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Abstract. We consider the dynamic recognition problem for the class
of P4-sparse graphs: the objective is to handle edge/vertex additions
and deletions, to recognize if each such modification yields a P4-sparse
graph, and if yes, to update a representation of the graph. Our approach
relies on maintaining the modular decomposition tree of the graph, which
we use for solving the recognition problem. We establish conditions for
each modification to yield a P4-sparse graph and obtain a fully dynamic
recognition algorithm which handles edge modifications in O(1) time
and vertex modifications in O(d) time for a vertex of degree d. Thus,
our algorithm implies an optimal edges-only dynamic algorithm and a
new optimal incremental algorithm for P4-sparse graphs. Moreover, by
maintaining the children of each node of the modular decomposition tree
in a binomial heap, we can handle vertex deletions in O(log n) time, at
the expense of needing O(log n) time for each edge modification and
O(d log n) time for the addition of a vertex adjacent to d vertices.

Keywords: fully dynamic algorithms, P4-sparse graphs, modular de-
composition, recognition.

1 Introduction

A dynamic graph algorithm for a class Π of graphs is an algorithm that handles
a series of on-line modifications (i.e., insertions or deletions of vertices or edges)
on a graph in Π ; if the modification yields a graph in Π , the algorithm per-
forms it (updating an internal representation), otherwise it outputs false and
does nothing. Such algorithms are categorized depending on the modifications
they support: an incremental (decremental) algorithm supports only vertex in-
sertions (deletions); an additions-only (deletions-only) algorithm supports only
edge additions (deletions); an edges-only fully dynamic algorithm supports both
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edge additions and edge deletions; a fully dynamic algorithm supports all edge
as well as all vertex modifications.

Several authors have studied the dynamic recognition problem for graphs of
specific families. Incremental recognition algorithms have been proposed by Hsu
[12] for interval graphs and by Deng et al. [8] for connected proper interval
graphs. Ibarra [13] has given an edges-only fully dynamic algorithm for chordal
graphs which handles each edge operation in O(n) time and an edges-only fully
dynamic algorithm for split graphs which handles each edge operation in O(1)
time. More recently, Hell et al. [10] have given a fully dynamic algorithm for
recognizing proper interval graphs which works in O(d + log n) time per modifi-
cation, where d is the degree of a vertex in case of a vertex modification; Shamir
and Sharan [19] have developed a fully dynamic algorithm for the recognition
of cographs, threshold graphs, and trivially perfect graphs, which handles edge
modifications in O(1) time and vertex modifications in O(d) time; finally, Cre-
spelle and Paul have presented fully dynamic algorithms for directed cographs
[5] and permutation graphs [6] which require O(d) time if d arcs are involved,
and O(n) time, respectively. For the class of P4-sparse graphs, an incremental
algorithm for recognizing a P4-sparse graph has been proposed by Jamison and
Olariu [15] which handles the insertion of a vertex of degree d in O(d) time.

Researchers have also considered the problem of the dynamic maintenance of
the modular decomposition tree of a graph: Muller and Spinrad [18] have given
an incremental algorithm, which handles each vertex insertion in O(n) time; for
cographs, Corneil et al. [3] have given an optimal incremental algorithm, which
handles the insertion of a vertex of degree d in O(d) time.

Our work in this paper focuses on P4-sparse graphs ; these are the graphs in
which every set of five vertices induces at most one chordless path on four vertices
[11]. They are perfect and also perfectly orderable [11], and properly contain the
cographs, the P4-reducible graphs, etc. (see [1,15,16]). The P4-sparse graphs have
received considerable attention in recent years and they find applications in ap-
plied mathematics and computer science (e.g., communications, transportation,
clustering, scheduling, computational semantics) in problems on graphs featur-
ing “local density”; local density is often associated with the absence of P4s and
the P4-sparse graphs are unlikely to have many P4s.

In this paper, we describe a fully dynamic algorithm for the class of P4-
sparse graphs. Our algorithm maintains the modular decomposition tree of the
graph; it checks whether the requested edge/vertex operations yield a P4-sparse
graph, and if yes, it updates the modular decomposition tree. Edge operations
are handled in O(1) time while vertex operations are handled in O(d) time. As
a result, we obtain an optimal edges-only dynamic algorithm and a new optimal
incremental algorithm for P4-sparse graphs. Moreover, in order to improve the
time complexity of the vertex deletion operation, we can maintain the children
of each node of the modular decomposition tree in a binomial heap [2]. Then,
we can handle vertex deletions in O(log n) time; the drawback is that then the
time required for each edge modification becomes O(log n) and for the addition
of a vertex adjacent to d vertices becomes O(d log n).
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2 Theoretical Framework

Let G be a simple graph; we denote by V (G) and E(G), the vertex and edge set
of G. The subgraph of G induced by a set S ⊆ V (G) is denoted by G[S]. If a
vertex u is adjacent to a vertex v, we say that u sees v, otherwise, we say that
it misses v; more generally, a vertex set A sees (misses, resp.) a vertex set B, if
every vertex in A sees (misses, resp.) every vertex in B.

Modular Decomposition and P4-sparse Graphs. A subset M of vertices
of a graph G is a module of G, if every vertex outside M is either adjacent to all
vertices in M or to none of them. The emptyset, the singletons, and the vertex
set V (G) are trivial modules and whenever G has only trivial modules it is called
a prime (or indecomposable) graph. A module M of G is called a strong module
if, for any module M ′ of G, either M ′ ∩M = ∅ or one module is included into
the other. Furthermore, a module in G is also a module in G.

The modular decomposition of a graph G is a linear-space representation of
all the partitions of V (G) where each partition class is a module. The modular
decomposition tree T (G) of the graph G (or md-tree for short) is a unique (up to
isomorphism) labeled tree associated with the modular decomposition of G in
which the leaves of T (G) are the vertices of G and the set of leaves associated with
the subtree rooted at an internal node induces a strong module of G (Figure 1).
Thus, the md-tree T (G) represents all the strong modules of G. It is known that
for every graph G the md-tree T (G) can be constructed in linear time [4,7,17].

Let t be an internal node of the md-tree T (G) of a graph G. We denote by M(t)
the module corresponding to t which consists of the set of vertices of G associated
with the subtree of T (G) rooted at node t. The node t is labeled by either
P (for parallel module) if the subgraph G[M(t)] is disconnected, S (for series
module) if the complement of G[M(t)] is disconnected, or N (for neighborhood
module) otherwise. Let u1, u2, . . . , up be the children of the node t of T (G). We
denote by G(t) the representative graph of the module M(t) defined as follows:
V (G(t)) = {u1, u2, . . . , up} and uiuj ∈ E(G(t)) if there exists edge vkv� ∈ E(G)
such that vk ∈M(ui) and v� ∈M(uj); by the definition of a module, if a vertex
of M(ti) is adjacent to a vertex of M(tj) then every vertex of M(ti) is adjacent
to every vertex of M(tj). Thus, G(t) is isomorphic to the graph induced by a
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Fig. 1. A disconnected P4-sparse graph on 13 vertices and its md-tree
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subset of M(t) consisting of a single vertex from each maximal strong submodule
of M(t) in the modular decomposition of G. Depending on whether an internal
node t of T (G) is a P-, S-, or N-node, the following holds:
◦ if t is a P-node, G(t) is an edgeless graph;
◦ if t is an S-node, G(t) is complete graph;
◦ if t is an N-node, G(t) is a prime graph.

In particular, for the class of P4-sparse graphs, Giakoumakis and Vanherpe [9]
showed that:

Lemma 1. Let T (G) be the modular decomposition tree of a graph G. Then,
G is P4-sparse iff for every N-node t of T (G), G(t) is a prime spider with a
spider-partition (S, K, R) and no vertex of S ∪K is an internal node in T (G).

A graph G is called a spider if the vertex set V (G) of the graph G admits a
partition into sets S, K, and R such that:

C1: |S| = |K| ≥ 2, the set S is an independent set, and the set K is a clique;
C2: each vertex in R is adjacent to all the vertices in K and to no vertex in S;
C3: there exists a bijection f : S −→ K such that for each vertex v ∈ S, either

(i) N(v) ∩K = {f(v)} or (ii) N(v) ∩K = K − {f(v)}.

The triple (S, K, R) is called the spider-partition. A graph G is a prime spider if
G is a spider with |R| ≤ 1. If the condition of case C3(i) holds, then the spider G
is called a thin spider, whereas if the condition of case C3(ii) holds then G is a
thick spider ; note that the complement of a thin spider is a thick spider and vice
versa. A prime spider with |S| = |K| = 2 is simultaneously thin and thick.

3 The Fully-Dynamic Algorithm

As mentioned, our algorithm maintains the modular decomposition tree T (G)
of the P4-sparse graph.

3.1 Adding an Edge

Let uv be the edge to be added and let G′ = G∪{uv}. For the two vertices u, v
∈ G we denote by tuv the least common ancestor of u and v in T (G). Since u, v
are non-adjacent in G, node tuv is either a P-node or an N-node. Let tu and tv
be the children of tuv such that M(tu) and M(tv) contain the vertices u and v,
respectively. Note that if |M(tu)| = 1 (|M(tv)| = 1, resp.) then tu = u (tv = v,
resp.). Without loss of generality, we make the following assumption:

Assumption 1. We assume that |M(tv)| ≥ |M(tu)|.
Then, the following 3 lemmata cover all possible cases that may arise.

Lemma 2. Let |M(tu)| ≥ 2. Then G′ is a P4-sparse graph if and only if tuv is
a P-node and |M(tu)| = |M(tv)| = 2.
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Fig. 2. Illustrating Lemma 2 and the corresponding updates of the md-tree

Lemma 3. Let |M(tu)| = 1 (i.e., M(tu) = {u}) and suppose that tuv is a P-
node. Then G′ is a P4-sparse graph if and only if one of the following (mutually
exclusive) cases holds:
(i) vertex v sees all the vertices in M(tv);
(ii) vertex v misses exactly one vertex y ∈ M(tv) such that y sees only one

vertex x ∈M(tv), and only the vertex x sees every vertex in M(tv);
(iii) vertex v misses � > 1 vertices in M(tv) such that G(tv) is a thin spider

(S, K, R) with |S| = |K| = �, R = {r} and the vertex v belongs to the set
M(r) and sees all the vertices of M(r).
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Fig. 3. Illustrating cases (ii) and (iii) of Lemma 3
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Lemma 4. Let |M(tu)| = 1 (i.e., M(tu) = {u}) and suppose that tuv is an N-
node such that (S, K, R) is the spider partition of G(tuv). Then G′ is a P4-sparse
graph if and only if either S = {u, v} and R = ∅ or u ∈ S, v ∈ K, and G(tuv)
is a thick spider.

3.2 Removing an Edge

Since the P4-sparse graphs have the complement-invariant property, we take
advantage of the following theorem by Shamir and Sharan [19]:

Theorem 1. [19] Let Π be a complement-invariant graph property. Let Alg be a
dynamic algorithm for Π-recognition, which supports either edge additions only
or edge deletions only, and is based on modular decomposition. Then Alg can be
extended to support both operations with the same time complexity.

3.3 Adding a Vertex

Let G be a P4-sparse graph and a vertex x /∈ V (G) which is adjacent to d vertices
in V (G), where d ∈ {0, 1, . . . , |V (G)|}. In this section, we show how to recognize
if the graph G′ with vertex set V (G) ∪ {x} is P4-sparse, and if so, we show how
to obtain the md-tree T (G′) of G′ from the md-tree T (G) in O(d) time.
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Let us classify the internal nodes of the md-tree T (G) into the following
three categories: an internal node t is x-fully-adjacent, x-partly-adjacent, x-non-
adjacent iff x is adjacent to all, some but not all, and none, respectively, of the
vertices in the module M(t). The above classification is extended to leaf-nodes: a
leaf-node a is x-fully-adjacent or x-non-adjacent iff x is adjacent or non-adjacent,
respectively, to a. Because the x-fully-adjacent nodes form a forest of subtrees
of T (G) whose total number of leaves is d and because every internal node in
T (G) (and in these subtrees) has at least two children, we have:

Observation 1. The number of x-fully-adjacent (internal and leaf) nodes of
T (G) is less than 2d, where d is the number of vertices of G adjacent to x.

In turn, for the x-partly-adjacent nodes, the fact that the module of an S-node
induces a connected graph, the module of a P-node induces a graph whose com-
plement is connected, and the module of an N-node induces a graph which is
connected and whose complement is also connected implies:

P1: if an internal node t of the md-tree T (G) is x-partly-adjacent, then all its
ancestors in T (G) are x-partly-adjacent;

P2: for every x-partly-adjacent P-node tP of T (G), the subgraph of G induced
by the module M(tP ) contains two non-adjacent vertices a, b such that a is
adjacent and b is not adjacent to x;

P3: for every x-partly-adjacent S-node tS of T (G), the subgraph of G induced
by the module M(tS) contains an edge ab such that a is adjacent and b is
not adjacent to x;

P4: for every x-partly-adjacent N-node tN of T (G), the subgraph of G induced
by the module M(tN ) contains both an edge ab such that a is adjacent and
b is not adjacent to x and a pair of non-adjacent vertices a′, b′ such that a′

is adjacent and b′ is not adjacent to x.

Additionally, the following very important property holds:

Theorem 2. For any two x-partly-adjacent nodes of T (G), the graph G′ is P4-
sparse only if one of them is an ancestor of the other.

Let ρx = t0t1 · · · tk denote the path in T (G) containing all the x-partly-adjacent
nodes (Theorem 2) where t0 is the root of T (G) and tk is the x-partly-adjacent
node farthest away from the root. Then, Theorem 2 implies that for each node ti,
0 ≤ i < k, each of ti’s children, other than ti+1, is either x-fully-adjacent or x-
non-adjacent; for the node tk, each of tk’s children is either x-fully-adjacent or
x-non-adjacent and there is at least one child of each kind. Additionally, for the
x-partly-adjacent N-nodes, the following holds:

Lemma 5. Let t be an x-partly-adjacent N-node of T (G) whose corresponding
spider partition of M(t) is (S, K, R), and suppose that the vertex x is adjacent
to a vertex in S ∪K. Then, the graph G′ is P4-sparse only if x sees S ∪K, or
sees K and misses S.
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Let us consider the partition of the vertex set M(t0) −M(tk) ⊂ V (G) into
the following four sets:

VP =
⋃

ti is a P-node
0≤i<k

(M(ti)−M(ti+1)) , VNS =
⋃

ti is an N-node
0≤i<k

S(ti),

VS =
⋃

ti is an S-node
0≤i<k

(M(ti)−M(ti+1)) , VNK =
⋃

ti is an N-node
0≤i<k

K(ti),

where for an N-node ti, S(ti) and K(ti) are the independent set and the clique
of the spider induced by the module M(ti). Then, every vertex in VP (in VS ,
resp.) is non-adjacent (adjacent, resp.) to the vertices in M(tk) since their least
common ancestor ti in T (G) is a P-node (S-node, resp.), while the structural
properties of a spider imply that every vertex in K(tj) (S(tj), resp.) for an
N-node tj is adjacent (non-adjacent, resp.) to the vertices in M(tk).

Our vertex-addition procedure relies on the following lemmata:

Lemma 6. Suppose that the x-partly-adjacent nodes of the md-tree T (G) lie
on a path t0t1 · · · tk, where t0 is the root of T (G). If tk is a P-node then G′

is P4-sparse if and only if one of the following four (mutually exclusive) cases
holds:

(i) Vertex x sees VS and VNK , and misses VP and VNS .
(ii) Vertex x sees VS , VNK , and exactly one vertex, say, y, in VP , and misses

VNS where
(ii.1) vertex y is a child of node tk−2 (which is a P-node),
(ii.2) node tk−1 is an S-node with two children, the node tk and one

vertex,
say, u (which is adjacent to x), and

(ii.3) vertex x sees all the vertices in M(tk) except for a single vertex,
say, b, which is a child of tk.

(iii) Vertex x sees VNK , all but one vertex, say, z, in VS , and misses VP and
VNS where

(iii.1) vertex z is a child of node tk−1 (which is an S-node), and
(iii.2) node tk has two children a and b, which are leaf-nodes such that

a is adjacent and b is non-adjacent to x.
(iv) The node tk−1 is an N-node corresponding to a thick spider with independent

set S(tk−1), vertex x sees VS, VNK , S(tk−1), and all but one vertex, say, b,
in M(tk), and misses VP and VNS − S(tk−1).

The case where tk is an S-node is precisely the complement version of Lemma 6:
we need to exchange P- and S-nodes, thin and thick spiders, their cliques and
independent sets, and what x sees/misses in the conditions of Lemma 6.

Lemma 7. Suppose that the x-partly-adjacent nodes of the md-tree T (G) lie
on a path t0t1 · · · tk, where t0 is the root of T (G). If tk is an S-node then G′

is P4-sparse if and only if one of the following four (mutually exclusive) cases
holds:
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Fig. 5. Illustrating cases (ii), (iii), and (iv) of Lemma 6

(i) Vertex x sees VS and VNK , and misses VP and VNS .
(ii) Vertex x sees VNK , all but one vertex, say, y, in VS, and misses VP and

VNS where
(ii.1) vertex y is a child of node tk−2 (which is an S-node),
(ii.2) node tk−1 is a P-node with two children, the node tk and one vertex,

say, u (which is non-adjacent to x), and
(ii.3) vertex x sees only a single vertex of M(tk), which is a child of tk.

(iii) Vertex x sees VS, VNK , and exactly one vertex, say, z, in VP , and misses
VNS where

(iii.1) vertex z is a child of node tk−1 (which is a P-node), and
(iii.2) node tk has two children a, b, which are leaf-nodes such that a is

adjacent and b is non-adjacent to x.
(iv) The node tk−1 is an N-node corresponding to a thin spider with clique K(tk−1),

vertex x misses VP , VNS , K(tk−1), and all but one vertex, say, b, in M(tk),
and sees VS and VNK −K(tk−1).

Lemma 8. Suppose that the x-partly-adjacent nodes of the md-tree T (G) lie on
a path t0t1 · · · tk, where t0 is the root of T (G). If tk is an N-node and the partition
of the spider G(tk) is (S, K, R), then G′ is P4-sparse if and only if one of the
following three (mutually exclusive) cases holds:



A Fully Dynamic Algorithm for the Recognition of P4-Sparse Graphs 265

T (G)� ����� �

tk

S K

�

r

=⇒

T (G′)� ����� �

S ∪ {r} K ∪ {x}

T (G)� �

tk−1

CCC

�

y
���� �

tk

S K
A

=⇒

T (G′)� �

CCC

���� �

S ∪ {y} K ∪ {x}
A

Fig. 6. Illustrating cases (i) and (ii.2) of Lemma 8

(i) Vertex x sees S ∪K (and misses M(r) where R = {r}): vertex x sees VS

and VNK , and misses VP and VNS , the spider corresponding to tk is a thick
spider, and the node r is a leaf.

(ii) Vertex x sees K (and misses S): one of the following three cases holds:
(ii.1) vertex x sees VS and VKN , and misses VP and VNS ;
(ii.2) vertex x sees VS, VNK , and exactly one vertex, say, y, in VP , and

misses VNS where y is a child of tk−1, the spider corresponding to
tk is thin, and all the vertices in M(r) (if R = {r}) see x;

(ii.3) vertex x sees VNK , all but one vertex, say, y, in VS , and misses VP

and VNS where y is a child of tk−1, the spider corresponding to tk
is thick, and all the verticts in M(r) (if R = {r}) miss x.

(iii) Vertex x misses S ∪K (and sees M(r) where R = {r}): vertex x sees VS

and VNK , and misses VP and VNS , the spider corresponding to tk is a thin
spider, and the node r is a leaf.

Since in each case of Lemmata 6–8, x sees VNK and all but at most one of the
elements of VS , (i.e., all the x-partly-adjacent N-nodes and all but at most one
x-partly-adjacent S-nodes belong to Partial), and since the parent of a P-node
cannot be a P-node, we can show the following:

Observation 2. For each node t ∈ Partial at distance at least 4 from the
root of the tree T (G), if none of t’s parent, grandparent, great-grandparent, and
great-great-grandparent belongs to Partial, then the graph G′ is not P4-sparse.

This implies that for G′ to be P4-sparse, node tk of T (G) is at depth at most 4d.
The procedure that handles the addition of vertex x finds the node tk and takes

advantage of Lemmata 6–8. It starts from the leaves of the md-tree T (G) which
correspond to the neighbors of x and moving in a bottom-up fashion constructs
the set A of internal nodes of T (G) having at least one x-fully-adjacent child.
Then, it splits A obtaining the set Full of x-fully-adjacent nodes of T (G) and a
subset Partial of x-partly-adjacent nodes, from which it determines tk (vertex
t′ of Step 3). In detail, the procedure works as follows:
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Procedure Vertex Add(vertex x)
1. A← ∅;

construct a queue Q whose elements are pointers to each of the leaf-nodes
of T (G) which correspond to the neighbors of x;
while the queue Q is not empty do

remove from Q an element (i.e., a pointer to a node, say, t, of T (G));
increment the counter-field of the parent p(t) of t by 1 and let its new
value by val;
if val = 1
then insert in A a pointer to p(t);
if val = number of p(t)’s children
then insert in Q a pointer to p(t); {t is x-fully-adjacent}

2. Full ← set of pointers to each of the leaf-nodes of T (G) which correspond
to the neighbors of x;
Partial← ∅;
for each element a of the set A do

let t be the node of T (G) pointed to by a;
if the value of t’s counter-field is equal to the number of t’s children
then insert a in Full; {t is x-fully-adjacent}
else insert a in Partial; {t is x-partly-adjacent}
set t’s counter-field equal to 0; {reset the value of counter-field}

3. t′ ← a node of largest depth in T (G) among the nodes pointed to by the
elements in Partial;
if the depth of t′ in T (G) exceeds 4d
or there exists a node in T (G) pointed to by an element in Partial which

is not an ancestor of t′

or none of the cases of Lemmata 6, 7, and 8 applies to t′

then output false (i.e., G′ is not P4-sparse); return;
modify T (G) depending on the case of Lemma 6, 7, or 8 which applies to t′;

The correctness of the algorithm follows from Theorem 2, Observation 2, and
from the following facts: (i) the set of nodes of the tree T (G) pointed to by the
elements of the set Full is precisely the set of x-fully-adjacent nodes; (ii) the set
of nodes of the tree T (G) pointed to by the elements of the set Partial are the x-
partly-adjacent nodes of T (G) with at least one x-fully-adjacent child (note that
tk ∈ Partial); (iii) the node t′ found in Step 3 is precisely the x-partly-adjacent
node tk farthest away from the root.

3.4 Deleting a Vertex

Let v ∈ V (G) be a vertex with d incident edges in G which has to be deleted.
Clearly, the graph G′ which results after the deletion of v is a P4-sparse graph
as it is an induced subgraph of G. Hence we focus on properly updating the
md-tree T (G) so that we obtain the md-tree T (G′).

Let us first consider the case where the parent-node p(v) of v in T (G) is an
N-node t such that the spider partition of G(t) is (S, K, R). We have:
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(i) v ∈ S: First suppose that S = {v, v′}, K = {k, k′}, and let v be adjacent to
k: then, the spider is replaced by an S-node with children the vertex k′ and a
P-node; if R = ∅, then this P-node has as children the vertices v′ and k, else
if R = {r}, it has as children the vertex v′ and an S-node with children the
vertex k and the node r. Now, suppose that |S| = |K| ≥ 3 and let f(v) = k ∈
K. If the spider is thin then: if R = ∅, then after the removal of v, k is removed
from K and is linked at the pointer for R; if R = {r}, then k is removed from
K and if r is an S-node then k is linked as a child, otherwise the place of r is
taken by an S-node with k and r as children. If the spider is thick, then after
the removal of v, vertex k sees all the remaining vertices in M(t); thus, the
N-node t is replaced by an S-node with children the vertex k and the node t
after we have removed the vertices v, k.

(ii) v ∈ K: Since the complement of a thin spider is a thick spider (and vice
versa) with the clique and independent sets swapped (and if R = {r},
the P- and S-nodes in the subtree rooted at r swapped as well), this is the
complement version of the previous case and takes the same time to handle.

(iii) R = {v}: In this case, v is deleted, and we obtain a spider with R = ∅.
Next, we consider the case where the parent-node p(v) of v in T (G) is a P- or

S-node; if p(v) has more than 2 children, it suffices to simply delete v. However,
caution is needed if p(v) has only two children, in which case the sibling u of v
needs to be linked to the grandparent p(p(v)) of v; furthermore, if u and p(p(v))
are both P- or S-nodes, then the children of u are placed as children of p(p(v)).
Finally, in either of the remaining two cases when the parent-node p(v) has 2
children, i.e., if the sibling u of v is an N-node or if the grandparent p(p(v)) is
an N-node, then u is linked as a child of p(p(v)).

3.5 Time Complexity

Lemmata 2–8 and Figures 2–6 show that handling each modification requires
only local checks and changes. In order to perform them efficiently, we store in
each node of the md-tree T (G) its type (P, S, or N), the number of its children,
as well as ways to access its parent and its children, and an auxiliary field
counter (initialized to 0). If each P- or S-node stores pointers to its parent and
to a list of its children, then edge additions (and deletions, by Theorem 1) are
handled in O(1) time, whereas vertex additions/deletions are handled in O(d)
time. Alternatively, the children of a P- or S-node may be stored in a binomial
min-heap [2] in which the pointer to the parent of these children in T (G) is stored
at the minimum element of the heap. Then, edge additions (and deletions) and
vertex deletions take O(log n) time, whereas vertex additions take O(d log n)
time. Our results are summarized in the following theorem.

Theorem 3. We have described a fully dynamic algorithm for recognizing P4-
sparse graphs and maintaining their modular decomposition tree. Edge modifica-
tions can be handled in O(1) time while vertex modifications can be handled in
O(d) time; alternatively, edge modifications and vertex deletions can be handled
in O(log n) time and vertex additions in O(d log n) time.
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