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Abstract

In this paper, we consider the recognition problem on a class of perfectly orderable graphs,

namely, the HHD-free graphs, i.e., graphs that do not contain any induced subgraph isomorphic

to a house, a hole, or a domino. We prove properties of the HHD-free graphs which enable us to

present an O(n m)-time and O(n + m)-space algorithm for determining whether a given graph G

on n vertices and m edges is HHD-free. We also describe how the algorithm can be augmented to

provide a certificate (an induced house, hole, or domino) whenever it decides that the input graph

is not HHD-free; the certificate computation requires O(n + m) additional time and O(n) space.

Keywords: HHD-free graphs, perfectly orderable graphs, certifying algorithms, recognition.

1 Introduction

A linear order ≺ on the vertices of a graph G is perfect if the ordered graph (G,≺) contains no induced

P4 abcd with a ≺ b and d ≺ c (such a P4 is called an obstruction). In the early 1980s, Chvátal [2]

defined the class of graphs that admit a perfect order and called them perfectly orderable graphs. The

interest in perfectly orderable graphs comes from the fact that several problems in graph theory, which

are NP-complete in general graphs, have polynomial-time solutions in graphs that admit a perfect

order [1, 5]; unfortunately, it is NP-complete to decide whether a graph admits a perfect order [12].

Since the recognition of perfectly orderable graphs is NP-complete, we are interested in characterizing

graphs which form polynomially recognizable subclasses of perfectly orderable graphs. Many such

classes of graphs, with very interesting structural and algorithmic properties, have been defined so far

and shown to admit polynomial-time recognitions (see [1, 5]); note however that not all subclasses of

perfectly orderable graphs admit polynomial-time recognition [7].

In this paper, we consider the class of HHD-free graphs: a graph is HHD-free if it contains no

induced subgraph isomorphic to a house, a hole (i.e., a chordless cycle on ≥ 5 vertices), or a domino

(see Figure 1). The HHD-free graphs properly generalize the class of chordal (or triangulated) graphs

[5]. In [8], Hoàng and Khouzam proved that the HHD-free graphs admit a perfect order, and thus are

perfectly orderable. A superclass of the HHD-free graphs, which also properly generalizes the class of

chordal graphs, is the class of HH-free graphs: a graph is HH-free if it contains no induced subgraph

isomorphic to a house or a hole. Although an HH-free graph is not necessarily perfectly orderable, the

complement of any HH-free graph is; this was conjectured by Chvátal and proved by Hayward [6].

Hoàng and Khouzam [8], while studying the class of brittle graphs (a well-known class of perfectly

orderable graphs which contains the HHD-free graphs), showed that HHD-free graphs can be recognized
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house hole domino P A building

Figure 1: Some simple graphs.

in O(n4) time, where n denotes the number of vertices of the input graph. An improved result was

obtained by Hoàng and Sritharan [9] who presented an O(n3)-time algorithm for recognizing HH-free

graphs and showed that HHD-free graphs can be recognized in O(n3) time as well; for each vertex v

of the input graph, their algorithm relies on computing the chordal completion of the (ordered) non-

neighbors of v, and checking whether the resulting graph is chordal. A further improvement was

achieved by Nikolopoulos and Palios [14]: based on properties characterizing the chordal completion

of a graph, they were able to avoid performing the chordal completion step, which is the most time-

consuming ingredient of the algorithm in [9], and described algorithms for recognizing HH-free and

HHD-free graphs that require O(n min{m α(n, n), m+n log n}) time and O(n+m)-space, where m is

the number of edges of the input graph, and α( , ) denotes the very slowly growing functional inverse

of Ackerman’s function.

On other related classes of perfectly orderable graphs, Eschen et al. [4] recently described recognition

algorithms for several of them, among which a recognition algorithm for HHP-free graphs; a graph

is HHP-free if it contains no hole, no house, and no “P” as induced subgraphs (see Figure 1). Their

algorithm is based on the property that every HHP-free graph is HHDA-free graph (a graph with

no induced hole, house, domino, or “A”), and thus a graph G is HHP-free graph if and only if G is

HHDA-free and contains no “P” as an induced subgraph. The characterization of HHDA-free graphs

due to Olariu [15] (a graph G is HHDA-free if and only if every induced subgraph of G either is chordal

or contains a non-trivial module) and the use of modular decomposition [11] allowed Eschen et al. to

present an O(n m)-time recognition algorithm for HHP-free graphs.

In this paper, we present a new, faster algorithm for recognizing HHD-free graphs. For each

vertex v of a given graph G, our algorithm computes the partition of the non-neighbors of v into sets

of vertices based on their common neighbors with v, and following that, the connected components of

the subgraphs induced by these partition sets. We show that if G is HHD-free, the graph obtained

from G by shrinking each of these connected components into a single vertex is “almost chordal.” As

a result, we obtain an O(n m)-time and O(n + m)-space algorithm for determining whether a graph

on n vertices and m edges is HHD-free. We also describe how the algorithm can be augmented to

provide a certificate (an induced house, hole, or domino) whenever it decides that the input graph is

not HHD-free; the certificate computation requires O(n + m) additional time and O(n) space.

The paper is structured as follows. In Section 2, we review the terminology and the notation

that we use throughout the paper. In Section 3, we establish properties that enable us to efficiently

determine whether a given graph is HHD-free, describe the algorithm, and give its analysis and the

certificate computation. Section 4 summarizes our results and presents some open problems.

2 Terminology - Notation

We consider finite undirected graphs with no loops or multiple edges. Let G be such a graph; then,

V (G) and E(G) denote the set of vertices and of edges of G respectively. The subgraph of G induced

by a subset S of G’s vertices is denoted by G[S]. The vertices adjacent to a vertex x of G form the
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neighborhood N(x) of x; the cardinality of N(x) is the degree of x. The closed neighborhood of x is

defined as N [x] := N(x) ∪ {x}. We extend the notion of the neighborhood to sets as follows: for a

set A ⊆ V (G), we define N(A) :=
(
⋃

x∈A N(x)
)

−A and N [A] := N(A) ∪A.

A path in a graph G is a sequence of vertices v0v1 · · · vk such that vi−1vi ∈ E(G) for i = 1, 2, . . . , k;

we say that this is a path from v0 to vk and that its length is k. A path is called simple if none

of its vertices occurs more than once; it is called trivial if its length is equal to 0. A path (simple

path) v0v1 · · · vk is called a cycle (simple cycle) of length k + 1 if v0vk ∈ E(G). An edge connecting

two non-consecutive vertices in a simple path (cycle) is called a chord; then, a simple path (cycle)

v0v1 · · · vk of a graph G is chordless if G contains no chords of the path (cycle), i.e., vivj /∈ E(G)

for any two non-consecutive vertices vi, vj in the path (cycle). The chordless path (chordless cycle,

respectively) on n vertices is commonly denoted by Pn (Cn, respectively).

A connected component of a graph G is a maximal set A ⊆ V (G) such that the subgraph G[A] is

connected, i.e., there exists a path in G connecting any two vertices in A.

3 The Algorithm

In a fashion similar to the algorithms in [9, 14], our algorithm processes each vertex v of the input

graph G and checks whether v participates in a hole, is the top vertex of a house or a building (see

Figure 1), or is a corner vertex of a domino. Note that all these subgraphs include a path y1uvwy2

where y1, y2 are non-neighbors of v; it is interesting to observe that the vertices y1, y2 have different

common neighbors with v. This suggests that it may be a good idea to partition the set of non-

neighbors of v based on their common neighbors with v, to shrink each of these partition sets into

a single super-vertex, and then to work with the resulting graph. This is reinforced by the following

observation.

Observation 3.1 Let G be a graph, v a vertex of G, and y1, y2 be two non-neighbors of v in G such

that |N(y1) ∩ N(v)| = |N(y2) ∩ N(v)| and N(y1) ∩ N(v) 6= N(y2) ∩ N(v). If y1y2 ∈ E(G), then G

contains an induced house or C5.

Proof: Since N(y1)∩N(v) 6= N(y2)∩N(v) and |N(y1)∩N(v)| = |N(y2)∩N(v)|, there exist vertices

u, w ∈ N(v) such that u ∈ N(y1)−N(y2) and w ∈ N(y2)−N(y1). But then, the vertices v, u, y1, y2, w

induce a house or a C5 depending on whether u, w are adjacent or not.

However, shrinking each of the different partition sets into a single vertex leads to error as the

following example indicates: consider the graph G on the left of Figure 2 which contains no hole,

house, or domino; the partition of the non-neighbors of v based on the common neighbors with v

yields the sets P, Q, R; shrinking these sets into vertices x, y, z, respectively, yields the graph on the

right of Figure 2, which contains the hole vaxyzc.

A closer look at the example reveals that the error is due to the fact that the two connected

components of the subgraph G[Q] induced by the partition set Q in Figure 2 were shrunk into the

same vertex. This suggests that if we intend to apply a shrinking mechanism, we need to treat the

connected components of the partition sets as separate entities. In detail, we do the following:

. consider the partition of the non-neighbors M(v) of vertex v in G based on the common neighbors

of the vertices in M(v) with v and let (S1, S2, . . . , S`) be an ordering of the partition sets by

non-decreasing number of such common neighbors;

. for each set Si, consider the connected components of the subgraph G[Si];
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Figure 2: Shrinking the partition sets into vertices may lead to error.

. we construct an auxiliary graph Gv by shrinking each of these connected components into a

single vertex: namely, for each i = 1, 2, . . . , `, let

Zi = { zC1
, zC2

, . . . , zCti
| C1, C2, . . . , Cti

are the conn. components of G[Si] }; (1)

then

V (Gv) = {v} ∪ N(v) ∪
(
⋃`

i=1 Zi

)

E(Gv) = {u w | u, w ∈ {v} ∪N(v) : uw ∈ E(G) }

∪ {u zC | u ∈ N(v), ∃x ∈ conn. component C of G[Si] : ux ∈ E(G) }

∪ { zC zC′ | ∃x, y ∈ conn. components C and C ′ of G[Si] and G[Sj ], resp., where i 6= j :

xy ∈ E(G) }.

Note that when a component C is shrunk into a vertex zC , then (i) zC is adjacent to a vertex u ∈ N(v)

iff there exists a vertex x ∈ C such that ux ∈ E(G), and (ii) zC is adjacent to vertex zC′ corresponding

to a component C ′ 6= C iff there exist vertices x ∈ C and y ∈ C ′ such that xy ∈ E(G). The following

result has important implications for the graph Gv.

Lemma 3.1 Let G be an HHD-free graph, v a vertex of G, and A, B, C connected components of

the subgraphs G[Si], G[Sj ], G[Sk] induced by three distinct partition sets Si, Sj , Sk, respectively, where

i < j < k. Suppose further that there exist non-neighbors x, x′, y, z of v in G, where x, x′ ∈ A, y ∈ B,

z ∈ C, such that xz ∈ E(G) and x′y ∈ E(G). Then, yz ∈ E(G).

Proof: Suppose for contradiction that yz 6∈ E(G). Because G is HHD-free and x′y ∈ E(G), then

Observation 3.1 implies that |N(x′) ∩ N(v)| 6= |N(y) ∩ N(v)|; in fact since i < j, |N(x′) ∩ N(v)| <

|N(y) ∩ N(v)|, which implies that there exists a vertex u ∈ (N(y) − N(x′)) ∩ N(v). Moreover, since

j < k, we have that |N(y) ∩ N(v)| ≤ |N(z) ∩ N(v)|, and because j 6= k, there exists a vertex w ∈

(N(z)−N(y)) ∩N(v). We consider the following cases:

a) uz ∈ E(G): Then, x = x′, otherwise the graph G would contain the hole uzx · · ·x′y. But then,

if wx ∈ E(G), the vertices v, w, x, y, u would induce a house or a C5 in G depending on whether

uw ∈ E(G) or not, whereas if wx 6∈ E(G), G would contain a house induced by u, y, x, z, w or a

domino induced by v, u, y, x, z, w depending on whether uw ∈ E(G) or not; see the graph on the

left in Figure 3.

b) uz 6∈ E(G): Then, if wx ∈ E(G), the vertices v, w, x′, y, u would induce a house or a C5 in the

graph G depending on whether uw ∈ E(G), whereas if wx 6∈ E(G), G would contain the hole

wzx · · ·x′yu or vwzx · · ·x′yu depending on whether uw ∈ E(G) (no matter whether x is equal

to x′ or not); see the graph on the right in Figure 3.
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Figure 3: For the proof of Lemma 3.1 (edges that may or may not exist are shown dashed).

In all cases, we concluded that the graph G would contain an induced house, hole, or domino, which

contradicts the assumption that G is HHD-free; thus, yz ∈ E(G).

In terms of the graph Gv, Lemma 3.1 implies the following corollary:

Corollary 3.1 Let G be an HHD-free graph, v a vertex of G, Gv the auxiliary graph described earlier

in terms of G and v, and zA, zB , zC be vertices of Gv such that zA ∈ Zi, zB ∈ Zj, and zC ∈ Zk where

i < j < k. If zAzB ∈ E(Gv) and zAzC ∈ E(Gv), then zBzC ∈ E(Gv).

Lemma 3.1 and Corollary 3.1 prove very useful in the special case in which the graph G is such

that for every edge xy ∈ E(G), where x belongs to a connected component A of a subgraph G[Si]

and y belongs to a connected component B of G[Sj ] with j > i, no vertex in A is adjacent to any

vertex in Sj − B. In this case, in the auxiliary graph Gv, for all 1 ≤ i < j ≤ `, any vertex in Zi (i.e.,

corresponding to a connected component of the subgraph G[Si]) is adjacent to at most one vertex in

each Zj (i.e., corresponding to a component of G[Sj ]). Then, if G is HHD-free, Corollary 3.1 implies

that the subgraph Gv[
⋃`

t=1 Zt] of Gv induced by the non-neighbors of v is chordal, and hence no

chordal completion is needed. In general, however, G may have edges xy and x′z, where x, x′ belong

to a connected component of a subgraph G[Si] and y, z belong to distinct connected components of

G[Sj ] with j > i; then, we take advantage of the following lemma.

Lemma 3.2 Let G be an HHD-free graph, A a connected component of the subgraph G[Si], and B, B′

distinct connected components of G[Sj ], where j > i, such that G contains edges connecting a vertex

in A to a vertex in B, and a vertex in A to a vertex in B′. Then:

(i) In G, each vertex in A that is adjacent to at least one vertex in B ∪ B′ is adjacent to all the

vertices in B ∪B′.

(ii) If C is a connected component of the subgraph G[Sk], where k > j, such that G contains an edge

connecting a vertex in B to a vertex in C. Then, in G, each vertex in C that is adjacent to at

least one vertex in B ∪B′ is adjacent to all the vertices in B ∪B′.

Proof: The facts that the graph G is HHD-free and contains an edge connecting a vertex in A to a

vertex in B, that B, B′ are connected components of G[Sj ], and that i < j imply that

∀ a ∈ A, b ∈ B, b′ ∈ B′, N(a) ∩N(v) ⊂ N(b) ∩N(v) = N(b′) ∩N(v);

otherwise, G would contain an induced house or C5, a contradiction. Then, there exists a vertex u ∈

N(v) that is adjacent to all the vertices in B ∪B′ and to no vertex in A.
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Figure 4: For the proof of Lemma 3.2.

(i) Consider a vertex a ∈ A that is adjacent to a vertex b ∈ B; we will show that a is adjacent to all

the vertices in B ∪ B′. Because there exists an edge connecting a vertex in A to a vertex in B′ and

because the subgraph G[A] is connected, G contains a chordless path connecting a to a vertex b′ ∈ B′,

whose vertices belong to A except for b′; if this path were of length greater than 1, then its vertices

along with u and b would induce a house, a hole, or a domino depending on which vertices of the path

are adjacent to b (see Figure 4(a)); this is a contradiction. Thus, the path is of length 1, and a is

adjacent to b′ in G. In fact, a is adjacent to all the vertices in B′; if a were not adjacent to a vertex in

B′, then because the subgraph G[B′] is connected and ab′ ∈ E(G), there exist vertices x, y ∈ B′ such

that {ax, xy} ⊆ E(G) and ay 6∈ E(G). Then, the vertices u, a, b, x, y would induce a house in G with

y at its top; see Figure 4(b). Similarly, since a is adjacent to a vertex in B′, we can show that a is

adjacent to all the vertices in B. In summary, a is adjacent to all the vertices in B ∪B′.

(ii) Consider a vertex c ∈ C that is adjacent in G to a vertex b ∈ B. Then, because the graph G is

HHD-free and j < k, we have that N(b) ∩ N(v) ⊂ N(c) ∩ N(v), which implies that the vertex u is

adjacent to all the vertices in C. Let a be a vertex in A that is adjacent to at least one vertex in

B ∪ B′; then, in accordance with part (i), a is adjacent to all the vertices in B ∪ B′. If ac ∈ E(G),

then because a is adjacent to all the vertices in B ∪B′, Lemma 3.1 implies that c is adjacent to all the

vertices in B∪B′. If ac 6∈ E(G), then c is adjacent to all the vertices in B′, for if there was b′ ∈ B′ such

that b′c 6∈ E(G), the vertices a, b, b′, c, u would induce a house in G with c at its top; see Figure 4(c).

In turn, by the symmetry of B and B′, the fact that c is adjacent to a vertex in B′ implies that c is

also adjacent to all the vertices in B.

It is worth noting that although in an HHD-free graph, each vertex in A∪C that is adjacent to at least

one vertex in B ∪ B′ is in fact adjacent to each vertex in B ∪ B′, it is not necessarily true that each

vertex in B ∪B′ is adjacent to each vertex in A∪C; consider the HHD-free graph shown in Figure 5.

Lemma 3.2, statement (ii) implies that if in an HHD-free graph G there exist edges connecting

vertices of a connected component A of a subgraph G[Si] to vertices in at least 2 connected components

B1, B2, . . . , Bk of a subgraph G[Sj ] where j > i, then the vertices in B1 ∪ B2 ∪ . . . ∪ Bk are adjacent

to the exact same neighbors in
(
⋃`

r=j+1 Sr

)

; additionally, as the components B1, B2, . . . , Bk are all

subsets of Sj , the vertices in B1∪B2∪ . . .∪Bk are adjacent to the same vertices in N(v), and thus they

are adjacent in G to the exact same neighbors in
(
⋃`

r=j+1 Sr

)

∪N(v). In terms of the graph Gv, this

implies that the vertices zB1
, zB2

, . . . , zBk
corresponding to the connected components B1, B2, . . . , Bk

of G[Sj ] are adjacent to the exact same neighbors in
(
⋃`

r=j+1 Zr

)

∪N(v). Moreover, the transitivity

of equality leads to the following corollary.
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Figure 5: The vertices in B ∪B′ are not necessarily adjacent to all the vertices in A ∪ C.

Corollary 3.2 Let G be an HHD-free graph, and A1, A2, . . . , Ah be connected components of subgraphs

G[Sr], where r < j, such that for each i = 1, 2, . . . , h,

• the graph G contains edges connecting vertices in at least 2 distinct components of G[Sj ] to

vertices in Ai, and

• there exists a component B of G[Sj ] such that at least one vertex in Ai and at least one vertex

in
⋃i−1

t=1 N(At) are adjacent to a vertex in B.

(in terms of the graph Gv, for each i, we have that |NGv
(zAi

)∩Zj | ≥ 2 and
(

NGv
(zAi

)∩
(
⋃i−1

t=1 NGv
(zAt

)
)

)

∩

Zj 6= ∅). Then,

(i) in G, all the vertices in
⋃h

i=1

(

N(Ai)∩Sj

)

are adjacent to the exact same neighbors in
(
⋃`

r=j+1 Sr

)

∪

N(v);

(ii) in Gv, all the vertices in
⋃h

i=1

(

NGv
(zAi

) ∩ Zj

)

are adjacent to the exact same neighbors in
(
⋃`

r=j+1 Zr

)

∪N(v).

In order to be able to check that case (ii) of Corollary 3.2 holds for the graph Gv, we maintain a

partition PZj
of the vertices in Zj that correspond to the connected components of the subgraph G[Sj ]:

initially, each partition set contains a single vertex of Zj ; every time we process a vertex zAi
which is

adjacent to vertices zB1
, zB2

, . . . , zBt
∈ Zj , where t ≥ 2, we union the sets of the partition PZj

that

contain the vertices zB1
, zB2

, . . . , zBt
. Then, when we process the vertices in Zj , we check that the

vertices in each partition set are adjacent to the exact same neighbors in
(
⋃`

r=j+1 Zr

)

∪N(v).

Based on these results, we give in Figure 6 Algorithm Recognize-HHD-free, in which, for each

vertex v of the given graph G, we construct the auxiliary graph Gv by shrinking each of the connected

components of each of the subgraphs G[Si], i = 1, 2, . . . , `, into a single vertex, and then, for each

i = 1, 2, . . . , `, we process the set Zi of vertices corresponding to the connected components of G[Si]

together (note that, by construction, in the graph Gv there are no edges between any two vertices

zC , zC′ ∈ Zi). We also mention that Step 1.4 of our algorithm, which is applied on Gv, is an extension

of the linear-time algorithm for testing whether an ordering of the vertices of a given graph is a perfect

elimination ordering [5, 16].

We note that when we check that all the vertices in a set Pj are adjacent to the same neighbors, we

check only the neighbors in
⋃`

r=i+1 Zr, and not in
(
⋃`

r=i+1 Zr

)

∪N(v) as suggested by Corollary 3.2,

statement (ii); this is so, because all the vertices in Pj correspond to connected components of the

subgraph G[Si] for the same set Si, and so, by construction, they have the same neighbors in N(v).
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Algorithm Recognize-HHD-free(G)

1. for each vertex v of G do

1.1. Compute the neighbors N(v) and non-neighbors M(v) = V (G)− (N(v) ∪ {v}) of v in G;

compute the partition Sv of the set M(v) based on the common neighbors of the vertices in

M(v) with v in G, and order the partition sets by non-decreasing number of such common

neighbors; let Sv = (S1, S2, . . . , S`) be the resulting ordering;

1.2. for each edge xy of G, where x, y ∈M(v), do

if x, y belong to different partition sets of Sv and |N(x) ∩N(v)| = |N(y) ∩N(v)|

then print(“The graph G is not HHD-free”); exit;

1.3. Construct the auxiliary graph Gv by shrinking each connected component C of the sub-

graphs G[Si], i = 1, 2, . . . , `, into a single vertex zC ;

1.4. for i← 1 to ` do

form a partition PZi
of the set Zi of vertices of Gv that correspond to the connected

components of G[Si], by placing each of these vertices in a separate partition set;

for each vertex zC ∈ Zi do

associate with zC an initially empty set A(zC);

for i← 1 to ` do

let the partition PZi
of Zi be PZi

= {P1, P2, . . . , Pt};

for j ← 1 to t do

let zC be any vertex contained in the set Pj ;

X ′ ← NGv
(zC) ∩

(
⋃`

r=i+1 Zr

)

;

if Pj is not a singleton set

then if there exists a vertex in Pj that is not adjacent in Gv to a vertex in X ′ or

is adjacent to a vertex in
(
⋃`

r=i+1 Zr

)

−X ′

then print(“The graph G is not HHD-free”); exit;

if X ′ 6= ∅

then let Zk be the minimum-index set such that X ′ ∩ Zk 6= ∅;

W ← X ′ ∩ Zk;

union the sets of the partition PZk
(of Zk) that contain the vertices in W ;

X ← X ′ ∪
(

NGv
(zC) ∩N(v)

)

;

choose any zB ∈W and concatenate the set X −W to A(zB);

if
(
⋃

z∈Pj
A(z)

)

−NGv
(zC) 6= ∅

then print(“The graph G is not HHD-free”); exit;

2. print(“The graph G is HHD-free”);

Figure 6: Algorithm Recognize-HHD-free.

Additionally, when this check is successful, we take advantage of the fact that all the vertices in Pj

are adjacent to the same neighbors in
⋃`

r=i+1 Zr, when we union the sets of the partition PZk
that

contain the vertices in W ; we need only do the unioning once for the entire set Pj rather than once

for each vertex in the set.

The correctness of the Algorithm Recognize-HHD-free is established in Theorem 3.1 with the help

of Lemma 3.3 (due to space limitation, the proofs have been omitted; however, the proofs are given in

the Appendix in order to assist the reviewers).
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Lemma 3.3 Let G be a graph, v a vertex of G, Gv the auxiliary graph described earlier in terms

of G and v, and Zi (i = 1, 2, . . . , `) the sets of vertices of Gv defined in Eqn. (1). Suppose that

there exist vertices zA ∈ Zi and zA′ ∈ Zj of Gv corresponding to connected components A, A′ of

subgraphs G[Si] and G[Sj ], respectively, where i < j, such that zAzA′ ∈ E(Gv) and there exists a

vertex x ∈
(
⋃`

r=j+1 Zr

)

∪ N(v) such that x ∈ NGv
(zA) − NGv

(zA′). Then if Algorithm Recognize-

HHD-free is run on G, it reports that G is not HHD-free and stops.

Theorem 3.1 When Algorithm Recognize-HHD-free is run on a graph G, it reports that G is not

HHD-free if and only if G is indeed not HHD-free.

Remark

We note that in the course of Algorithm Recognize-HHD-free we do not check whether the conditions

of Lemma 3.2, statement (i), hold, although we know that if they do not hold then the input graph G

is not HHD-free. In fact, we do not check the conditions of Lemma 3.2, statement (ii), either; instead,

we check the weaker conditions stated in Corollary 3.2. Nevertheless, the conditions that we check

suffice to enable us to recognize HHD-free graphs.

3.1 Time and Space Complexity

Let n be the number of vertices and m be the number of edges of the graph G. Since each of the

forbidden subgraphs that we are looking for (a house, a hole, or a domino) is connected, we may

assume that G is connected, otherwise we work on G’s connected components which we can compute

in O(n + m) time [3]; thus, n = O(m). Below, we give the time and space complexity of each step of

Algorithm Recognize-HHD-free.

For a vertex v, its neighbors and non-neighbors in the graph G can be stored in O(n)-size arrays

for constant-time access; this takes O(n) time. The partition Sv can be computed in O(m + n deg(v))

time time and O(n) space, where deg(v) denotes the degree of v in G; see [13]1. After having computed

for a vertex of each of the partition sets of Sv, the number of its common neighbors with v, which can

be done in O(n + m) time, we can form the ordered sequence (S1, S2, . . . , S`) in O(` + deg(v)) = O(n)

time and O(n) space using bucket sorting. Thus, Step 1.1 takes O(m+ n deg(v)) time and O(n) space

in total.

Step 1.2 takes O(m) time assuming that each non-neighbor of vertex v stores the index of the set

of the partition Sv to which it belongs; storing this information on each such vertex can be done in

O(n) time by traversing the sets S1, S2, . . . , S`. Thus, Step 1.2 takes O(n + m) time and O(n) space.

Adjacency-list representations of the subgraphs G[Si], i = 1, 2, . . . , `, can be obtained in O(n + m)

time and space by appropriate partitioning of a copy of an adjacency-list representation of the graph G

and removal of unneeded records; then, computing the connected components of all these subgraphs

takes a total of O(n + m) time and space, from which the graph Gv can be constructed in O(n + m)

additional time and space. Thus, Step 1.3 takes a total of O(n + m) time and space.

Crucial for Step 1.4 is the construction and processing of the partitions PZi
, i = 1, 2, . . . , `. These

are maintained by means of an auxiliary (multi-)graph Hv: members of the same partition set belong

to the same connected component of Hv. The graph Hv has one vertex for each connected component

of each subgraph G[Si], i = 1, 2, . . . , `; hence, with a slight abuse of notation, we can write that

V (Hv) =
⋃`

i=1 Zi. Initially, the graph Hv has no edges.

1 An algorithm to construct a partition of a set L2 in terms of adjacency to elements of a set L1 is given in Section 3.2

of [13] with a stated time complexity of O(m+n |L2|); yet, it can be easily seen that the algorithm has a time complexity

of O(m + |L1| · |L2|), which in our case gives O(m + n deg(v)) since |L1| = deg(v) and |L2| = O(n).
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. In order to compute the partition PZi
of the set Zi, we compute the connected components of

the subgraph Hv[Zi]; graph traversing algorithms, such as, depth-first search and breadth-first

search, can be used on Hv[Zi] to yield the connected components in time linear in the number

of vertices and edges of Hv[Zi].

. In order to union the sets of a partition PZk
that contain the vertices in a set W , we pick a

vertex, say, z ∈ W , and add edges in Hv connecting z to all the other vertices in W ; this takes

O(|W |) time and space.

The above description implies that forming the initial partitions PZi
, i = 1, 2, . . . , `, where each vertex

in Zi is placed in a separate partition set corresponds to constructing the graph Hv without any edges;

this can be done in O(n) time and space. Initializing the sets A( ) for all the vertices in
⋃`

i=1 Zi

also takes O(n) time and space. Now, for each i = 1, 2, . . . , `, computing the partition PZi
takes time

linear in the number of vertices and edges of Hv[Zi]. Let us consider the processing of a set Pj of the

partition PZi
. Computing the set X ′ takes O(degGv

(zC)) time and space, where degGv
(zC) denotes the

degree of vertex zC in the graph Gv. Checking if Pj is a singleton set takes O(1) time, and checking

if all the vertices in Pj are adjacent to exactly the vertices in X ′ among the vertices in
⋃`

i=i+1 Zi

takes O(
∑

z∈Pj
degGv

(z)) time. Next, checking whether X ′ is non-empty takes O(1) time while doing

all the processing if X ′ 6= ∅ takes O(degGv
(zC)) time and space; note that |W | ≤ |X ′| ≤ degGv

(zc)

and recall that unioning the sets of the partition PZk
that contain the vertices in W involves adding

|W | − 1 edges in Hv. Finally, checking whether
(
⋃

z∈Pj
A(z)

)

−NGv
(zC) 6= ∅ takes O

(
⋃

z∈Pj
|A(z)|

)

time. In summary, processing the set Pj takes O
(
∑

z∈Pj

(

degGv
(z) + |A(z)|

))

time and O(degGv
(zC))

space. Since the sets of each partition PZi
of the set Zi are disjoint and the sets Zi are disjoint, we

have that O
(
∑`

i=1

∑

Pj∈PZi

∑

z∈Pj
degGv

(z)
)

= O
(

|V (Gv)| + |E(Gv)|
)

= O(n + m). Additionally,

since the sets A( ) are formed by concatenating some of the neighbors in Gv of one vertex zC from

each set Pj , we have that O
(
∑`

i=1

∑

Pj∈PZi

∑

z∈Pj
|A(z)|

)

= O
(
∑`

i=1

∑

Pj∈PZi

∑

z∈Pj
degGv

(z)
)

=

O
(

|V (Gv)|+ |E(Gv)|
)

= O(n + m) as well. Thus, in total, Step 1.4 takes O(n + m) time and space.

Since Steps 1.1-1.4 are executed for each vertex v of the input graph G and Step 2 takes O(1) time,

we have that the overall time complexity of Algorithm Recognize-HHD-free is:
[

∑

v∈V (G)

(

O(m + n deg(v))
)

+ O(n + m)
]

+ O(1) = O(n m).

Therefore,

Theorem 3.2 Let G be an undirected graph on n vertices and m edges. Then, Algorithm Recognize-

HHD-free determines whether G is an HHD-free graph in O(nm) time and O(n + m) space.

3.2 Providing a Certificate

Algorithm Recognize-HHD-free can be made to provide a certificate (a house, a hole, or a domino)

whenever it decides that the input graph G is not HHD-free. The algorithm reports that the graph G

is not HHD-free in three occasions, once in Step 1.2 and twice in Step 1.4. We describe next how we

handle each of these cases.

Step 1.2 : In this case, we have two non-neighbors x, y of v which have the same number of common

neighbors with v and belong to different partition sets. Then, there exist vertices u ∈ (N(x)∩N(v))−

N(y) and w ∈ (N(y) ∩ N(v)) − N(x); we can find these vertices in O(n) time using O(n) space by

traversing the adjacency lists of x and of y and marking the neighbors of x and y in two O(n)-size

arrays, and then by traversing these two arrays. The vertices v, u, w, x, y induce a house or a C5

depending on whether u, w are adjacent in G or not.
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Step 1.4 : In order to be able to efficiently produce a certificate when Algorithm Recognize-HHD-free

reports that the input graph G is not HHD-free in Step 1.4, we do the following additional work:

W1: Whenever, during the processing of a set Pj of a partition PZi
, we need to union the sets of

a partition PZk
containing the vertices in the set W , which is done by adding edges in the

auxiliary multi-graph Hv (as explained in Section 3.1), we associate with each such edge the

selected vertex zC of Pj .

W2: When processing a set Pj , we store with each element of the set X−W , which is added to A(zB)

for zB ∈ W , a reference to the selected vertex zC of Pj ; in this way, for each vertex z, each

element of the set A(z) carries a reference to a vertex of the set during whose processing this

element was added to A(z).

Note that this additional work does not increase asymptotically the time and space complexity of the

algorithm.

In Step 1.4, Algorithm Recognize-HHD-free reports that the graph G is not HHD-free in the following

two occasions:

1. There exists a vertex in a set Pj of a partition PZi
that is not adjacent to a vertex in X ′ or

is adjacent to a vertex in
(
⋃`

r=i+1 Zr

)

− X ′. In any case, there exist vertices zA, zY , zY ′ , zD of the

graph Gv such that zA corresponds to a connected component A of G[Sp], zY , zY ′ ∈ Pj correspond to

distinct connected components Y, Y ′ of G[Si], zD corresponds to a connected component D of G[Sq]

where p < i < q, {zAzY , zAzY ′ , zY ′zD} ⊆ E(Gv), and zY zD 6∈ E(Gv). Additionally, because p < i < q,

there exist vertices u, w ∈ N(v) such that u is adjacent to all the vertices in Si and to no vertex in Sp,

and w is adjacent to all the vertices in Sq and to no vertex in Si.

We can find the vertices zA, zY , zY ′ , zD by constructing a depth-first search tree of the subgraph Hv[Pj ],

and by testing for any pair of adjacent vertices in the tree, whether they have the exact same neighbors

in
⋃`

r=i+1 Zr (note that (i) if this is true for every pair of adjacent vertices, then clearly all vertices in

Pj have the same neighbors in
⋃`

r=i+1 Zr, and (ii) this test takes O
(
∑

z∈Pj
degGv

(z)
)

time as in the

algorithm’s analysis). In our case, we will be able to find two adjacent vertices z1, z2 in the tree and a

vertex z3 ∈
⋃`

r=i+1 Zr such that z2 is adjacent to z3 in Gv whereas z1 is not; then, zY = z1, zY ′ = z2,

zD = z3, while zA is the vertex associated with the tree edge z1z2 (see W1).

We consider the following two cases depending on whether zA, zD are adjacent in Gv or not:

1a. zAzD 6∈ E(Gv): We traverse the adjacency lists of the vertices in Y until we find a vertex y ∈ Y

which is adjacent to a vertex in A. Next, we run breadth-first search in the subgraph G[{y} ∪

A ∪ Y ∪D] starting at y until a vertex z ∈ D is encountered; let ρ be the path in the breadth-

first search tree connecting y to z. Clearly, ρ is chordless and because zAzD 6∈ E(Gv) and

zY zY ′ 6∈ E(Gv), it is of the form ρ = yx1 · · ·xry
′
1 · · · y

′
sz where r, s ≥ 1, x1, . . . , xr ∈ A, and

y′
1, . . . , y

′
s ∈ Y ′. If r > 1, then the vertices u, y, x1, . . . , xr, y

′
1 induce a hole in G. If r = 1 and

s > 1, the vertices u, y, x1, y
′
1, y

′
2 induce a house in G with y′

2 at its top. Finally, if r = 1 and

s = 1, then if uz ∈ E(G), the vertices u, y, x1, y
′
1, z induce a house with z at its top, whereas if

uz 6∈ E(G), the vertices v, u, y′
1, z, w induce a house or a C5.

1b. zAzD ∈ E(Gv): As in the previous case, we traverse the adjacency lists of the vertices in Y

until we find a vertex y ∈ Y which is adjacent to a vertex in A. Next, we run breadth-first

search in the subgraph G[{y} ∪ A ∪ D] starting at y until a vertex z ∈ D is encountered; let

ρ be the path in the breadth-first search tree connecting y to z. Again, ρ is chordless and

because zY zD 6∈ E(Gv), it is of the form ρ = yx1 · · ·xrz where r ≥ 1 and x1, . . . , xr ∈ A. (Note

that the cases considered below follow the analysis of cases in the proof of Lemma 3.1; see also

Figure 3.) Consider first that uz ∈ E(G). If r > 1, the vertices uzx1 · · ·xry induce a hole in G.
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If r = 1, then if wx1 ∈ E(G), the vertices v, w, x1, y, u induce a house or a C5 in G depending

on whether uw ∈ E(G) or not, whereas if wx1 6∈ E(G), G contains a house induced by the

vertices u, y, x1, z, w or a domino induced by v, u, y, x1, z, w depending on whether uw ∈ E(G)

or not. Suppose next that uz 6∈ E(G). Then, if wx1 ∈ E(G), the vertices v, w, xr, y, u induce a

house or a C5 depending on whether uw ∈ E(G), whereas if wx1 6∈ E(G), G contains the hole

wzx1 · · ·xryu or vwzx1 · · ·xryu depending on whether uw ∈ E(G).

2. For a set Pj of a partition PZi
, we have that

(
⋃

z∈Pj
A(z)

)

− NGv
(zC) 6= ∅, i.e., there exist

vertices zY ∈ Pj (zY corresponds to a component Y of G[Si]) and z′ ∈
(
⋃`

r=i+1 Zr

)

∪ NGv
(v) such

that z′ ∈ A(zY ) and z′ 6∈ NGv
(zC); note that since the algorithm has not stopped earlier, zY and zC

have the exact same neighbors in
⋃`

r=i+1 Zr, which implies that z′ 6∈ NGv
(zY ). Since z′ ∈ A(zY ), by

means of W2, z′ is associated with a vertex zA ∈
⋃i−1

r=1 Zr such that zY , z′ ∈ NGv
(zA). If z′ ∈ N(v),

we locate two vertices x ∈ A and y ∈ Y such that xy ∈ E(G); because z′ ∈ NGv
(zA) − NGv

(zY ), z′

is adjacent to x in G but is not adjacent to y. Moreover, there exists a vertex w ∈ N(v) such that

w ∈ N(y)−N(x); then, the vertices v, z′, w, x, y induce a house or a C5 in G. Now, if z′ 6∈ N(v), then

z′ = zD corresponding to a component D of a subgraph G[Sq] with q > i. This case is identical to

Case 1b above.

It is not difficult to see that doing the work described above and checking the adjacencies in each

of the aforementioned cases can be performed in O(n + m) time using O(n) space. Thus, we have:

Theorem 3.3 Let G be an undirected graph on n vertices and m edges. Then, Algorithm Recognize-

HHD-free can be augmented to produce a house, a hole, or a domino whenever it decides that G is not

an HHD-free graph in O(n + m) additional time and O(n) additional space.

4 Concluding Remarks

We have presented a recognition algorithm for the class of HHD-free graphs that runs in O(n m) time

and requires O(n + m) space, where n is the number of vertices and m is the number of edges of the

input graph. Moreover, we show how our algorithm can be augmented to yield, in O(n + m) time and

O(n) space, a certificate (a house, a hole, or a domino) whenever it decides that the input graph is

not HHD-free.

Despite the close relation between HHD-free and HH-free graphs, our results do not lead to an

improvement in the recognition time complexity for HH-free graphs; therefore, we leave as an open

problem the design of an O(n m)-time algorithm for recognizing HH-free graphs. Additionally, it would

be interesting to obtain faster recognition algorithms for other related classes of graphs, such as, the

brittle and the semi-simplicial graphs.
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Appendix

Proofs of Lemma 3.3 and Theorem 3.1

Lemma 3.3 Let G be a graph, v a vertex of G, Gv the auxiliary graph described earlier in terms

of G and v, and Zi (i = 1, 2, . . . , `) the sets of vertices of Gv defined in Eqn. (1). Suppose that

there exist vertices zA ∈ Zi and zA′ ∈ Zj of Gv corresponding to connected components A, A′ of

subgraphs G[Si] and G[Sj ], respectively, where i < j, such that zAzA′ ∈ E(Gv) and there exists a

vertex x ∈
(
⋃`

r=j+1 Zr

)

∪ N(v) such that x ∈ NGv
(zA) − NGv

(zA′). Then if Algorithm Recognize-

HHD-free is run on G, it reports that G is not HHD-free and stops.

Proof: Suppose that Algorithm Recognize-HHD-free is run on G. If the algorithm stops at any time

before reaching Step 2, then it has reported that G is not HHD-free, as desired. If it does not stop, it

eventually processes the sets of the partition PZi
, and in particular the set PA to which zA belongs,

computes the set X ′
A = NGv

(zC) ∩
(
⋃`

r=i+1 Zr

)

where zC is the selected vertex from PA, and checks

that all the vertices in PA are adjacent to precisely X ′
A; if this is not so, then the algorithm reports that

G is not HHD-free, otherwise, we have that NGv
(zA)∩

(
⋃`

r=i+1 Zr

)

= NGv
(zC)∩

(
⋃`

r=i+1 Zr

)

. Thus,

if x ∈
⋃`

r=j+1 Zr, then x ∈ X ′
A because x ∈ NGv

(zA). Since zA′ ∈ NGv
(zA) ∩

(
⋃`

r=i+1 Zr

)

, it follows

that zA′ ∈ X ′
A, that is, the set X ′

A is not empty, and the algorithm finds the minimum-index set Sk such

that X ′
A contains a vertex corresponding to a component of the subgraph G[Sk], computes the set WA

of vertices in X ′
A that correspond to components of G[Sk], computes XA = X ′

A ∪
(

NGv
(zC)∩N(v)

)

=

X ′
A ∪

(

NGv
(zA) ∩ N(v)

)

, selects a vertex zB in WA, and concatenates the set XA −WA to A(zB).

Then, k ≤ j, and x ∈ A(zB) because x ∈ XA−WA; if x ∈
⋃`

r=j+1 Zr then x ∈ X ′
A, and x 6∈WA since

k ≤ j, whereas if x ∈ N(v) then x ∈ NGv
(zA) ∩N(v).

Suppose that k < j. Then, zA′ also belongs to A(zB). If Algorithm Recognize-HHD-free does

not stop early, it eventually processes the set PB of the partition PZk
to which zB belongs, and

checks whether the set
(
⋃

z∈PB
A(z)

)

− NGv
(z′) 6= ∅, where z′ is the vertex selected from PB. Since

zA′ , x ∈ A(zB), we have that zA′ , x ∈
⋃

z∈PB
A(z). If there exists a vertex in PB that is not adjacent

to zA′ or x, then the algorithm reports that the input graph G is not HHD-free and stops. Otherwise,

we have that the vertex zB ∈ Zk is adjacent to both zA′ and x in the graph Gv, and the conditions

for the vertices zB, zA′ , x are identical to the conditions described in the statement of this lemma

for zA, zA′ , x. Moreover, since k > i and the difference j − i is finite, this case may occur a finite

number of times. Eventually, either Algorithm Recognize-HHD-free will stop prematurely, or k = j

and Algorithm Recognize-HHD-free processes the set PA′ of the partition PZj
to which zA′ belongs. In

the latter case, let zC′ be the vertex selected from PA′ during the processing of PA′ . If x ∈ NGv
(zC′)

then the algorithm stops since x ∈ NGv
(zC′) ∩

(
⋃`

r=j+1 Zr

)

and x 6∈ NGv
(zA′). If x 6∈ NGv

(zC′), the

algorithm again stops because
(
⋃

z∈PA′
A(z)

)

− NGv
(zC′) 6= ∅ (recall that x ∈ A(zB) and note that

zB ∈ PA′ where zB is the vertex that was selected during the processing of the set PA containing zA

so that the vertices in XA −WA are concatenated to A(zB)); thus, x ∈ A(zB) and x 6∈ NGv
(zC′), and

Algorithm Recognize-HHD-free reports that the input graph G is not HHD-free and stops.

Theorem 3.1 When Algorithm Recognize-HHD-free is run on a graph G, it reports that G is not

HHD-free if and only if G is indeed not HHD-free.

Proof: (=⇒) Suppose that the algorithm prints that G is not HHD-free while processing vertex v.

This may happen either in Step 1.2 or in Step 1.4: In Step 1.2, it happens only if there exist two

non-neighbors x, y of v such that xy ∈ E(G), x, y belong to different sets of the partition Sv, and
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Figure 7: For the proof of Theorem 3.1.

|N(x) ∩N(v)| = |N(y) ∩N(v)|; but then, in accordance with Observation 3.1, G contains an induced

house or C5. In Step 1.4, the algorithm may print that G is not HHD-free in two places:

• if there exists a vertex, say, zC′ ∈ Pj , that is not adjacent in the graph Gv to a vertex in X ′ or

is adjacent to a vertex in
(
⋃`

r=i+1 Zr

)

− X ′: The set Pj , which contains zC and zC′ , has been

formed by unions of disjoint subsets of the set Zi of vertices of Gv (corresponding to connected

components of the subgraph G[Si]) whenever there exists a vertex, say, z (corresponding to a

component of a G[Si′ ], where i′ < i), such that z is adjacent in Gv to elements of these subsets.

Thus, for zC and zC′ to end up in the same set Pj given that they initially belonged to different

sets, there is a sequence of vertices zA1
, zA2

, . . . , zAh
∈

⋃i−1
r=1 Zr such that zC ∈ NGv

(zA1
), zC′ ∈

NGv
(zAh

), and for each p = 1, 2, . . . , h, |NGv
(zAp

)∩Zi| ≥ 2 and
(

NGv
(zAp

)∩
(
⋃p−1

t=1 NGv
(zAt

)
)

)

∩

Zi 6= ∅). Then, Corollary 3.2 (statement (ii)) applies and implies that if G was HHD-free, the

vertices zC and zC′ would have the exact same neighbors in
(
⋃`

r=i+1 Zr

)

∪N(v); as this is not

the case, the graph G is not HHD-free.

• if there exists a vertex x ∈
(
⋃

z∈Pj
A(z)

)

− NGv
(zC), where zC is the vertex selected from the

set Pj (of vertices corresponding to connected components of the subgraph G[Si]) that is currently

being processed: The vertex x belongs to
⋃

z∈Pj
A(z) because it has been added to some A(zB),

where zB ∈ Pj ; this addition was done earlier in Step 1.4 for a value i′ of the index of the

for-loop (i.e. i′ < i) while processing a subset P of the set Zi′ of vertices of Gv that correspond

to components of G[Si′ ]; let zC′ be the vertex selected from P during its processing. Then,

zC′zB ∈ E(Gv) and xzC′ ∈ E(Gv). Since
⋃

z∈Pj
A(z) ⊆

(
⋃`

r=i+1 Zr

)

∪N(v), we distinguish the

following two cases:

If x ∈
⋃`

r=i+1 Zr, then x ∈ Zq where q > i (see Figure 7(a)), and if G was HHD-free, Corollary 3.1

would apply to the vertices zC′ ∈ Zi′ , zB ∈ Zi, and x ∈ Zq where i′ < i < q, and would imply

that xzB ∈ E(Gv); this leads to a contradiction since x 6∈ NGv
(zC), and the vertices zB , zC

belong to Pj and have the same neighbors in
⋃`

r=i+1 Zr (otherwise, the algorithm would have

stopped). Thus, G is not HHD-free.

Now, suppose that x ∈ N(v) (see Figure 7(b)); then, because xzC′ ∈ E(Gv) and xzC 6∈ E(Gv),

vertex x is adjacent in G to all the vertices in Si′ and to no vertex in Si. Since zC′zB ∈ E(Gv),

there exist vertices c ∈ C ′ ⊆ Si′ and b ∈ B ⊆ Si such that bc ∈ E(G). Moreover, since i′ < i,

there exists a vertex w ∈ N(v) such that w ∈ N(b)−N(c). Then, the vertices v, x, w, b, c induce

a house or a C5 in G.
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(⇐=) Now, suppose that the graph G is not HHD-free; we will show that Algorithm Recognize-HHD-

free will report that.

Suppose that the vertices v, u, w, x, y form a cycle vuxyw in G and induce a C5 or a house with v

at its top. If Algorithm Recognize-HHD-free does not stop early (if it does so, it correctly reports that

the graph G is not HHD-free), it eventually executes the body of the for-loop of Step 1 for the vertex v.

The vertex adjacencies in the above mentioned house or C5 imply that the vertices x, y do not belong

to the same partition set of the partition Sv. Suppose that x and y belong to the connected components

A and B of the subgraphs G[Si] and G[Sj ], respectively; moreover, without loss of generality, suppose

that i < j. These facts imply that zAzB ∈ E(Gv) and that u ∈
(

NGv
(zA) −NGv

(zB)
)

∩ N(v); then,

Lemma 3.3 applies asserting that the algorithm will report that the input graph G is not HHD-free

and will stop.

Suppose that G contains a hole vua1a2 · · · ahw, where h ≥ 2. Again, if Algorithm Recognize-HHD-

free does not stop early (and reports that the graph G is not HHD-free), it eventually executes the body

of the for-loop of Step 1 for the vertex v. Note that the vertices a1, a2, . . . , ah are all non-neighbors of v;

let A1, A2, . . . , Ah, respectively, be the connected components of the subgraphs of G induced by the par-

tition sets of the partition Sv to which the vertices a1, a2, . . . , ah belong (note that the components A1

and Ah differ from each other and from all other components, whereas A2, A3, . . . , Ah−1 are not neces-

sarily distinct). Then, the graph Gv contains vertices zA1
, zA2

, . . . , zAh
corresponding to the above con-

nected components, and because G contains the path a1a2 · · · ah, the subgraph Gv[{zA1
, zA2

, . . . , zAh
}]

is connected; let ρ be a chordless path in this subgraph from zA1
to zAh

. Because none of the vertices

a2, . . . , ah−1 are adjacent to either u or w, the vertices v, u, w, and the vertices of the path ρ form a

hole in Gv; let it be vz1z2 · · · zt, where z1 = u, zt = w, and t ≥ 4; note that no two consecutive vertices

in the subpath z2 · · · zt−1 correspond to connected components of the same subgraph G[Si] since no

two such vertices are adjacent in Gv. If t = 4, then the graph G contains a C5 and as proved earlier,

Algorithm Recognize-HHD-free reports that G is not HHD-free and stops. Now suppose that t > 4.

Let j, k be such that the vertices z2, z3 correspond to connected components of the subgraphs G[Sj ]

and G[Sk], respectively; since z2, z3 are adjacent, clearly j 6= k; moreover, if j < k, then Lemma 3.3

applies to the edge z2z3 of Gv and because u ∈
(

NGv
(z2) − NGv

(z3)
)

∩ N(v), it implies that the

algorithm will report that the input graph G is not HHD-free and will stop. If k < j, then there exist

vertices zi (3 ≤ i ≤ t − 2) such that the vertices zi−1, zi, zi+1 correspond to connected components

of the subgraphs G[Sp], G[Sj ], G[Sq], respectively, where j < p and j < q. For any such vertex zi

for which p 6= q, we can use Lemma 3.3: if, without loss of generality, we assume that p < q, then

zizi−1 ∈ E(Gv) and zi+1 ∈
(

NGv
(zi)−NGv

(zi−1)
)

∩
⋃`

r=j+1 Zr. The only remaining case is if for each

such vertex zi, we have that p = q. Then, there exists such a vertex zi such that not both zi−2 and zi+2

belong to
⋃p−1

r=1 Zr. If not, then all the vertices zi, i = 2, 3, . . . , t − 1, would correspond to connected

components of subgraphs G[Sr] with r ≤ min{j, j′}, where j, j′ are such that the vertices z2 and zt−1

correspond to connected components of G[Sj ] and G[Sj′ ], respectively; this, however, contradicts the

fact that max{j, j′} > min{j, j′} since j 6= j′ due to the adjacencies in the hole vz1z2 · · · zt. So, suppose

without loss of generality that zi−2 ∈
(
⋃`

r=p+1 Zr

)

∪ N(v); note that zi−2 6∈ Zp because zi−1 ∈ Zp

and zi−1, zi−2 are adjacent in Gv. Then, when Algorithm Recognize-HHD-free processes the set of the

partition PZp
containing both zi−1 and zi+1, it finds that zi−2 is adjacent to zi−1 but not to zi+1;

then, Algorithm Recognize-HHD-free reports that G is not HHD-free and stops.

Suppose that G contains a domino D induced by the cycle vudefw with a single chord uf (i.e.,

v is a corner vertex of D). Again, if Algorithm Recognize-HHD-free does not stop early (in which

case, it reports that the input graph G is not HHD-free), it will eventually execute the body of the

for-loop of Step 1 for the vertex v. The vertex adjacencies in the domino D imply that the vertices

d, e, f belong to distinct partition sets of the partition Sv; let D, E, F be the connected components of
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the subgraphs G[Sh], G[Si], G[Sj ] to which d, e, f belong, respectively, where h 6= i, h 6= j, and i 6= j.

Because de ∈ E(G) and ef ∈ E(G), then {zDzE , zEzF } ⊆ E(Gv). If zDzF ∈ E(Gv), then there exist

vertices x ∈ D and y ∈ E such that xy ∈ E(G); but then, the vertices v, u, x, y, w induce a house in

G with x at its top, and as proved earlier for the case of an induced house or C5, the algorithm will

report that the graph G is not HHD-free and will stop. So let us assume that zDzF 6∈ E(Gv). If h < i,

Lemma 3.3 applies to the edge zDzE of Gv, and because u ∈
(

NGv
(zD)−NGv

(zE)
)

∩N(v), it implies

that the algorithm will report that G is not HHD-free and will stop. The same conclusion is obtained

in a similar fashion if j < i; note that zF zE ∈ E(Gv) and u, w ∈
(

NGv
(zF ) − NGv

(zE)
)

∩ N(v).

Thus, i < h and i < j. If additionally h < j, then Lemma 3.3 applies to the edge zEzD of Gv, and

because zF ∈
(

NGv
(zE)−NGv

(zD)
)

∩
⋃`

r=h+1 Zr, it implies that the algorithm will report that G is

not HHD-free and will stop; the same conclusion is also obtained if j < h for the edge zEzF because

zD ∈
(

NGv
(zE)−NGv

(zF )
)

∩
⋃`

r=j+1 Zr.
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