
Recognizing HHDS-Free Graphs

Stavros D. Nikolopoulos and Leonidas Palios

Department of Computer Science, University of Ioannina,
GR-45110 Ioannina, Greece

{stavros, palios}@cs.uoi.gr

Abstract. In this paper, we consider the recognition problem on the
HHDS-free graphs, a class of homogeneously orderable graphs, and we
show that it has polynomial time complexity. In particular, we describe a
simple O(n2m)-time algorithm which determines whether a graph G on
n vertices and m edges is HHDS-free. To the best of our knowledge, this
is the first polynomial-time algorithm for recognizing this class of graphs.
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1 Introduction

In the late 1990s, Brandstädt, Dragan, and Nicolai [2] defined the homogeneously
orderable graphs as those graphs admitting a homogeneous elimination order
(a vertex ordering v1, v2, . . . , vn is a homogeneous elimination ordering if for
every i, vi is h-extremal in the subgraph induced by vi, vi+1, . . . , vn; a vertex v
is h-extremal in a graph G if the set D2(v) of vertices at distance at most 2
from v in G contains a proper homogeneous dominating set, i.e., there exists
a set H ⊂ D2(v) such that H is a homogeneous set in G and D2(v) ⊆ N [H ]).
They showed that the class of homogeneously orderable graphs contains the class
of homogeneous graphs introduced by D’Atri, Moscarini, and Sassano [7]. The
larger class of homogeneously orderable graphs seems to be more interesting
for several reasons; among these are algorithmic reasons, e.g., the (cardinality)
Steiner tree problem is solvable in polynomial time on homogeneously orderable
graphs [7].

In this paper, we consider a subclass of homogeneously orderable graphs,
namely, the HHDS-free graphs. A graph is HHDS-free if it contains no induced
hole (i.e., a chordless cycle on ≥ 5 vertices), house, domino (see Figure 1), or
sun. In [2], Brandstädt, Dragan, and Nicolai proved that a graph G is HHDS-
free if and only if G is hereditary homogeneously orderable, i.e., every induced
subgraph of G is homogeneously orderable.

The definition of the class of homogeneously orderable graphs implies that
this class is a generalization of both the class of dually chordal and the class of
distance-hereditary graphs [2,3]. Bandelt and Mulder [1] showed that a graph G
is distance-hereditary if and only if it contains no induced house, hole, domino,
or gem; then, since every sun contains a gem [2,3], distance-hereditary graphs
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Fig. 1. Some useful graphs

are HHDS-free. Additionally, the HHD-free graphs properly generalize the class
of chordal (or triangulated) graphs [9]; a graph is {house,hole,domino}-free or
HHD-free if it contains no induced house, hole, or domino. In [11], Hoàng and
Khouzam proved that the HHD-free graphs admit a perfect order, and thus
are perfectly orderable [4,13,16]; as a result, the HHDS-free graphs are perfectly
orderable as well. A superclass of the HHD-free graphs, which also properly
generalizes the class of chordal graphs, is the class of {house,hole}-free or HH-
free graphs; Chvátal conjectured [5] and later Hayward [10] proved that the
complement G of an HH-free graph G is perfectly orderable.

In [3], it is mentioned that the recognition complexity of HHDS-free graphs
is open. Yet, several recognition algorithms have been proposed for graph classes
that are defined or characterized by forbidden induced holes, houses, or dominos
(see [3,9]). Indeed, Hoàng and Khouzam [11], while studying the class of brittle
graphs (a well known class of perfectly orderable graphs which contains the
HHD-free graphs), showed that the HHD-free graphs can be recognized in O(n4)
time, where n denotes the number of vertices of the input graph. An improved
result was obtained by Hoàng and Sritharan [12] who presented an O(n3)-time
algorithm for recognizing HH-free graphs and showed that HHD-free graphs
can be recognized in O(n3) time as well; one of the key ingredients in their
algorithms is the reduction of a subproblem to the recognition of chordal graphs.
Based on the result in [12], recently, Nikolopoulos and Palios [14] presented
an O(min{nm α(n), nm + n2 log n})-time and O(n + m)-space algorithm for
recognizing HHD-free graphs, where m is the number of edges of the input graph
and α(n) is the very slowly growing inverse of the Ackerman’s function.

The main result of this paper is that an HHD-free graph G is also HHDS-free
if and only if there is no vertex v of G such that v is the top of a house or a “build-
ing” in an auxiliary graph which is a modification of G; a building, which is a
generalization of a house, is a cycle on at least 5 vertices with a single chord (i.e.,
an edge joining two nonconsecutive vertices of the cycle) connecting two vertices
of the cycle which are at distance 2 (see Figure 1). This result enables us to de-
scribe an O(n2m)-time algorithm for recognizing whether an input graph on n
vertices and m edges is HHDS-free. The space required by the algorithm is O(n2).

2 Theoretical Framework

We consider finite undirected graphs with no loops or multiple edges. Let G be
such a graph; then, V (G) and E(G) denote the set of vertices and of edges of G,
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respectively. Let S ⊆ V (G) be a set of vertices of G; the subgraph of G induced
by S is denoted by G[S]. The neighborhood N(x) of a vertex x ∈ V (G) is the
set of all the vertices of G that are adjacent to x. We use M(x) to denote the
set V (G)− (

N(x)∪{x}) of non-neighbors of x in G. An independent (or stable)
set is a set of vertices no two of which are adjacent.

A path v0v1 . . . vk of a graph G is called simple if none of its vertices occurs
more than once; it is called a cycle (simple cycle) if v0vk ∈ E(G). A simple path
(cycle) is chordless if vivj /∈ E(G) for any two non-consecutive vertices vi, vj in
the path (cycle). A chordless path (chordless cycle, respectively) on n vertices is
commonly denoted by Pn (Cn, respectively).

A graph is chordal (or triangulated) if and only if every cycle of length strictly
greater than 3 possesses a chord (i.e., an edge joining two nonconsecutive vertices
of the cycle) [3,9,17]. The following definition is taken from [3].

Definition 1. [6,8] A sun (or trampoline) is a chordal graph G on 2n ver-
tices for some n ≥ 3 whose vertex set can be partitioned into two sets, U =
{u0, u1, . . . , un−1} and W = {w0, w1, . . . , wn−1}, such that W is an independent
set and for each i and j, wj is adjacent to ui if and only if i = j or i ≡ j + 1
mod n.

A sun on 2k vertices is often called a k-sun. A sun such that the set U induces a
complete graph is called a complete sun. It has been shown that every sun con-
tains a complete sun [6,8]; yet, determining whether a graph contains a complete
sun does not seem easier than determining whether it contains a sun. We prove
the following lemma.

Lemma 1. Let H be a graph whose vertices can be partitioned into two sets
U = {u0, u1, . . . , uk−1} and W = {w0, w1, . . . , wk−1} of k ≥ 3 vertices each,
such that W is an independent set and for each i and j, wj is adjacent to ui if
and only if i = j or i ≡ j+1 mod k. Then, H is a sun with partition sets U and
W if and only if the subgraph H [U ] is chordal and the vertices u0, u1, . . . , uk−1

form a cycle u0u1 · · ·uk−1.

Proof. (=⇒) Since H is a sun, then H is chordal and thus the subgraph H [U ] is
chordal as well. Moreover, for all i = 0, 1, . . . , k−1, the vertices ui and ui+1mod k

are adjacent in H since a chordless path from ui+1mod k to ui in the (connected)
graph induced by {ui+1mod k, wi+1 mod k, . . . , ui−1, wi−1, ui} in H has to be of
length 1; otherwise, the vertices of the path along with vertex wi would induce
a chordless cycle on 4 or more vertices, a contradiction to the chordality of H .
(⇐=) Since H [U ] is chordal, the lemma follows easily from the fact that no wi

(0 ≤ i < k) participates in a chordless cycle on 4 or more vertices since wi’s only
neighbors, ui and ui+1 mod k, are adjacent in H .

Let G be a graph and let v be an arbitrary vertex of G. Let us define the
following set of non-edges of G

Ev = { xz | x, z ∈ M(v) and ∃y ∈ M(v) such that xyz is a P3 of G }
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which we call P3-edges. Then, we construct the graph Ĝv from G as follows:

V (Ĝv) = V (G) and E(Ĝv) = E(G) ∪ Ev.

Note that the definition of P3-edges implies that E(G)∩Ev = ∅. If the graph G

has n vertices and m edges, then the graph Ĝv has n vertices and O(n2) edges.

Definition 2.

� We collectively call a house or a building a generalized house or g-house for
short.

� If vertex v is the top of a house or a building, then v is the top of the g-house.
If v at the top is adjacent to vertices u, w in the g-house, we say that the
roof of the g-house is (v; u, w). The vertices of the g-house that do not belong
to its roof form a chordless path which we call the base of the g-house.

� A g-house is shorter than another g-house if it involves fewer vertices.

Our HHDS-free graph recognition algorithm relies on the following theorem.

Theorem 1. Let G be an HHD-free graph. The graph G contains a sun if and
only if there exists a vertex v such that the graph Ĝv defined above with respect
to v contains a house or a building with v at its top.

Proof. (=⇒) Suppose that the graph G contains a sun induced by the sets of
vertices U = {u0, u1, . . . , uk−1} and W = {w0, w1, . . . , wk−1}, where k ≥ 3 (see
Definition 1). Then, in the graph Ĝw0 , the vertices w0, u0, u1, w1, w2, . . . , wk−1

induce a house or a building with vertex w0 at its top (see Figure 2 for an
example where k = 5; dashed edges indicate P3-edges); note that u0u1 ∈ E(G)
(see Lemma 1), that the vertices u0 and u1 are not adjacent to any of the
vertices w1, w2, . . . , wk−2 and w2, w3, . . . , wk−1, respectively, and that, for all
i = 1, 2, . . . , k − 2, the vertices wi and wi+1 induce a P3-edge.
(⇐=) Suppose that there exists a vertex v which is the top of a house or a
building in Ĝv, i.e., v is the top of a g-house. Then, the following holds:

Fact 1. If the vertex v is the top of a g-house in the graph Ĝv, with
roof (v; u, w), then every edge in the base of a shortest g-house with
roof (v; u, w) is a P3-edge.

G

u0u1

u2

u3

u4

w0

w1

w2 w3

w4

Gw0

u0u1

u2
u3

u4

w0

w1 w2 w3 w4

Fig. 2
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Fact 1 is established in Lemma 2. Thus, if a shortest g-house with roof (v; u, w)
has base p1p2 · · · pk, then each pipi+1 (1 ≤ i ≤ k − 1) is a P3-edge; let us replace
each such edge with a corresponding P3 piqipi+1 in G. Then, from the fact that
we are considering a shortest g-house, we conclude that for i = 1, 2, . . . , k−1, the
vertex qi is not adjacent to any of the vertices in {p1, p2, . . . , pi−1, pi+2, . . . , pk}
(as in the proof of Lemma 2), which implies that the qis are all distinct (note
that the qis may be arbitrarily adjacent to one other); the situation is depicted
in Figure 3 where dashed lines indicate potential edges.

Additionally, vertex u is adjacent to at least one of the vertices q1, q2,
. . . , qk−1. If u were not adjacent to any of them, then if x is the leftmost neighbor
of w among q1, q2, . . . , qk−1, pk and if ρ is a chordless path from p1 to x in the
(connected) graph induced by the vertices {p1, q1, p2, q2, . . . , x} in G, the vertices
v, u, w, and the vertices of the path ρ induce a house or a building in G (with v
at its top), which contradicts the fact that the graph G is HHD-free. Thus, u is
adjacent to at least one qi. In fact, we can show the following:

Fact 2. There exists an integer r, where 1 ≤ r ≤ k − 1, such that the
vertex u is adjacent to precisely q1, q2, . . . , qr among the qis, otherwise
the graph G contains a sun.

Fact 2 is established in Lemma 6 (case (b)) with the aid of Lemma 4: since u
is adjacent to both p1 and a vertex qi, then Lemma 4 implies that it is also
adjacent to q1; then, for r = max{ j | uqj ∈ E(G) }, Lemma 6 (case (b)) implies
that if there exists a vertex qi (2 ≤ i ≤ r − 1) which is not adjacent to u, then
the graph G contains a sun, as desired.

So, let us consider the case where the vertex u is adjacent to each of the
vertices q1, q2, . . . , qr, where 1 ≤ r ≤ k−1. Similarly, we assume that there exists
an integer �, where 1 ≤ � ≤ k−1, such that the vertex w is adjacent to each of the
vertices q�, q�+1, . . . , qk−1. Then, it has to be that r ≥ �; if r < �, then the vertices
v, u, w, and the vertices of a chordless path from qr to q� in the (connected)
graph induced by {qr, pr+1, qr+1, . . . , p�, q�} induce a house or a building in G,
a contradiction. In fact, r = k − 1 and � = 1, i.e., the vertices u, w are adjacent
to each of the vertices q1, q2, . . . , qk−1. Suppose for contradiction that r ≤ k − 2
which implies that k ≥ 3 since r ≥ 1; then, because r ≥ �, the vertex w is

v

u w

p1 p2 pk

q1 q2 qk−1

Fig. 3
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pj pj+1pj+1

qj−1qj−1
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Fig. 4
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adjacent to both qk−2 and qk−1. Moreover, qk−2qk−1 ∈ E(G) (for otherwise the
vertices w, qk−2, pk−1, qk−1, pk would induce a house in G with vertex pk at its
top, a contradiction); then, the vertices pk−2, qk−2, qk−1 ∈ M(v) induce a P3 in
G, that is, pk−2qk−1 would be a P3-edge in Ĝv, which implies that the vertices
v, u, p1, p2, . . . , pk−2, qk−1, w induce a g-house in Ĝv with roof (v, u, w); note that
qk−1 is not adjacent to p1, p2, . . . , pk−3 nor to u. This, however, contradicts the
minimality of the g-house induced by v, u, p1, p2, . . . , pk, w. Thus, the assumption
that r ≤ k−2 led us to a contradiction. Hence, r = k−1 (i.e., vertex u is adjacent
to each of the vertices q1, q2, . . . , qk−1); similarly, vertex w is adjacent to each of
these vertices as well.

If there exists a vertex qi that is adjacent to a vertex qj but is not adjacent to
a vertex qj′ , where 1 ≤ i < j′ < j ≤ k−1, then clearly k ≥ 4 and Lemma 6 along
with Lemma 4 imply that the graph G contains a sun: since qi is adjacent to both
pi+1 and qj , then Lemma 4 implies that it is also adjacent to qi+1 (note that the
graph G is HHD-free and contains the path pi+1qi+1pi+2qi+2 · · · pjqj , with chords
only between qis, and the vertex qi is not adjacent to any of pi+2, pi+3, . . . , pj);
then, Lemma 6 (case (b)) implies that since vertex qi is not adjacent to vertex qj′ ,
where i + 2 ≤ j′ ≤ j − 1, the graph G contains a sun.

Suppose now that no vertex qi as in the previous paragraph exists; that is,
for all i = 1, 2, . . . , k−2, if qi is adjacent to a vertex qj , where 1 ≤ i < j ≤ k−1,
then qi is adjacent to each of qi+1, qi+2, . . . , qj . Then Lemma 5 implies that the
subgraph of G induced by the vertices w, u, q1, q2, . . . , qk−1 is chordal; recall that
uw ∈ E(G) and both u and w are adjacent to each of the vertices q1, q2, . . . , qk−1.
Additionally, we take advantage of the fact that u is adjacent to each of the
vertices q1, q2, . . . , qk−1 in order to show by induction on i that qiqi+1 ∈ E(G)
for all i = 1, 2, . . . , k − 2. For the basis step, we observe that if q1q2 /∈ E(G)
then the vertices u, p1, q1, p2, q2 induce a house in G (with vertex p1 at its top),
a contradiction. For the inductive step, we assume that qj−1qj ∈ E(G) where
j ≥ 2, and suppose for contradiction that qjqj+1 /∈ E(G); if qj−1qj+1 /∈ E(G),
then the vertices u, qj−1, qj , pj+1, qj+1 induce a house in G with vertex qj−1 at its
top (Figure 4(a)), which leads to a contradiction, whereas if qj−1qj+1 ∈ E(G),
then the vertices qj−1, pj , qj , pj+1, qj+1 induce a house in G with vertex pj at its
top (Figure 4(b)), a contradiction again. Therefore, qjqj+1 ∈ E(G), and from the
induction, qiqi+1 ∈ E(G) for all i = 1, 2, . . . , k − 2. This result, the chordality of
the subgraph G[{w, u, q1, q2, . . . , qk−1}], the fact that uw ∈ E(G), uq1 ∈ E(G),
and wqk−1 ∈ E(G), and Lemma 1 imply that the subgraph of G induced by the
vertices v, u, p1, q1, p2, q2, . . . , pk−1, qk−1, pk, w is a sun with partition sets U =
{u, q1, q2, . . . , qk−1, w} and W = {v, p1, p2, . . . , pk}.

Lemma 2. Let G be an HHD-free graph, v a vertex of G, and Ĝv be the auxiliary
graph defined above with respect to v. If the vertex v is the top of a g-house in
the graph Ĝv and if u and w are the neighbors of v in the g-house, then every
edge in the base of a shortest g-house with roof (v; u, w) is a P3-edge.

Proof. Let a shortest g-house with roof (v; u, w) have base p1p2 · · · pk, where
k ≥ 2 (Figure 5(a)). Since G does not contain a house or a hole, the path p1 · · · pk
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contains P3-edges; let us replace each P3-edge pipi+1 (1 ≤ i < k) by a correspond-
ing P3 piqipi+1 of G. Then, each such vertex qi is not adjacent to any vertex in
{p1, . . . , pi−1, pi+2, . . . , pk}: if qi were adjacent to pj , for some j ∈ {1, 2, . . . , i − 1}
then the vertices pj , qi, pi+1 would induce a P3 in G, and thus pjpi+1 would be
a P3-edge, which would imply that the vertices v, u, p1, . . . , pj , pi+1, . . . , pk, w

would induce a g-house with roof (v; u, w) in Ĝv, in contradiction to the mini-
mality of the g-house induced by v, u, p1, p2, . . . , pk, w; a similar argument leads
to a contradiction if qi were adjacent to pj , for some j ∈ {i + 2, i + 3, . . . , k}.
The fact that qi is not adjacent to any vertex in {p1, . . . , pi−1, pi+2, . . . , pk} also
implies that the vertices qi are all different.

We will show next that every edge pipi+1 is a P3-edge. Suppose for contra-
diction that pipi+1 is not a P3-edge; hence, it is an edge of G instead. Consider
a chordless path ρ in G from p1 to pi in the (connected) graph induced by
{p1, q1, p2, . . . , qi−1, pi} and a chordless path ρ′ from pi+1 to pk in the (conne-
cted) graph induced by {pi+1, qi+1, pi+2, . . . , qk−1, pk}. We show that the con-
catenation of the path ρ, the edge pipi+1, and the path ρ′ forms a chordless
path in G (see Figure 5(b)). If there were a chord, this would have been an
edge q�qr, where � < i and r ≥ i + 1. Let us consider an edge q�qr that mini-
mizes the difference r− �; then, the vertices of the path ρ from q� to pi, and the
vertices of the path ρ′ from pi+1 to qr induce a cycle in G. In fact, they induce
a chordless cycle due to the minimality of q�qr, the chordlessness of ρ and ρ′,
and the fact that pi sees none of the vertices of ρ′ except for pi+1, and that pi+1

sees none of the vertices of ρ except for pi. Additionally, because G contains
no hole, it must be the case that � = i − 1 and r = i + 1, i.e., the vertices
q�, pi, pi+1, qr form a C4. Then, the vertices q�, qr, pr+1 induce a P3 in G and
thus the edge q�pr+1 is a P3-edge in Ĝv. If neither u nor w see q� then the ver-
tices v, u, p1, p2, . . . , p�, q�, pr+1, pr+2, . . . , pk, w would form a g-house in Ĝv with
roof (v; u, w) which is shorter than the g-house induced by v, u, p1, . . . , pk, w, in
contradiction to the minimality of the latter g-house; hence, at least one of u, w
sees q�, and similarly at least one of u, w sees qr. On the other hand, neither u
nor w see both q� and qr, since G does not contain a house. Therefore, either
u sees q� and w sees qr or u sees qr and w sees q�; in either case, the vertices
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v, u, q�, qr, w induce a house (recall that uw ∈ E(G)); a contradiction. Thus,
no chord exists, and the concatenation of the path ρ, the edge pipi+1, and the
path ρ′ forms a chordless path π in G (Figure 5(b)).

The vertex u is not adjacent to any vertex in the path ρ′. If it were, let t′

be the leftmost such vertex; clearly, t′ 
= pi+1. Moreover, let t be the rightmost
vertex of ρ which is adjacent to u; t is well defined since up1 ∈ E(G) and t 
= pi.
But then, the vertex u and the vertices in the part of the path π from t to t′

induce a hole in G, which leads to a contradiction; thus, u is not adjacent to any
vertex in ρ′. Similarly, w is not adjacent to any vertex in ρ. But then G contains
a hole: it is induced by the vertices u, w, and the vertices of the path π from the
rightmost neighbor of u in ρ (which is to the left of pi) to the leftmost neighbor
of w in ρ′ (which is to the right of pi+1). This however contradicts the fact that
G is HHD-free, and therefore we conclude that the base of the g-house induced
by u, v, w, p1, p2, . . . , pk consists entirely of P3-edges.

Lemma 3. Let G be a graph which contains a C4 abcd and a path ρ from c to d
(different from the path cd) whose vertices other than its endpoints c and d are
adjacent neither to a nor to b. Then, the graph G contains a hole, a house, or a
domino.

Lemma 4. Let G be an HHD-free graph that contains a path psqsps+1qs+1

· · · ptqt, where t ≥ s + 1, with chords only between qis, and let x be a vertex
of G that is adjacent to ps and is not adjacent to any of ps+1, ps+2, . . . , pt. If the
vertex x is adjacent to qt, then it is also adjacent to qs.

Proof. Suppose for contradiction that xqs /∈ E(G). Let t′ = min{ i | s + 1 ≤
i ≤ t and xqi ∈ E(G) }; the vertex qt′ is well defined since x is adjacent to qt.
Then, qsqt′ ∈ E(G), otherwise the length of a chordless path from qs to qt′ in the
(connected) graph induced by {qs, ps+1, qs+1, . . . , pt′ , qt′} in G would be of length
at least 2 and the vertices of the path along with x and ps would induce a hole
in G, a contradiction. But then, the vertices x, ps, qs, qt′ induce a C4 in G and
G contains the path qsps+1qs+1 · · · pt′qt′ whose vertices other than its endpoints
are adjacent neither to x nor to ps. Thus, Lemma 3 applies, implying that the
graph G contains a hole, a house, or a domino, in contradiction to the fact that G
is HHD-free. Therefore, the vertex x is adjacent to qs.

Lemma 5. Let H be a graph that does not contain holes, and v1, v2, . . . , vk (k ≥
3) be an ordering of a subset of vertices of H such that, for all i = 1, 2, . . . , k−1,
if vi is adjacent to vj, where i < j ≤ k, then vi is adjacent to each of the vertices
vi+1, vi+2, . . . , vj. Then, the subgraph of H induced by the vertices v1, v2, . . . , vk

is chordal.

Proof. Since the graph H does not contain holes, we only need to show that the
subgraph induced by the vertices v1, v2, . . . , vk does not contain a C4. Suppose
for contradiction that it contained a C4, say, vavbvcvd, and suppose without loss
of generality that a = min{a, b, c, d}. Then, we distinguish the following cases:

(i) b = max{a, b, c, d}: then, va is adjacent to vb but is not adjacent to vc and
yet c < b (see Figure 6(a)), a contradiction;
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Fig. 6. Different cases for the C4 vavbvcvd

(ii) c = max{a, b, c, d}: then, if i = min{b, d} and j = max{b, d}, vi is adjacent
to vc but is not adjacent to vj and yet i < j < c (see Figure 6(b)), a
contradiction;

(iii) d = max{a, b, c, d}: the case is similar to case (i) and leads to a contradiction.

In all cases, we reached a contradiction, which implies that the subgraph of
H induced by the vertices v1, v2, . . . , vk is chordal.

Lemma 6. Let G be an HHD-free graph that contains a path qsps+1qs+1 · · · ptqt,
where t ≥ s + 2, with chords only between qis, and let x be a vertex of G that is
adjacent to qs and qt, and is not adjacent to any of ps+1, ps+2, . . . , pt.

(a) Suppose that the vertex x is not adjacent to the vertices qs+1, qs+2, . . . , qt−1,
and that for i = s, s + 1, . . . , t − 1, if the vertex qi is adjacent to qj (where
i < j ≤ t) then it is adjacent to each of the vertices qi+1, qi+2, . . . , qj. Then,
the vertices x, qs, ps+1, qs+1, . . . , pt, qt induce a sun in G.

(b) If there exists a vertex qi (s + 1 ≤ i ≤ t − 1) that is not adjacent to x, then
the graph G contains a sun.

Proof. (a) First, the set {qs, qs+1, . . . , qt} contains at least 3 vertices. Next, due
to the property of the qis, Lemma 5 implies that the subgraph of G induced by
the vertices qs, qs+1, . . . , qt is chordal. In light of Lemma 1 and of the fact that
the vertex x is adjacent to qs and qt only, and each vertex pi (s + 1 ≤ i ≤ t) is
adjacent to qi−1 and qi only, we need only prove that the vertices qs, qs+1, . . . , qt

induce a cycle qsqs+1 · · · qt in G.
We begin by showing that the vertex qs is adjacent to at least one vertex

in {qs, qs+1, . . . , qt}; if it were not, then the vertices x, qs, ps+1, and the ver-
tices of a chordless path from qs+1 to qt in the (connected) graph induced by
{qs+1, ps+2, qs+2, . . . , pt, qt} would induce a hole in G, a contradiction. If q� is
that vertex, i.e., qsq� ∈ E(G), then qsqt ∈ E(G): this is trivially true if q� = qt; if
q� 
= qt, then because the graph G contains the path xqtptqt−1 · · · p�+1q�, where
� ≤ t−1, with chords only between qis, and the vertex qs is adjacent to x and q�

but is not adjacent to any of pt, pt−1, . . . , p�+1, Lemma 4 applies, implying that
qs is adjacent to qt in G. From this fact and from the property of the vertices
qi (s ≤ i < t) that if qi is adjacent to qj , where i < j ≤ t, then qi is adjacent
to each of the vertices qi+1, qi+2, . . . , qj , we conclude that qs is adjacent to each
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of the vertices qs+1, qs+2, . . . , qt; this in turn enables us to additionally show (by
induction on i) that qiqi+1 ∈ E(G) for all i = s+1, s+2, . . . , t−1. For the basis
step, we note that if qs+1qs+2 /∈ E(G), then the vertices qs, ps+1, qs+1, ps+2, qs+2

induce a house in G with vertex ps+1 at its top, a contradiction. For the inductive
step, assume that qj−1qj ∈ E(G) where j ≥ s+2. We show that qjqj+1 ∈ E(G);
if not, then the vertices qs, qj−1, qj , pj+1, qj+1 induce a house in G with ver-
tex qj−1 at its top, a contradiction. Our inductive proof is complete implying
that qiqi+1 ∈ E(G) for all i = s+1, s+2, . . . , t−1; then, because qsqs+1 ∈ E(G)
and qsqt ∈ E(G), we have that the vertices qs, qs+1, . . . , qt indeed induce a cy-
cle qsqs+1 · · · qt in G.
(b) Since the vertex x is adjacent to qs and qt, and is not adjacent to a vertex in
{qs+1, qs+1, . . . , qt−1}, we can find vertices q�, qr, where s ≤ � < r ≤ t, such that x
is adjacent to q� and qr but is not adjacent to any of q�+1, q�+2, . . . , qr−1. Then, if
for each vertex qi (� ≤ i ≤ r−1), the fact that qi is adjacent to a vertex qj , where
i < j ≤ r, implies that qi is adjacent to each of the vertices qi+1, qi+2, . . . , qj ,
Lemma 6 (case (a)) applies, implying that the vertices x, q�, p�+1, q�+1, . . . , pr, qr

induce a sun in G. Suppose now that there exists a vertex qi (� ≤ i ≤ r−1) that
is adjacent to a vertex qj and is not adjacent to a vertex qj′ , where i < j′ < j ≤ r.
Let us collect all such vertices in a (non-empty) set S.

For each vertex qi in S (which is adjacent, say, to qji where i + 1 < ji),
Lemma 4 implies that qi is adjacent to qi+1; note that G is HHD-free and contains
the path pi+1qi+1 · · · pjiqji , and qi is adjacent to pi+1 and qji . Then, for each
vertex qi ∈ S, we can find indices �i and ri where i < �i < ri ≤ r, such
that qi is adjacent to q�i and qri but is not adjacent to any of the vertices
q�i+1, q�i+2, . . . , qri−1, and the difference ri − �i is minimized. Let qı̂ be a vertex
in S such that rı̂ − �ı̂ = minqi∈S{ri − �i}; the minimality of qı̂ implies that for
i = �ı̂, �ı̂ + 1, . . . , rı̂ − 1, if the vertex qi is adjacent to qj (where i < j ≤ rı̂) then
it is adjacent to each of the vertices qi+1, qi+2, . . . , qj . This, the fact that the
graph G contains the path q�ı̂

p�ı̂+1q�ı̂+1 · · · prı̂
qrı̂

, where rı̂ ≥ �ı̂ +2, with chords
only between qis, and the fact that vertex qı̂ is adjacent to q�ı̂

and qrı̂
but is not

adjacent to any of q�ı̂+1, q�ı̂+2, . . . , qrı̂−1 imply that Lemma 6 (case (a)) applies,
and therefore, the vertices qı̂, q�ı̂

, p�ı̂+1, q�ı̂+1, . . . , prı̂
, qrı̂

induce a sun in G.

3 The Algorithm

The recognition algorithm takes advantage of Theorem 1. We start by checking
whether the input graph G is HHD-free. If it is not, then clearly G is not HHDS-
free. Otherwise, for each vertex v of G, we construct the auxiliary graph Ĝv

and check whether v is the top of a house or a building in Ĝv; if this is so for
any vertex v, then G is not HHDS-free. We note that in order to check whether
v is the top of a house or a building in Ĝv, we can use the algorithms in [12]
(Algorithm High) and [14] (Algorithm Not-in-HHB) which for a graph H and a
vertex x return true if and only if the vertex x belongs to a hole or is the top
of a house or a building in H ; Lemma 7 establishes that v does not belong to a
hole in Ĝv if G is HHD-free.
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Lemma 7. Let G be an HHD-free graph, v a vertex of G, and Ĝv be the auxiliary
graph defined in Section 2 with respect to v. Then, the vertex v does not belong
to a hole in the graph Ĝv.

Formally, the recognition algorithm works as follows:

Algorithm Rec-HHDS-free

1. if G is not HHD-free
then return “G is not HHDS-free”;

2. for each vertex v of G do
2.1 construct the auxiliary graph Ĝv;
2.2 if v is the top of a house or a building in Ĝv

then return “G is not HHDS-free”; {G contains a sun}
3. return “G is HHDS-free”.

The correctness of the algorithm follows from Theorem 1.

Time and Space Complexity. Let n and m be the number of vertices and
edges of the input graph G. Step 1 can be executed in O(min{nmα(n), nm +
n2 log n}) time and O(n + m) space [14]. In Step 2, the construction of the
auxiliary graph Ĝv can be done in O(nm) time and requires O(n2) space. Then,
we check whether vertex v is the top of a house or a building by means of the
Algorithm Not-in-HHB [14], which for a graph on N vertices and M edges takes
O(N + min{Mα(N), M + N log N}) time and O(N + M) space; since Ĝv has
n vertices and O(n2) edges, Substep 2.2 takes O(n2) time and space. Thus, the
entire execution of Step 2 for all the vertices of G takes O(n2m) time and O(n2)
space. Step 3 takes constant time and space.

Therefore, we obtain the following theorem.

Theorem 2. Let G be an undirected graph on n vertices and m edges. Then,
there exists an algorithm for determining whether G is an HHDS-free graph in
O(n2m) time and O(n2) space.

4 Concluding Remarks

We have presented a recognition algorithm for the class of HHDS-free graphs
running in O(n2m) time with O(n2) space. To the best of our knowledge, it is the
first polynomial-time algorithm for recognizing the class of HHDS-free graphs.
The proposed recognition algorithm can be augmented to provide a certificate
(an induced house, hole, domino, or sun) in linear additional time and space
whenever it decides that the input graph is not HHDS-free: for a house, hole, or
domino, see [15]; for a sun, we take advantage of the proof of Theorem 1, which
is constructive. Finally, the use of P3-edges enables us to recognize {house, hole,
domino, 3-sun}-free graphs in O(n2m) time and O(n) space.
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12. C.T. Hoàng and R. Sritharan, Finding houses and holes in graphs, Theoret. Com-

put. Sci. 259, 233–244, 2001.
13. M. Middendorf and F. Pfeiffer, On the complexity of recognizing perfectly orderable

graphs, Discrete Math. 80, 327–333, 1990.
14. S.D. Nikolopoulos and L. Palios, Recognizing HHD-free and Welsh-Powell oppo-

sition graphs, Proc. 30th Workshop on Graph Theoretic Concepts in Computer
Science (WG’04), LNCS 3353, 105–116, 2004.

15. S.D. Nikolopoulos and L. Palios, Recognizing HHD-free and Welsh-Powell opposi-
tion graphs, Technical Report TR-16-04, Dept. of Computer Science, University of
Ioannina, 2004.

16. S. Olariu, All variations on perfectly orderable graphs, J. Combin. Theory Ser. B
45, 150–159, 1988.

17. D.J. Rose, R.E. Tarjan, and G.S. Lueker, Algorithmic aspects of vertex elimination
on graphs, SIAM J. Comput. 5, 266–283, 1976.


	Introduction
	Theoretical Framework
	The Algorithm
	Concluding Remarks


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


