II” of the ”Operational Program for Education and Initial Vocational Training”
of the 3rd Community Support Framework of the Hellenic Ministry of Education.

v, and we are asked whether G contains a Hamiltonian path beginning with v and ending with v.
Similarly, the 1HP problem is to determine whether a graph G admits a Hamiltonian path starting
from a specific vertex u of G, and to find one if such a path does exist. Both 1THP and 2HP problems
are also NP-complete in general graphs [11].

The path cover problem and several variants of it have numerous algorithmic applications in many
fields. Some that have received both theoretical and practical attention are in the content of com-
munication and/or transposition networks [25]. In such problems, we are given a graph (network) G
and

(Problem A) a set 7 of k = 2\ vertices of GG, and the objective is to determine whether G admits a path
cover of size A\ that contains paths connecting pairs of vertices of 7, that is, G admits A\ vertex-disjoint
paths with both their endpoints in 7 (note that, the endpoints of a path P are the first vertex and the
last vertex visited by P), or

(Problem B) a set 7 of A = k/2 pairs of vertices of G (source-sink pairs), and the objective is to
determine whether G admits for each pair (a;,b;), 1 < i < A, a path connecting a; to b; such that the
set of \ paths forms a path cover.

Another path cover related problem that has received increased attention in recent years is in the
context of communication networks. The only efficient way to transmit high volume communication,
such as in multimedia applications, is through disjoint paths that are dedicated to pairs of processors.
To efficiently utilize the network one needs a simple algorithm that, with minimum overhead, constructs
a large number of edge-disjoint paths between pairs of two given sets of requests.

Both problems A and B coincide with the 2HP problem, in the case where k = 2. In [9], Damaschke
provided a foundation for obtaining polynomial-time algorithms for several problems concerning paths
in interval graphs, such as finding Hamiltonian paths and circuits, and partitions into paths. In the
same paper, he stated that the complexity status of both 1THP and 2HP problems on interval graphs
remains an open question; until now the complexities of 1HP and 2HP keep their difficulties even in the
small subclass of split interval graphs — no polynomial algorithm is known.

Motivated by the above issues we state a variant of the path cover problem, namely, the 2-terminal-
set path cover problem (2TPC), which generalizes both 1THP and 2HP problems, and also Problem B.

(Problem 2TPC) Let G be a graph and let 7' and 72 be two disjoint sets of vertices of V(G). A
2-terminal-set path cover of the graph G with respect to 7' and 72 is a path cover of G such that all
vertices in 7' U 7?2 are endpoints of paths in the path cover and all the paths with both endpoints in
71 U T2 have one endpoint in 7' and the other in 72; a minimum 2-terminal-set path cover of G with
respect to 7! and 72 is a 2-terminal-set path cover of G with minimum cardinality; the 2-terminal-set
path cover problem (2TPC) is to find a minimum 2-terminal-set path cover of the graph G.

Contribution. In this paper, we show that the 2-terminal-set path cover problem (2TPC) has a
polynomial-time solution in the class of complement reducible graphs, or cographs [8]. More precisely,
we establish a lower bound on the size of a minimum 2-terminal-set path cover of a cograph G on n
vertices and m edges. We then define path operations, and prove structural properties for the paths of
such a path cover, which enable us to describe a simple algorithm for the 2TPC problem. The proposed
algorithm runs in time linear in the size of the input graph G, that is, in O(n + m) time, and requires
linear space. Figure 1 shows a diagram of class inclusions for a number of graph classes, subclasses of
comparability and chordal graphs, and the current complexity status of the 2TPC problem on these
classes; for definitions of the classes shown, see [6, 12]. Note that, if the problem is polynomially solvable
on interval graphs, then it is also polynomially solvable on convex graphs [21].

NP-complete NP-complete

permutation
NP-complete @@ Polynomial
@reshold
@ Polynomial

Figure 1: The complexity status (NP-complete, unknown, polynomial) of the 2TPC problem for some graph

NP-complete

Polynomial

subclasses of comparability and chordal graphs. A — B indicates that class A contains class B.

The proposed algorithm for the 2TPC problem can also be used to solve the 1HP and 2HP problems
on cographs within the same time and space complexity. Moreover, we have designed our algorithm
so that it produces a minimum 2-terminal-set path cover of a cograph G that contains a large number
of paths with one endpoint in 7! and the other in 72 (we can easily find a graph G and two sets 7!
and 72 of vertices of V(@) so that G admits two minimum 2-terminal-set path covers with different
numbers of paths having one endpoint in 7' and the other in 72; for example, consider the graph G
with vertex set V(G) = {a,b,c,d}, edge set E(G) = {ab, be, ac, cd}, and T! = {a}, T2 = {b}).

Related Work. The class of cographs has been extensively studied and several sequential and/or
parallel algorithms for recognition and for classical combinatorial optimization problems have been
proposed [8, 18, 19, 22]. Jung [18] studied the existence of a Hamiltonian path or cycle in a cograph,
while Lin et al. [19] presented an optimal algorithm for the path cover problem on cographs. Nakano
et al. [22] described an optimal parallel algorithm which finds and reports all the paths in a minimum
path cover of a cograph in O(logn) time using O(n/logn) processors on a PRAM model. Recently,
Asdre and Nikolopoulos proposed a linear-time algorithm for the k-fixed-endpoint path cover problem
(kPC) on cographs and on proper interval graphs [3, 4]. Algorithms for optimization problems on other
related classes of graphs have been also described [5, 13, 14, 15, 16, 23]. Moreover, algorithms for the
path cover problem on other classes of graphs were proposed in [2, 10, 17, 24].

2 Theoretical Framework

The cographs admit a tree representation unique up to isomorphism. Specifically, we can associate with
every cograph G a unique rooted tree T.,(G) called the co-tree (or, modular decomposition tree [20]),
which we can construct sequentially in linear time [7, 8]. The co-tree forms the basis for fast algorithms
for problems such as isomorphism, coloring, clique detection, clusters, minimum weight dominating sets
[6, 7], and also for the path cover problem [19, 22].

For convenience and ease of presentation, we binarize the co-tree T.,(G) in such a way that each of
its internal nodes has exactly two children [19, 22]. We shall refer to the binarized version of T, (G) as

the modified co-tree of G and will denote it by T'(G). Thus, the left and right child of an internal node
t of T(G) will be denoted by t; and t,, respectively. Let ¢ be an internal node of T(G). Then G[t] is
the subgraph of G induced by the subset V; of the vertex set V(G), which contains all the vertices of
G that have as common ancestor in 7T'(G) the node ¢. For simplicity, we will denote by V; and V,. the
vertex sets V(GJt¢]) and V(G[t,]), respectively.

Let G be a cograph, 71 and 72 be two sets of vertices of V(G) such that 7'N72 = (), and let Pa7(G)
be a minimum 2-terminal-set path cover of G with respect to 7' and 72 of size A\a7; note that the size
of Pa7(G) is the number of paths it contains. The vertices of the sets 71 and 72 are called terminal
vertices, and the sets 7' and 72 are called the terminal sets of G, while those of V(G) — (T1 U T?) are
called non-terminal or free vertices. Thus, the set Par(G) contains three types of paths, which we call
terminal, semi-terminal, and non-terminal or free paths:

(i) a terminal path P, consists of at least two vertices and both its endpoints, say, u and v, are terminal
vertices belonging to different sets, that is, u € 7' and v € T?;

(i) a semi-terminal path Ps is a path having one endpoint in 7! or 7?2 and the other in V(G) — (71U
T2); if Py consists of only one vertex (trivial path), say, u, then u € 7' U T?;

(iii) a non-terminal or free path Pf is a path having both its endpoints in V(G) — (71 U T?); if P
consists of only one vertex, say, u, then u € V(G) — (T*UT?).

The set of the non-terminal paths in a minimum 2TPC of the graph G is denoted by N, while S and T
denote the sets of the semi-terminal and terminal paths, respectively. Furthermore, let S' and S? denote
the sets of the semi-terminal paths such that the terminal vertices belong to 7' and 72, respectively.
Thus, |S| = |S!| + |S?| and the following equation holds.

dor = NI+ S|+ |T| = [N| +|S*] +|S?| + |T| (1)

From the definition of the 2-terminal-set path cover problem (2TPC), we can easily conclude that the
number of paths in a minimum 2TPC can not be less than the number of the terminal vertices of
the terminal set having maximum cardinality. Furthermore, since each semi-terminal path contains
one terminal vertex and each terminal path contains two, the number of terminal vertices is equal to
|S| +2|T| = |S*| + |S?| + 2|T|. Thus, we have the following proposition, which also holds for general
graphs:

Proposition 2.1. Let G be a cograph and let T' and T? be two disjoint subsets of V(G). Then
[T = |S' + T, |T?] = |S?| + |T| and dor > max{|T"[,|T?[}.

Clearly, the size of a 2TPC of a cograph G, as well as the size of a minimum 2TPC of G, is less
than or equal to the number of vertices of G, that is, Ao < [V(G)|. Let F(V(G)) be the set of the free
vertices of Gj; hereafter, F(V) = F(V(G)). Furthermore, let P be a set of paths and let Vp denote the
set of vertices belonging to the paths of the set P; hereafter, F(P) = F(Vp). Then, if 7' and 72 are
two disjoint subsets of V(G), we have o7 < |F(V)| + |T| + |72

Let ¢t be an internal node of the tree T'(G), that is, ¢ is either an S-node or a P-node [20]. Then
A27 (t) denotes the number of paths in a minimum 2TPC of the graph G[t] with respect to 7;' and 7,2,
where 7;! and 7,2 are the terminal vertices of 7! and 72 of the graph G[t], respectively. Let ¢, and ¢,
be the left and the right child of node ¢, respectively. We denote by 7, and 7,! (resp. 7,2 and 7,%) the
terminal vertices of 71 (resp. 72) in V; and V., respectively, where V; = V(G[t;]) and V,. = V(G]t,]).
Let Ny, Sy and Ty be the sets of the non-terminal, semi-terminal and terminal paths in a minimum
2TPC of GJt], respectively. Similarly, let N,., S, and T, be the sets of the non-terminal, semi-terminal
and terminal paths in a minimum 2TPC of G[t,], respectively. Note that S} and S} (resp. S? and

S2) denote the sets of the semi-terminal paths in a minimum 2TPC of G[t,] and G[t,], respectively,
containing a terminal vertex of 71 (resp. 72). Obviously, Eq. (1) holds for G[t] as well, with ¢ being
either an S-node or a P-node, that is,

Aot () = [Ne| + 18] + |Ti| = [No| + 1S} + [S7] + | T2 (2)

where N, S; and T; are the sets of the non-terminal, the semi-terminal and the terminal paths, re-
spectively, in a minimum 2TPC of G[t], that is in P27 (t), and S} and S? denote the sets of the
semi-terminal paths in Py7(¢) containing a terminal vertex of 71 and 772, respectively. If ¢ is a P-node,
then Par(t) = Par(te) U Par(t,), where Par(t;) and Par(t,) are minimum 2TPCs corresponding to
Glte] and GJt,], respectively, and a7 (t) = Aoz (t¢) + A2r(t). Furthermore, in the case where ¢ is a
P-node, we have

INt| = [N+ |N;|
1S:] = [Sel+ 18] = 1S;1+[S7+ 1Sk + S
T = [Tl + |T]

Thus, we focus on computing a minimum 2TPC of the graph G[t] for the case where ¢ is an S-node.
Before describing our algorithm, we establish a lower bound on the size A27(¢) of a minimum 2TPC
Par(t) of a graph G[t]. More precisely, we prove the following lemma.

Lemma 2.1. Let t be an internal node of T(G) and let Par(te) and Por(t,) be a minimum 2TPC of
G[te] and G[t,], respectively. Then lor(t) > max{max{|T;}|, |72}, Aot (te)—|F(V})|, Aoz (t,)—|F(Vy)|}.

Proof. Clearly, according to Proposition 2.1 and since G[t] is a cograph, we have Aoz (t) > max{|7;}|,
|7.2|}. We will prove that Aoz (t) > Aoz (ts) — |[F(V,)|. Assume that Aoz (t) < Aoz (te) — |F(Vi)l.
Consider removing from this path cover all the vertices in V.. What results is a set of paths which
is clearly a 2TPC for G[t,]. Since the removal of a free vertex in F(V,) will increase the number of
paths by at most one, we obtain a 2TPC of G[t;] of size at most Aa7(¢) + |F(V;)|. The assumption
Aot (1) < Aer(te) — |F(Vy)| guarantees that Aor(t) + |F'(V,)| < Aer(te), contradicting the minimality
of Par(te¢). Using similar arguments we can show that Aer(t) > a7 (¢r) — |F(Ve)|. Hence, the lemma
follows. 1

We next define four operations on paths of a minimum 2TPC of the graphs G[t;] and G[t.], namely
break, connect, bridge and insert operations; these operations are illustrated in Fig. 2.

o Break operation: Let P = [p1,p2, ..., px| be a path of Par(t,) or Par(t,) of length k. We say that
we break the path P in two paths, say, P, and P, if we delete an arbitrary edge of P, say the edge
pipi+1 (1 < i < k), in order to obtain two paths which are P, = [p1,...,p;] and P» = [pit1,. -, k|-
Note that we can break the path P in at most k trivial paths.

o Connect operation: Let P; be a non-terminal or a semi-terminal path of Par(t¢) (resp. Par(t,))
and let P; be a non-terminal or a semi-terminal path of Par(¢,) (resp. P21 (te)). We say that we
connect the path P; with the path P, if we add an edge which joins two free endpoints of the
two paths. Note that if P, € S} (resp. Py € S}) then, if P, is also a semi-terminal path, P, € S?2
(resp. P2 € S?). Similarly, if Py € S? (resp. P; € S?) then, if P, is also a semi-terminal path,
Py € S} (vesp. P> € S}).

o Bridge operation: Let P, and P> be two paths of the set N, U S} US? (resp. N, US}US?) and let
P; be a non-terminal path of the set N, (resp. Ny). We say that we bridge the two paths P; and
P using path Pj if we connect a free endpoint of P; with one endpoint of P; and a free endpoint
of P, with the other endpoint of P;. The result is a path having both endpoints in G[ts] (resp.
G[t,]). Note that if P, € S} (resp. Pi € S}) then, if P is also a semi-terminal path, P, € S?

U1 U1 VU1 w1 V1 w1
P; 1 Pg
P P,
V2 Vg Vg w2 v2 w2
P = P
U3 U3 U3 Ul
P
V4 V4 V4 U2
(a) (b) (c)
w1
P
w2 2
U1 ws
v w P
1 1 Vo wy 3
P P,
() w2 2 L vs ws
Py
U3 w3 s we Py
P
V4 W4y wy
P
wg
(d) (e)

Figure 2: Illustrating (a) break, (b) connect, (c¢) bridge, (d) insert, and (e) connect-bridge operations; the
vertices of 7' are denoted by black-circles, while the vertices of 72 are denoted by black-squares.

(resp. Py € S?). Similarly, if P, € S7 (resp. Py € S?) then, if P, is also a semi-terminal path,
P, € S} (resp. P, € S}).

o Insert operation: Let P, = [t1,p1,...,p],t]] be a terminal path of the set T; (resp. T,) and
let P, = [pa,...,p5] be a non-terminal path of the set N, (resp. Ny). We say that we insert
the path P, into P, if we replace the first edge of P;, that is, the edge ¢1p;, with the path
[t1,p2,. - D5y D1, - -+, Ph, th]. Note that we
can replace every edge of the terminal path so that we can insert at most |[F'({P1})| + 1 non-
terminal paths, where F({P;}) is the set of the free vertices belonging to the path P;. If the

%, ph, ..., ph,t)] is constructed by connecting a semi-terminal path

,p%] with a semi-terminal path of S,, say, P. = [p],...,p},t,], then it

obviously has one endpoint in G[t;] and the other in G[t,]. In this case, if P, € N, (resp. N,)

we can only replace the edges of P, that belong to Gt,| (resp. G[t¢]). On the other hand, if Py

has one endpoint, say, ps, in Ny and the other, say, p5, in N,, we insert P, into P; as follows:

Pl = [tlapla"'7p{ap/2a"'7p27p7£7"'7p/17t/1]'

,05,p1]- Thus, the resulting path is P; = [t1,po,...

terminal path Py = [t1,p1,. ..
of SE: say, P, = [tlapla s

We can also combine the operations connect and bridge to perform a new operation which we call a
connect-bridge operation; such an operation is depicted in Fig. 2(e) and is defined below.

o Connect-Bridge operation: Let P, = [t1,p1,..., Pk, t]] be a terminal path of the set T, (resp.
T,), where t; € T2 and t}; € T, and let Py, Ps, .. .
(resp. S}) and Peg1 ;... Ps be semi-terminal paths of the set SZ (resp. S7), where s is odd
and 3 < s < 2k + 3. We say that we connect-bridge the paths Ps, Ps, ..
Py, if we perform the following operations: (i) connect the path P with the path [t1]; (ii) bridge

553 pairs of different semi-terminal paths using vertices p1, p2, - . .

path [py41,...

., Ps11 be semi-terminal paths of the set S}

., Ps using vertices of

r = ,pr; and (iii) connect the

, Dk, t] with the last semi-terminal path P;.

The Connect-Bridge operation produces two paths having one endpoint in G[t;] and the other endpoint

in G[t,] and 52 paths having both endpoints in G[t,] (resp. G[t(]).

3 The Algorithm

We next present an optimal algorithm for the 2TPC problem on cographs. Our algorithm takes as input
a cograph G and two subsets 7' and 7?2 of its vertices, where 7' N 72 = (), and finds the paths of a
minimum 2TPC of G in linear time; it works as follows:

Algorithm Minimum_2TPC

1. Construct the co-tree T,,(G) of G and make it binary; let T(G) be the resulting tree;

2. Execute the subroutine process(root), where root is the root node of the tree T(G); the minimum
2TPC Par(root) = Par(G) is the set of paths returned by the subroutine;

where the description of the subroutine process() is as follows:

process (node t)
Input: node t of the modified co-tree T'(G) of the input graph G.
Output: a minimum 2TPC Pyr(t) of the cograph GJt].

1. if tis a leaf
then return({u}), where w is the vertex associated with the leaf ¢;
else {t is an internal node that has a left and a right child denoted by ¢, and ¢,, resp.}
Par(te) < process(te);
Par(t,) < process(t,);

2. if t is a P-node
then return(Par (te) U Par(tr));

3. if tis an S-node
then if |Ny| < |N,.| then swap(Par(te), Par (tr));

st =S} = |S7I;

s? = |57 = ISy ;

case 1: s'>0and s2>0
call procedure 27 PC'_1;

case 2: s' < 0ands?<0
it |N|+ min{Jsi], 52|} < [F(SEUS?UN)|
then call procedure 2T PC2_a;
else call procedure 2T PC_2_b;

case 3: (s!>0and s? <0)or (st <0 and s? > 0)
call procedure 27 PC'_3;

We next describe the subroutine process() in the case where ¢ is an S-node of T(G). Note that, if
|N¢| < |N.|, we swap Par(t;) and Por(t,). Thus, we distinguish the following three cases: (1) s >0
and s2 > 0, (2) s! < 0 and s? < 0, and (3) (s* > 0 and s < 0) or (s < 0 and s®> > 0). We next
describe case 1; cases 2 and 3 are similar.

Case 1: s! >0 and s2>0

Let SN, be the set of non-terminal paths obtained by breaking the set Sﬁ U Sf U N, into |Ng| —
1 + min{s!, s} non-terminal paths; thus, |SN,| < |F(S} U S2 U N,)|. In the case where [N, — 1 +
min{s', s*} > F(S!}US2UN,), the paths of SN, are trivial (recall that F/(S} US2UN,.) is the set of free
vertices belonging to the set S} US? U N,.). The paths of SN, are used to bridge at most 2min{s!, s?}
semi-terminal paths of S} U S? and, if |SN,| — min{s', s} > 0, at most |N;| non-terminal paths of N;.

We can construct the paths of a 2TPC using the following procedure:

Procedure 2TPC_1

1.

2.

connect the |S?| paths of S? with |S2| paths of S}, and the |S}| paths of S} with |S}| paths of S%;
bridge 2 min{s’, s?} semi-terminal paths of S} U S? using min{s’, s?} paths of SN,;

bridge the non-terminal paths of N, using |N;| — 1 non-terminal paths of SN;; this produces non-
terminal paths with both endpoints in G[t,], unless |N,| < |F(S}US2 U N,.)| — min{s', s*} where
we obtain one non-terminal path with one endpoint in G[t;] and the other in G[t,];

if [Ng| < |F(S}US?2UN,)| —min{s!, s?} insert the non-terminal path obtained in Step 3 into one
terminal path which is obtained in Step 1;

if |7,.| =[S} = |S?| =0 and |F(S}US2UN,)| > |Ny| + 1 construct a non-terminal path having
both of its endpoints in G[t.] and insert it into a terminal path of Ty;

if |T,.| = |S}| = |S?| = 0 and |F(N,)| > |N¢| + min{s?, s} construct a non-terminal path having
both of its endpoints in G[t,| and use it to connect two semi-terminal paths of S} U Sl?;

if s — min{min{s', s?}, |F(S} US2UN,)|} (resp. s* — min{min{s’, s?}, |F(S} USZUN,)|}) is
odd and there is at least one free vertex in S} U S? U N, which is not used in Steps 1-6, or there is
a non-terminal path having one endpoint in G[t,] and the other in G[¢,], connect one non-terminal
path with one semi-terminal path of S} (resp. S?);

connect-bridge the rest of the semi-terminal paths of S} U S? (at most 2(|F(T,)| + |T,|)) using
vertices of T};

insert non-terminal paths obtained in Step 3 into the terminal paths of T};

Based on the procedure 2TPC_1, we can compute the cardinality of the sets Ny, S}, S? and T;, and
thus, since N, (t) = |Ny| + |Si| +|T3| and |S;| = S} + SZ, the number of paths in the 2TPC constructed
by the procedure at node t € T(G). In this case, the values of |IVy|, |S;| and |T;| are the following:

|Ny] = max{p—«, 0}

1S}l = min{o}, max{o; — |F(T})| — |T;|, max{oj —07,0}}}

IS?| = min{o7, max{o} — |F(T})| - |T;|, max{o] —o0},0}}} (3)
1S:l = 1S} + 1S

ITy| = |S} +|S?| + min{min{s', s}, |F(S}US§UNT)|}+|T4|+|Tr|+ﬂlﬁzﬁ

o} =[S} —15? — min{min{s', s*}, |F(S}US?UN,)|},
of = |7l 18| - min{min{s’, s*}, |[F(S; USTUN,)I},
p = max{|Ny| — my, max{1 — max{|S}, |S2[}, 04} — max{|F(T,)] + T, — min{o}, 0?},0} -
min{max{min{|Ny| — 7., (c}),5(c?)},0}, max{min{ F(S} US?> U N,) — min{s', s?},1},0}},
a = min{max{min{m, — |Ne|, 1}, 0}, max{|Ty|, 0}}, and
. = max{|F(S}US2UN,)| —min{s', s°}, 0}.

In Eq. (3), 0} (resp. 07) is the number of semi-terminal paths of S} (resp. S?) that are not connected
or bridged at Steps 1-3. Furthermore, . is the number of free vertices in the set S} U S2 U N, that
are not used to bridge semi-terminal paths of S} U S? at Step 3 and § is a function which is defined as
follows: §(x) = 1, if = is odd, and §(z) = 0 otherwise. Note that at most |F(7.)| 4+ |T;-| non-terminal
paths can be inserted into the terminal paths of T, or the terminal paths can connect-bridge at most
2(|F(Ty)| + |T+|) semi-terminal paths.

4 Correctness and Time Complexity

Let G be a cograph, T(G) be the modified co-tree of G, and let 7' and 72 be the two terminal sets of
G. Since our algorithm computes a 2TPC P51 (t) of GJt] of size N, 1 (t) for each internal node ¢t € T(G),
and thus for the root ¢ = t,.,0 of the tree T(G), we need to prove that the constructed 2TPC Py, (¢) is
minimum. Obviously, the size Aoz (¢) of a minimum 2TPC of the graph GJt] is less than or equal to the
size A, (t) of the 2TPC constructed by our algorithm. According to Proposition 2.1, if the size of the
2TPC constructed by our algorithm is A, (t) = max{|7Z;}|,|7;?|}, then it is a minimum 2TPC. After
performing simple computations we get four specific values for the size A5, (t) of the 2TPC constructed
by our algorithm, that is, by the 2TPC procedures 1, 2_a, 2_b and 3. More precisely, if ¢ is an internal
S-node of T(G), our algorithm returns a 2TPC of size Ay, (¢) equal to either max{|Z;'|,|72|} + 1,
max{| 7}, | T2}, dar(te) — |F(Vi)|, or Aaz(t.) — |F(Vy)|; see Table 1. Specifically, in the case where
IS} = |92 = |T| = |SH = |S?| = 0 and |Ny| = |V;| procedure 2TPC_1 returns a 2TPC of the graph
G[t] of size Ny (t) = max{|7;}|, | 73|} + 1. We prove the following lemma, which shows that if the size
of the 2TPC returned by our subroutine process(t) for the graph G[t] is N, (t) = max{|Z;!|, |72} + 1
(procedure 2TPC_1), then it is a minimum 2TPC.

Lemma 4.1. Let ¢t be an S-node of T(G) and let Por(te) and Par(t;) be a minimum 2TPC of Gt
and Glt,], respectively. If |S}| = |SZ| = |T.] = |S}| = |S?| = 0 and |N¢| = |V,|, then the procedure
2TPC_1 returns a minimum 2TPC of G[t] of size oy (t) = max{|Z}|, |T2|} + 1.

Proof. Since we can construct a 2TPC of size N, (¢) = max{|7;}|,|T;2|} + 1, then the size A\a7(t) of a
minimum 2TPC is at most max{|7;'|,|Z;?|} + 1. We will show that we can not construct a minimum
2TPC of size less than max{|7;!|,|Z;2|} + 1, that is, we will show that \o7(t) > max{|7Z;}|, |7} + 1 &
o7 (t) > max{|Z;}|,|7;?|}. Thus, we only need to prove that A7 (t) # max{|7Z;}|,|Z;?|}. Note that by
the assumption we have max{|Z;|,|7;2|} = |T¢|. We assume that \a7(t) = max{|7;}|,|Z;|}, and, thus,
Aor (t) = |T¢|. There exists at least one non-terminal path in G[t¢]; for otherwise |N;| = 0, and thus
V, = 0, a contradiction. We ignore the terminal paths from the minimum 2TPC of GJt,] and apply
the algorithm described in [19] to G[t]. The resulting minimum 2TPC contains only one (non-terminal)
path which either has both endpoints in GJ[t,] or it has one endpoint in G[t,] and the other in G[t,].
This non-terminal path can not be inserted into a terminal path of G[t;] because it does not have both
endpoints in G[t,]. Thus, Ao7(¢) = |T¢| + 1, a contradiction. 1

Procedures Size of 2-terminal-set PC

Procedure 2TPC_1 max{|7'|, |72} + 1
All the procedures max{|Z}|, |72|}
Procedures 2TPC_1, 2TPC_2_a and 2TPC_3 Aot (te) — |F(V;)]
Procedure 2TPC_2_b Xor (tr) — |F(Vp)]

Table 1: The size of the 2TPC that our algorithm returns in each case.

Moreover, if the size of the 2TPC returned by the process(t) is max{|7Z;}|,|7Z;|} (all the procedures),
then it is obviously a minimum 2TPC of G[t]. We prove that the size \,,(t) of the 2TPC PL(¢) that
our subroutine process(t) returns is minimum.

Lemma 4.2. Lett be an S-node of T(G) and let Par(t;) and Par(t-) be a minimum 2TPC of G[t/| and
G|t,], respectively. If the subroutine process(t) returns a 2TPC of G[t] of size Nor(t) = max{|T;*|, |T.2|},
then Ayr (t) > max{Xor (te) — [F(V2)l, Aoz (t) — [F(Ve)[}-

Proof. Since Ny, (t) = max{|7;}|,|7;2|}, we have N, (t) = A2z (t), that is, the 2TPC that the subroutine
process(t) returns is minimum. Thus, the proof follows from Lemma 2.1. 1

Let ¢ be an S-node of T'(G) and let Par(t7) and Por(t,) be a minimum 2TPC of G[t,] and G[t,],
respectively. Furthermore, we assume that the conditions |S}| = [SZ| = |T,.| = |S}| = |S?| = 0 and
|N¢| = |Vr| do not hold together. We consider the case where the subroutine process(t) returns a 2TPC
PLr(t) of the graph G[t] of size Ny7(t) = Aar(te) — |F(V;)] (cases 1, 2.a and 3). We prove the following
lemma.

Lemma 4.3. Let t be an S-node of T(G) and let Por(te) and Par(t,) be a minimum 2TPC of Glte] and
Gltr], respectively. If the subroutine process(t) returns a 2TPC of G[t] of size Nor(t) = Aoz (t0) —|F (V;)],
then Xy (t) > max{max{|Z'|, |77}, Aoz (tr) — [F(Vy)[}.

Similarly we can show that if the subroutine process(t) returns a 2TPC of G[t] of size Ny, (t) =
Aot (t:) — |F(V2)| (case 2.b), then Xyr(¢) > max{max{|7Z;}|, |72}, ez (te) — |F(V;)|}. Thus, we can
prove the following result.

Lemma 4.4. Let ¢t be an S-node of T(G) and let Por(te) and Par(t;) be a minimum 2TPC of Gt
and G|[t.], respectively. The subroutine process(t) returns a 2TPC Par(t) of G[t] of size

max{|T;'|, |72} + 1 if |Ne| = |V | and

L — 1S} =157 = | = 72| =0,

ar(t) =
max{max{|T;'[,|T2|}, Aoz (te) — |[F(V2)l, Aoz (t,) — |[F(Ve)[} otherwise.

Obviously, a minimum 2TPC of the graph G[t] is of size Ao7 () < Xy1(¢). On the other hand, we have
proved a lower bound for the size A2z (t) of a minimum 2TPC of the graph G[t] (see Lemma 2.1), namely,

10

o7 (t) > max{max{|7;}|, 72|}, Aoz (te) — |F(Vi)l, Aoz (t,) — |F(Ve)|}. It follows that Aor(t) = Ao (2),
and, thus, we can state the following result.

Lemma 4.5. Subroutine process(t) returns a minimum 2TPC Por(t) of the graph G[t], for every
internal S-node t € T(G).

Since the above result holds for every S-node t of the modified co-tree T'(G), it also holds when ¢ is
the root of T(G) and 7, = 7' and 7, = 72. Thus, the following theorem holds:

Theorem 4.1. Let G be a cograph and let T' and T2 be two disjoint subsets of V(G). Let t be the
root of the modified co-tree T(G), and let Par(te) and Paz(t,) be a minimum 2TPC of Glte] and G[t,],
respectively. Algorithm Minimum_2TPC correctly computes a minimum 2TPC of G = G[t] with respect
to Tt =T,' and T? = T2 of size \a1 = \a7(t), where

Aot (tr) + A7 (te) if t is a P-node,
max{| 7|, |72} + 1 if t is an S-node and
Aot (1) = |N¢| = |V| and

|S¢1 = 1571 = 1T} =172 =0,
max{max{|Z![,|Z2[}, Ao (te) — [F(V:)], Aoz () — [F(V)[} otherwise.

Let G be a cograph on n vertices and m edges, 7' and 72 be two terminal sets, and let ¢ be an
S-node of the modified co-tree T(G). From the description of the algorithm we can easily conclude
that a minimum 2TPC Par(t) of G[t] can be constructed in O(E(GJt])) time, since we use at most
[V(G[te]))| - [V (GJtr])| edges to connect the paths of the minimum 2TPCs of the graphs G[t;] and G[t,];
in the case where ¢ is a P-node a minimum 2TPC is constructed in O(1) time. Thus, the time needed
by the subroutine process(t) to compute a minimum 2TPC in the case where ¢ is the root of the tree
T(G) is O(n + m); moreover, through the execution of the subroutine no additional space is needed.
The construction of the co-tree Teo(G) of G needs O(n + m) time and it requires O(n) space [7, 8].
Furthermore, the binarization process of the co-tree, that is, the construction of the modified co-tree
T(G), takes O(n) time. Hence, we can state the following result.

Theorem 4.2. Let G be a cograph on n vertices and m edges and let T* and T? be two disjoint subsets
of V(G). A minimum 2-terminal-set path cover Par of G can be computed in O(n+m) time and space.

References

[1] G.S. Adhar and S. Peng, Parallel algorithm for path covering, Hamiltonian path, and Hamiltonian cycle
in cographs, Int’l Conference on Parallel Processing, Vol. III: Algorithms and Architecture, Pennsylvania
State University Press, 1990, pp. 364-365.

[2] S.R. Arikati and C.P. Rangan, Linear algorithm for optimal path cover problem on interval graphs, Inform.
Process. Lett. 35 (1990) 149-153.

[3] K. Asdre and S.D. Nikolopoulos, A Linear-time Algorithm for the k-fixed-endpoint path cover problem on
cographs, Networks 50 (2007) 231-240.

[4] K. Asdre and S.D. Nikolopoulos, A polynomial solution for the k-fixed-endpoint path cover problem on
proper interval graphs, Proc. 18th International Conference on Combinatorial Algorithms (IWOCA’07),
Lake Macquarie, Newcastle, Australia, 2007.

11

[5]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

23]

[24]

[25]

K. Asdre, S.D. Nikolopoulos, and C. Papadopoulos, An optimal parallel solution for the path cover problem
on Py-sparse graphs, J. Parallel Distrib. Comput. 67 (2007) 63-76.

A. Brandstddt, V.B. Le, and J. Spinrad, Graph classes — A survey, STAM Monographs in Discrete Mathe-
matics and Applications, STAM, Philadelphia, 1999.

D.G. Corneil, H. Lerchs, and L. Stewart Burlingham, Complement reducible graphs, Discrete. Appl. Math.
3 (1981) 163-174.

D.G. Corneil, Y. Perl, and L.K. Stewart, A linear recognition algorithm for cographs, SIAM J. Comput.
14 (1985) 926-984.

P. Damaschke, Paths in interval graphs and circular arc graphs, Discrete Math. 112 (1993) 49-64.

P. Damaschke, J.S. Deogun, D. Kratsch, and G. Steiner, Finding Hamiltonian paths in cocomparability
graphs using the bump number algorithm, Order 8 (1992) 383-391.

M.R. Garey and D.S. Johnson, Computers and intractability: A guide to the theory of NP-completeness,
W.H. Freeman, San Francisco, 1979.

M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980. Second
edition, Annals of Discrete Mathematics 57, Elsevier, 2004.

W. Hochstéattler and G. Tinhofer, Hamiltonicity in graphs with few Ps’s, Computing 54 (1995) 213-225.

S.Y. Hsieh, An efficient parallel strategy for the two-fixed-endpoint Hamiltonian path problem on distance-
hereditary graphs, J. Parallel Distrib. Comput. 64 (2004) 662—685.

S.Y. Hsieh, C.W. Ho, T.S. Hsu, and M.T. Ko, The Hamiltonian problem on distance-hereditary graphs,
Discrete. Appl. Math. 154 (2006) 508-524.

R.W. Hung and M.S. Chang, Linear-time algorithms for the Hamiltonian problems on distance-hereditary
graphs, Theoret. Comput. Sci. 341 (2005) 411-440.

R.W. Hung and M.S. Chang, Solving the path cover problem on circular-arc graphs by using an approxi-
mation algorithm, Discrete. Appl. Math. 154 (2006) 76-105.

H.A. Jung, On a class of posets and the corresponding comparability graphs, J. Combinatorial Theory (B)
24 (1978) 125-133.

R. Lin, S. Olariu, and G. Pruesse, An optimal path cover algorithm for cographs, Comput. Math. Appl. 30
(1995) 75-83.

R.M. McConnell and J. Spinrad, Modular decomposition and transitive orientation, Discrete Math. 201
(1999) 189—241.

H. Miiller, Hamiltonian circuits in chordal bipartite graphs, Discrete Math. 156 (1996) 291-298.

K. Nakano, S. Olariu, and A.Y. Zomaya, A time-optimal solution for the path cover problem on cographs,
Theoret. Comput. Sci. 290 (2003) 1541-1556.

S.D. Nikolopoulos, Parallel algorithms for Hamiltonian problems on quasi-threshold graphs, J. Parallel
Distrib. Comput. 64 (2004) 48-67.

R. Srikant, R. Sundaram, K.S. Singh, and C.P. Rangan, Optimal path cover problem on block graphs and
bipartite permutation graphs, Theoret. Comput. Sci. 115 (1993) 351-357.

Y. Suzuki, K. Kaneko, and M. Nakamori, Node-disjoint paths algorithm in a transposition graph, IEICE
Trans. Inf. & Syst. E89-D (2006) 2600-2605.

12

APPENDIX
(To assist the reviewers)

A.1. The Cases 2 and 3 of the Subroutine process()

Case 2: s' <0and s <0

In this case, we need |N,| + min{|s!|,|s?|} paths of G[t,] in order to bridge |N,| non-terminal paths of
N, and 2min{|s!|, |s?|} semi-terminal paths of S} US2. If |N,| < | N,|+min{|s?|, |s?|} we break the non-
terminal paths of N, into at most |F(N,)| paths; in the case where |F(N;)| < |N,.| + min{|s!|, |s?|} we
also use (at most |F(S}US?)|) vertices of S§ US?. Let p = min{|N,|+min{|s'|, [s*|}, |F(S}USZUN,)|}.
We distinguish two cases:

2.a |N,|+ min{|st|, [s?|} < |F (S} USZ U Ny

In this case, p = |N,| + min{|s'|,|s?|} and the number of non-terminal paths (or free vertices) of G[t]
is sufficient to bridge non-terminal paths of NN, and semi-terminal paths of S} U S2. In detail, let SN,
be the set of non-terminal paths obtained by breaking the set St} U Sg U Ny into p non-terminal paths
in order to bridge 2min{|s!|,|s?|} semi-terminal paths of S! U S? and all the non-terminal paths of
N,. If p < |N,| then SN, = N,. Obviously, |SNy| < |F(S} U S? U N;)|. Note that, if p < |N;| then
the non-terminal paths of IV, are used to bridge the paths of Ny,. More precisely, we use paths of the
set SN, (it is the set of non-terminal paths that we get by breaking the set S! U S2 U N,) in order
to obtain |Ny| — min{|s!|,|s?|} non-terminal paths. If p > |N,| we set SN, = N, and we use at most
|F(S} US? U Ny)| paths obtained by S} U S? U Ny in order to bridge non-terminal paths of N, and
semi-terminal paths of S} U S2, that is, we use the set SN,. As a result, we construct min{|s*|,|s?|}
terminal paths having both of their endpoints in G[t,] and we have at least one non-terminal path, if
p < |Ng|, and exactly one non-terminal path, otherwise. Note that, in the second case, we can construct
the non-terminal path in such a way that one endpoint is in SN, and the other is in NV,.. We construct
the paths of a 2TPC at node ¢t € T(G) using the following procedure:

Procedure 2TPC_2_a
1. connect the |S}| paths of S} with |S}| paths of S?, and the |S?| paths of S? with |S7| paths of S};

2. if |T;| = |T,;| = 0 and p > |Ny|, use N, to bridge p — min{|s!|,|s?|} + 1 paths of SN, and use the
constructed non-terminal path having both of its endpoints in G[t¢] to bridge two semi-terminal
paths of S} U SZ;

3. bridge semi-terminal paths of S}! U S? using paths of SNy;

4. if |T| = 0,|Ty| # 0, p > |N¢| and |F(S} U S2 U N,)| > |SN;| — min{|s!]|, |s?|} construct a non-
terminal path having both of its endpoints in G[t,] and use a terminal path of Ty to insert the
constructed non-terminal path;

5. bridge the remaining paths of SN, using the paths of SN,.. This produces non-terminal paths one
of which has one endpoint in G[t;] and the other in G[t,[;

6. if |s?| — min{|s'|,|s?|} (resp. |s'| — min{|s?|,|s?|}) is odd, we connect one non-terminal path with
one semi-terminal path of S} (resp. S?);

7. insert at most |F(7T,)| + |T;| non-terminal paths obtained in Step 5 into the terminal paths of T};

13

Based on the path operations performed by procedure 2TPC_2_a, we can compute the cardinalities of
the sets Ny, S; and Ty:

|IN:] = max{p—«, 0}
1S{| = max{|s?| - [s'[, 0}
1S7| = max{|s'| - [s?|, 0} (4)
1Se| = [SF+1S7]
ITe| = [S¢]+[SFl+min{[s'|, |s*[} + |Te| + |T;|
where
po= max{|Ne| — F(S; US?UN,), 0} —min{|s'|, |s*|} = [F(T;)| - |T+| -
max{6(|s'| — min{[s'[, [s*|}),d(|s*| — min{|s'|, |s*})}, and
a = min{max{min{F(S} US?UN,) — [N¢|, 1}, 0}, max{|Ty|, 0}}.

2.b |N,| +min{|s'|, [s2[} > |F(S} U SZUN,)|.

In this case, p = |F(S} U S? U Ny)| and the number of free vertices of G[t,] (that is, in S} U S? U Ny)
is not sufficient to bridge non-terminal paths of N, and semi-terminal paths of S} U S2. In detail,
let SN, be the set of the trivial, non-terminal paths, obtained by breaking the set S} U Sg U Ny into
|F(S} USZU N;)| non-terminal paths. We can construct the paths of a 2TPC at node t € T(G) using
the following procedure:

Procedure 2TPC_2_b
1. connect the |S}| paths of S} with |S}| paths of S?, and the |S?| paths of S7 with |S?| paths of S};
2. bridge 2min{|s!|, |s?|} semi-terminal paths of S} U S? using min{|s!|, |s?|} paths of SN;

3. bridge the non-terminal paths of IV,. using the rest of the non-terminal paths of SN,. This produces
non-terminal paths such that both endpoints belong to G[t,];

4. connect-bridge the rest of the semi-terminal paths of S} U S? (at most 2(|F(1)| + |T|)) using
vertices of Ty;

5. insert non-terminal paths obtained in Step 3 into the terminal paths of Ty;

Based on the procedure 2TPC_2_b, we can compute the cardinalities of non-terminal, semi-terminal and
terminal sets:

N = max{u, 0}
1S{| = min{o;, max{o; — [F(T0)| - |T¢|, max{o; —o7,0}}}
17| = min{o7, max{o} — |F(T})| - [T¢|, max{o; —o;,0}}} (5)
S = s 1S -
T = IS} + |2 + min{min{|s!], [s%]}, [F(S}USZUN[}+ [Te] + [T | + 2215
where

op = |Si = |7 — min{min{|s'|, [s*[}, [F(S; USFU N},

op = |87 =S¢ — min{min{|s'|, [s*[}, [F(S; USFU N},

g = |N.| —m — min{max{min{|F(S} US? U N;)| — min{|s'|, |s*|}, 1}, 0},

max{min{|N,| — 7, §(|s'|), §(|s*])}, 0}} — max{|F(Ty)| + |T¢| — min{o}, o2}, 0}, and
7w = max{|F(S}US?UN,)| —min{|s'|, |s*|}, 0}.

14

In Eq. (5), o} (resp. 02) is the number of semi-terminal paths of S} (resp. S?) that are not connected
or bridged at Steps 1-3. Moreover, 7, is the number of free vertices that belong to the set S} US? U N,
and are not used to bridge semi-terminal paths of S} U S? (at Step 3). Again, 6(z) = 1, if = is odd,
and §(z) = 0 otherwise. Note that at most |F(T})| + |T¢| non-terminal paths can be inserted into the
terminal paths of Ty or the terminal paths can connect-bridge at most 2(|F(T)| + |7|) semi-terminal

paths.

Case 3: (s > 0 and s? < 0) or (s! <0 and s? > 0)

Let SN, be the set of non-terminal paths which are used to bridge at most |Ny| non-terminal paths of
Ny; it is obtained by breaking the set S! U S? U N, into |Ny| — 1 non-terminal paths. In the case where
|N¢| — 1> F(S}US?UN,), the paths of SN, are trivial. We can construct the paths of a 2TPC using
the following procedure:

Procedure 2TPC_3

1. connect min{|S}|,|S?|} paths of S} with min{|S}|, |S?|} paths of S2, and min{|SZ|,|S!|} paths of
52 with min{|S?|, |S}|} paths of S};

2. bridge the non-terminal paths of N, using |Ny| — 1 non-terminal paths of SN;.; this produces non-
terminal paths with both endpoints in G[t,], unless |N,| < |F(S}US2U N,.)| where we obtain one
non-terminal path with one endpoint in G[ts] and the other in G[t,];

3. if |[Ng| < |F(S}US?UN,)| insert the non-terminal path obtained in Step 2 into one terminal path
which is obtained in Step 1;

4. if there is at least one free vertex in S} U S? U N, which is not used in Steps 1-3, or there is a
non-terminal path having one endpoint in G[t;] and the other in G[t,|, connect one non-terminal
path with one semi-terminal path of S} U S7;

5. if there is a non-terminal path having at least one endpoint in G[t;], connect it with one semi-
terminal path of S! U S?;

6. insert non-terminal paths obtained in Step 2 into the terminal paths of 7;

Based on the procedure 2TPC_3, we can compute the values of |Ny|, | S| and |T}|:

INe| = max{|Ny| — |[F(V;)| = |T;| — max{o}, 07}, 0}
St = oi+o;
S| = o} + 0} (6)
1S:] =[S+ 157
T = min{|S¢], [S?[} +min{|S7|, [S}} + |[Te| + |T|
where
o = max{|S;| —[S?[, 0},
o7 = max{|S}| —[S}], 0},
oy = max{|S}|—|S7|, 0}, and
o = max{|S}|—|S;|, 0}.

In Eq. (6), o} (resp. 0?) is the number of semi-terminal paths of S} (resp. S7) that are not connected
at Step 1 (resp. Step 2) and o} (resp. 02) is the number of semi-terminal paths of S} (resp. S?) that
are not connected at Step 2 (resp. Step 1).

15

A.2. Proof of Lemma 4.3

Lemma 4.3. Let t be an S-node of T'(G) and let Par(te) and Par(t,) be a minimum 2TPC of G[t/| and
Glty], respectively. If the subroutine process(t) returns a 2TPC of G[t] of size Aoz (t) = dor (te) —|F(Vy)],
then Xyr (t) > max{max{|Z'|,|Z2[}, Aoz (t) — [F(Vo)|}.

Proof. We consider the cases 1, 2.a and 3. In these cases, the size A, (¢) of the constructed 2TPC is

computed using Egs. (3), (4) and (6) and the fact that A\, (t) = |N¢| + |S¢| + |T¢|. After performing

simple computations, we conclude that in these cases the subroutine process(t) (cases 1, 2.a) returns
L (t) = Ao (te) — |F(V;)] if the following condition holds:

| Ne| = max{|s], |s*[} > [F(V;)] + |T5]. (7)

In case 3 subroutine process(t) returns A5 (t) = Aoz (t¢) — |F'(V;)] if the following condition holds:

[Ne| +min{s', s} > [F(V,)] +|T]. (8)
We will show that (i) Ay, (t) > max{|Z}|, |72} and, (ii) Ao (t) > Aoz (t.) — |F(V2)|. According to
Proposition 2.1 and since G[t] is a cograph, we have:

T = |Se| + 1S + 1 Te| + |T7| and |T2| = |S7| + |S?| + |Tel + | T3

(i) We first show that A, (t) = Aoz (te) — |F(V,)| > max{|Z;}|,|Z|}. Consider the case where s!' > 0
and s2 > 0, and let s' < s2; equivalently,

1821 = 1S < S71 = 1821 = 18]+ 1Sp] + |Tel + [T < |SE] + ISP| + [Tl + |To | = [T < |T7).
By Proposition 2.1 and Eq. (7) we obtain |Ny| + |S}|+|SZ|+ [T¢| — |F(V;)| > |T| + max{s’, s?} + |S}| +
1S7| + | Tel = |72 = [S7] + |S; | + max{s’, s?} = |T?| + s' + s* > | T = max{|T;"|, |7*|}.

Since Ao (te) — |F(V;)| = |Ne| + |SE| + |SZ| + |To| — |F(V,)|, it follows that Aoz (t;) — |F(Vi)| >
max{|T;'|, |Z*}.

Now let s' > s?; equivalently,

|Se1 = 1S71 = |SF] = 1S} & | T = |72,
By Proposition 2.1 and Eq. (7) we obtain |Ny| 4+ |S}|+|SZ|+ [T¢| — |F(V;)| > |T;| + max{s', s*} + |S}| +
[SE+ T2l = 1T = S + |S7] + max{s’, s*} = |T'[+ 5* + s' > |T}!| = max{|T,"|, |Z[}.

Similarly, we can show that A, (t) = Xaz(t¢) — |F(V;)| > max{|T;}|,|Z;2|} for the cases where s! < 0
and s? < 0, s' > 0 and s? < 0, and s' < 0 and s? > 0.

(ii) We next show that Nor(t) = Az (te) — |[F(V;)| > Aoz (t,) — |F(Ve)|. Consider the case where s! > 0
and s2 > 0. From Eq. (7) and since

INw| < [Ne| < [F(Ne)| & [Ny < [F(Vi)| & [Ne| = [F(Ve)] <0,

we obtain | Np|+[S| +[S7| +|Tp| = [F(Ve)| < [Ny|+[Sp[+|SZ] = [F (Vi) + |Ne| —max{s’, s?} — [F(V;)| <
[Spl 4 |92+ [Ne| — max{s’, s?} — [F(V)| < [SF] + S| + [Nel = [F(Vo)| < Az (te) = [F(V2)]-

Similarly, we can show that Xy (t) = Az (t¢) — |F(V;)| > e () — | F(Ve)] for the cases where s! < 0
and s? < 0, s' > 0 and 5% < 0, and s' < 0 and 52 > 0.

16

