
Adding an Edge in a Cograph

Stavros D. Nikolopoulos and Leonidas Palios

Department of Computer Science,
University of Ioannina, GR-45110 Ioannina, Greece

{stavros, palios}@cs.uoi.gr

Abstract. In this paper, we establish structural properties of cographs
which enable us to present an algorithm which, for a cograph G and
a non-edge xy (i.e., two non-adjacent vertices x and y) of G, finds the
minimum number of edges that need to be added to the edge set of G
such that the resulting graph is a cograph and contains the edge xy.
The motivation for this problem comes from algorithms for the dynamic
recognition and online maintenance of graphs; the proposed algorithm
could be a suitable addition to the algorithm of Shamir and Sharan
[13] for the online maintenance of cographs. The proposed algorithm
runs in time linear in the size of the input graph and requires linear space.

Keywords: Perfect graphs, cographs, cotrees, connected components,
co-connected components, optimization problems.

1 Introduction

In this paper, we study the following problem:

(Cograph,+1)-MinEdgeAddition: Given a cograph G and a non-edge xy
(i.e., a pair of non-adjacent vertices x and y) of G, find the minimum
number of non-edges of G that need to be added to G so that the resulting
graph is a cograph and contains xy as an edge.

This problem is an instance of a more general (Π, +k)-MinEdgeAddition problem
in which we deal with a class Π of graphs and we want to have k given non-edges
added. Similarly, we can define the (Π,−k)-MinEdgeAddition problem: we are
given a graph G from a class Π and k edges of G which we want removed; since
the removal of these edges yields a graph G′ which may not necessarily belong to
Π , we want to find the minimum number of non-edges of G which when added to
G′ give a graph in Π (note that the fact that we add non-edges of G prevents the
addition of an edge of G which we want removed). Further extensions lead to the
(Π,±k)-MinEdgeDeletion problem, in which we remove the minimum number
of edges of G (instead of adding non-edges) in order to obtain a graph in Π .

The above problems are motivated by the dynamic recognition problem on
(or on-line maintenance of) graphs: a series of requests for the addition or the
deletion of an edge or a vertex (potentially incident on a number of edges) are
submitted and each is executed only if the resulting graph remains in the same

D. Kratsch (Ed.): WG 2005, LNCS 3787, pp. 214–226, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Adding an Edge in a Cograph 215

class of graphs. Several authors have studied this problem for different classes of
graphs and have given algorithms supporting some or all the above operations;
we mention the edges-only fully dynamic algorithm of Ibarra [8] for chordal
graphs, the fully dynamic algorithm of Hell et al. [7] for proper interval graphs,
and the fully dynamic algorithm of Shamir and Sharan [13] for cographs.

The cographs, short for complement reducible graphs, are defined as the class
of graphs formed from a single vertex under the closure of the operations of
union and complementation, namely: (i) a single-vertex graph is a cograph;
(ii) the disjoint union of cographs is a cograph; (iii) the complement of a co-
graph is a cograph. Cographs were introduced in the early 1970s by Lerchs [11]
who studied their structural and algorithmic properties. Along with other prop-
erties, Lerchs has shown that they admit a unique tree representation, up to
isomorphism, called a cotree. Cographs have arisen in many disparate areas of
applied mathematics and computer science and have been independently redis-
covered by various researchers under various names such as D∗-graphs [10], P4

restricted graphs [4,5], 2-parity graphs and Hereditary Dacey graphs or HD -
graphs [15]. They are perfect and in fact form a proper subclass of permutation
graphs and distance hereditary graphs; they contain the class of quasi-threshold
graphs and, thus, the threshold graphs [1,9]. Furthermore, they are precisely the
graphs which contain no induced subgraph isomorphic to a P4 (i.e., a chordless
path on four vertices).

The study of cographs led naturally to constructive characterizations that
implied several linear-time recognition algorithms that also enabled the con-
struction of the cotree in linear time [1,14]. Surprisingly, despite the structural
simplicity of cographs, constructing linear-time recognition algorithms has been
challenging. The first linear-time recognition and cotree-construction algorithm
was proposed by Corneil, Perl, and Stewart [5] in 1985. Recently, Bretscher et
al. [2] presented a simple linear-time recognition algorithm which uses a multi-
sweep LexBFS approach; their algorithm either produces the cotree of the input
graph or identifies an induced P4. Additionally, since the cographs are perfect,
many interesting optimization problems in graph theory, which are NP-complete
in general graphs, have polynomial sequential solutions [1,9]; for example, for the
problem of determining the minimum path cover for a cograph, Lin et al. [12]
presented a linear-time algorithm, which can be used to produce a Hamiltonian
cycle or path, if such a structure exists.

In this paper, we solve the (Cograph,+1)-MinEdgeAddition problem. We
consider (what we call) the component-partition of a graph G with respect to
any of its vertices v: this is related to the partition of the subgraph of G induced
by the neighbors of v in G into co-components and to the partition of the sub-
graph induced by the non-neighbors of v into components. By taking advantage
of the fact that a cograph contains no induced subgraph isomorphic to a P4 [11],
we establish structural properties for the component-partition of a cograph with
respect to any of its vertices. These properties and the use of dynamic program-
ming enable us to describe an algorithm for the above problem which runs in
time linear in the size of the input graph.



216 S.D. Nikolopoulos and L. Palios

2 Theoretical Framework

We consider finite undirected graphs with no loops or multiple edges. For a
graph G, we denote by V (G) and E(G) the vertex set and edge set of G, respec-
tively. Let S be a subset of the vertex set V (G) of a graph G; the subgraph of
G induced by S is denoted by G[S].

The neighborhood N(x) of a vertex x of the graph G is the set of all the
vertices of G which are adjacent to x. The closed neighborhood of x is defined
as N [x] := N(x) ∪ {x}. The neighborhood of a subset S of vertices is defined as
N(S) :=

(⋃
x∈S N(x)

)− S and its closed neighborhood as N [S] := N(S) ∪ S. If
two vertices x and y are adjacent in G, we say that x sees y; otherwise we say
that x misses y. We extend this notion to vertex sets: Vi ⊆ V (G) sees (misses)
Vj ⊆ V (G) if and only if every vertex x ∈ Vi sees (misses) every vertex y ∈ Vj .

If the graph G contains a path from a vertex x to a vertex y, we say that
x is connected to y. The connected components (or components) of G are the
equivalence classes of the “is connected to” relation on the vertex set V (G) of
G. The co-connected components (or co-components) of G are the connected
components of the complement G of G.

3 The Component-Partition

Let us consider for a vertex v of a graph G the partition of the subgraphs G[N(v)]
and G[V (G)−N [v]] into co-components and connected components, respectively;
then, we define:

Definition 1. Let G be a graph and v a vertex of G. We define the component-
partition of G with respect to v, denoted by (v; Ĉ1..�; C1..k), as the partition of
the vertex set V (G)

V (G) = {v} + Ĉ1 + Ĉ2 + . . . + Ĉ� + C1 + C2 + . . . + Ck,

where Ĉ1, Ĉ2, . . . , Ĉ� are the co-connected components of G[N(v)] and C1, C2,
. . . , Ck are the connected components of G[V (G)−N [v]].

In particular, we restrict our attention to component-partitions such that
there are no P4s with vertices in both N(v) and V (G)−N [v]; thus, we define:

Definition 2. Let G be a graph, v a vertex of G, and (v; Ĉ1..�; C1..k) the compo-
nent-partition of G with respect to v. We say that this component-partition is
good if and only if G contains no P4 with a vertex in some Ĉi (1 ≤ i ≤ �) and
a vertex in some Cj (1 ≤ j ≤ k).

Our interest in good component-partitions comes from the property described
in the following observation:

Observation 1. Suppose that the component-partition (v; Ĉ1..�; C1..k) of a
graph G with respect to a vertex v is good. If G contains a P4, then all the



Adding an Edge in a Cograph 217

vertices of the P4 belong to the same co-component Ĉi or to the same compo-
nent Cj.

Observation 1 follows from the fact that the vertices of any P4 in the sub-
graph G[N [v]] all belong to the same co-component of G[N(v)], and the vertices
of any P4 in the subgraph G[V (G)−N [v]] all belong to the same component of
G[V (G)−N [v]]. Additionally, the definition of a good component-partition and
the fact that the cographs do not contain P4s clearly imply:

Observation 2. If G is a cograph, then the component-partition of any induced
subgraph of G with respect to any of its vertices is good.

In Lemma 1 we establish necessary and sufficient conditions for a component-
partition to be good.

Lemma 1. Let G be a graph, v a vertex of G, and (v; Ĉ1..�; C1..k) the component-
partition of G with respect to v. Then, the component-partition of G with respect
to v is good if and only if the following two conditions hold:

(i) for each co-component Ĉi and each component Cj, Ĉi either sees or misses Cj;
(ii) if, for each co-component Ĉi, 1 ≤ i ≤ �, we define the set Îi =
{ j | Ĉi sees Cj }, then the co-components of G[N(v)] have the following
monotonicity property: |Îi| ≤ |Îj | implies that Îi ⊆ Îj .

Condition (ii) of Lemma 1 can be phrased in another equivalent way, as given
in the following corollary.

Corollary 1. Let G be a graph, v a vertex of G, and (v; Ĉ1..�; C1..k) the compo-
nent-partition of G with respect to v. Then, the component-partition of G with
respect to v is good if and only if the following two conditions hold:

(i) for each co-component Ĉi and each component Cj, Ĉi either sees or misses Cj;
(ii) Suppose that the ordering of the co-components Ĉ1, Ĉ2, . . . , Ĉ� corresponds to

their ordering by non-decreasing |Îi|, where Îi = { j | Ĉi sees Cj }. If we
associate each component Ci, 1 ≤ i ≤ k, with the set Ii = { j | Ci sees Ĉj },
then the components of G[V (G)−N [v]] have the following property: if Ii �= ∅
and h is the minimum element of Ii, then Ii = {h, h + 1, . . . , �}.

We also note that because the co-components of the neighbors of a vertex and the
components of its non-neighbors trade places in the complement of the graph,
then properties similar to those described in conditions (ii) of Lemma 1 and
Corollary 1 hold for the sets Ii and Îi, respectively.

Let us assume that the component-partition (v; Ĉ1..�; C1..k) of the graph G

is good. We partition the set of co-components {Ĉ1, Ĉ2, . . . , Ĉ�} of the subgraph
G[N(v)] into a collection of sets Ŝ1, Ŝ2, . . . , Ŝ�′ defined as follows:

Definition 3. Consider the equivalence relation R on the set of co-components
{Ĉ1, Ĉ2, . . . , Ĉ�} such that (Ĉi, Ĉj) ∈ R if and only if Îi = Îj, i.e., Ĉi and Ĉj
see the same components of the subgraph G[V (G) − N [v]]. We define the sets
Ŝ1, Ŝ2, . . . , Ŝ�′ as the equivalence classes of the relation R where, for every i, j
such that 1 ≤ i < j ≤ �′, and every Ĉr ∈ Ŝi and Ĉs ∈ Ŝj, it holds that Îr ⊂ Îs.



218 S.D. Nikolopoulos and L. Palios

The value �′ is equal to the number of distinct sets Îi, and thus each set Ŝj is
nonempty. It is not difficult to see that the partition sets Ŝ1, Ŝ2, . . . , Ŝ�′ have the
following properties:

◦ If a connected component C of the subgraph G[V (G)−N [v]] sees a co-com-
ponent Ĉi ∈ Ŝj, then C sees all the co-components in Ŝj .
◦ Let us consider the ordering of the co-components {Ĉ1, Ĉ2, . . . , Ĉ�} consisting

of an arbitrary ordering of the elements of the set Ŝ1 followed by an arbitrary
ordering of the elements of Ŝ2 and so on up to the set Ŝ�′ . In this ordering,
the co-components Ĉi, 1 ≤ i ≤ �, are ordered by non-decreasing value of |Îi|.

In light of these properties and the fact that the component-
partition (v; Ĉ1..�; C1..k) is good (thus condition (ii) of Corollary 1 holds),
we have:

Definition 4. We define the following partition of the set of components {C1, C2,
. . . , Ck} of the subgraph G[V (G) −N [v]]:

S1 = { Cj | ∀ Ĉ ∈ Ŝ1, Cj sees Ĉ }
Si = { Cj | ∀ Ĉ ∈ Ŝi and Ĉ′ ∈ Ŝi−1, Cj sees Ĉ but misses Ĉ′ } (2 ≤ i ≤ �′)
S�′+1 = { C1, C2, . . . , Ck } −

⋃

i=1,...,�′
Si

The definition of the sets Ŝj , j = 1, 2, . . . , �′, implies that Si �= ∅ for all
i = 2, 3, . . . , �′. However, S�′+1 and S1 may be empty. In particular, S�′+1 is
empty if and only if the graph G is connected; in fact, S�′+1 contains the con-
nected components of G except for the component to which v belongs. Figure 1
illustrates the partitions of the set of co-components and of the set of compo-
nents described above and their adjacencies in a good component-partition of
the graph G with respect to vertex v; the dotted ovals indicate the partition
sets, and the circles inside the ovals indicate the components or co-components
belonging to the partition set.

In terms of the partitions into sets Ŝ1, Ŝ2, . . . , Ŝ�′ and S1, S2, . . . , S�′ , S�′+1,
the cotree of a cograph G has a very special structure, which is described in

v

G[N(v)]

G[V (G) − N [v]]

S�′+1S1 S2 S�′

Ŝ1 Ŝ2 Ŝ�′

Fig. 1



Adding an Edge in a Cograph 219

0

1

0

1

1

v

S�′+1

S�′

Ŝ1

Ŝ�′−1

Ŝ�′

0

1

0

1

0

v

S�′+1

S1

S�′

Ŝ1

Ŝ�′

(a) (b)

Fig. 2

the following observation (because of Observation 2, the sets Ŝ1, Ŝ2, . . . , Ŝ�′ and
S1, S2, . . . , S�′ , S�′+1 are well defined).

Observation 3. Let G be a cograph, v a vertex of G, and Ŝ1, Ŝ2, . . . , Ŝ�′ and
S1, S2, . . . , S�′ , S�′+1, respectively, the partitions of the co-connected components
of G[N(v)] and of the connected components of G[V (G)−N [v]] as defined above.
Then,

(i) if S1 = ∅, the cotree of G has the general form depicted in Figure 2(a);

(ii) if S1 �= ∅, the cotree of G has the general form depicted in Figure 2(b).

In either case, the dashed part1 appears in the tree if and only if S�′+1 �= ∅.
The circular nodes labeled with a 0 or a 1 in Figure 2 are 0-nodes and 1-nodes,
respectively, whereas the shaded node is a leaf node; the triangles denote the
cotrees of the corresponding connected components or co-components.

4 Adding an Edge in a Cograph

Let G be a cograph and let x, y be two vertices of G which are not adjacent. We
want to solve the (Cograph,+1)-MinEdgeAddition problem for G, x, y, i.e., we
wish to make x and y adjacent, while adding the minimum number of non-edges
of G so that the resulting graph is a cograph. Instrumental in the algorithm that
we will be presenting is the component-partition of the graph G with respect to
a vertex of G (see Definition 1) and in particular the partitions into sets Ŝi and

1 Lerchs’ definition required that the root of a cotree be a 1-node [11]; here, we relax
this condition and allow the root to be a 0-node as well, thus obtaining cotrees whose
internal nodes all have at least two children, and whose root is a 1-node if and only
if the corresponding cograph is connected.



220 S.D. Nikolopoulos and L. Palios

Sj (see Definitions 3 and 4); since G is a cograph, Observation 2 holds and thus
the adjacencies between the Ŝis and Sjs are as shown in Figure 1.

In particular, let Ŝ1(x), Ŝ2(x), . . . , Ŝ�′x(x) and S1(x), S2(x), . . . , S�′x(x),
S�′x+1(x) be the sets of the co-components of the subgraph G[N(x)] and of the
connected components of the subgraph G[V (G) − N [x]], respectively. Since x
and y are non-adjacent, then y belongs to a set, say, Skx(x); in particular, let Cy
be the component in Skx(x) to which y belongs. Similarly, let Ŝ1(y), Ŝ2(y), . . . ,
Ŝ�′y(y) and S1(y), S2(y), . . . , S�′y(y), S�′y+1(y) be the sets of the co-components
of G[N(y)] and of the connected components of G[V (G) − N [y]], respectively,
and suppose that x belongs to the component Cx of the set Sky (y). Because the
elements of the sets Ŝkx+i(x) and Ŝky+i(y), i ≥ 0, and Skx+i(x) and Sky+i(y),
i ≥ 1, correspond to the subtrees of the cotree of G hanging from the nodes in
the path from the parent of the least common ancestor of x and y to the root
(see Figure 2), it holds that

Ŝkx+i(x) = Ŝky+i(y) for all i ≥ 0
and Skx+i(x) = Sky+i(y) for all i ≥ 1

which also implies that �′x − kx = �′y − ky. Moreover, from any subtrees, other
than those containing x and y, hanging from the least common ancestor of x
and y, we have:

Skx(x) − {Cy} = Sky(y)− {Cx}.

For the sake of simplicity of the notation, let us define

Vi(x) =
⋃

1≤t≤i

(
Ŝt(x) ∪ St(x)

)
and Vi(y) =

⋃

1≤t≤i

(
Ŝt(y) ∪ St(y)

)
.

Note that V0(x) = ∅ and V0(y) = ∅. Then, the properties of a good component-
partition (in light of Observation 2) imply (see also Figure 1):

P1: the common neighbors of x and y are precisely the vertices in Ŝkx(x) ∪
Ŝkx+1(x) ∪ . . . ∪ Ŝ�′x(x) = Ŝky (y) ∪ Ŝky+1(y) ∪ . . . ∪ Ŝ�′y(y);

P2: Cy = {y} ∪ Vky−1(y) and similarly, Cx = {x} ∪ Vkx−1(x).

In order to show Property P2, we note that Cy is the connected component to
which y belongs after all the common neighbors of x and y have been removed;
then, Property P2 follows from considering the removal of the vertices in Ŝky (y)∪
Ŝky+1(y) ∪ . . . ∪ Ŝ�′y(y) (see Property P1) in the component-partition of the
graph G with respect to y.

Let G′ be an optimal solution to the (Cograph,+1)-MinEdgeAddition prob-
lem, i.e., G′ is a cograph for which V (G′) = V (G), E(G) ∪ {xy} ⊆ E(G′), and
|E(G′)| is minimum. Clearly, Observation 2 holds for G′; the properties of G′

are described in the following two lemmata.



Adding an Edge in a Cograph 221

x

Ŝkx(x) Ŝkx+1(x) Ŝ�′x(x)

Skx(x)-{Cy} Skx+1(x) S�′x(x) S�′x+1(x)

Fig. 3 Skx(x)−{Cy} �= ∅: the rightmost sets Ŝ′
i(x) and S′

i(x), i = rx−(�′x−kx), . . . , rx,

in the partitions of the subgraphs G′[NG′ (x)] and G′[V (G′) − NG′ [x]]

x

Ŝkx(x)

Ŝkx+1(x) Ŝ�′x(x)

Skx+1(x) S�′x(x) S�′x+1(x)

Fig. 4 Skx(x) = {Cy}: the rightmost sets Ŝ′
i(x) and S′

i(x), i = rx−(�′x−kx)+1, . . . , rx,

and Ŝ′
rx−(�′x−kx)(x) in the partitions of G′[NG′ (x)] and G′[V (G′) − NG′ [x]]

Lemma 2. Let G be a cograph, x, y be two non-adjacent vertices of G, and let

◦ Ŝ1(x), Ŝ2(x), . . . , Ŝ�′x(x) and S1(x), S2(x), . . . , S�′x(x), S�′x+1(x),
◦ Ŝ1(y), Ŝ2(y), . . . , Ŝ�′y(y) and S1(y), S2(y), . . . , S�′y(y), S�′y+1(y),
◦ kx, ky, Cy, Vi(x), and Vi(y)

be as described above. Then, for the partition of the subgraphs G′[NG′(x)] and
G′[V (G′) − NG′ [x]] of an optimal graph G′ into sets of co-components Ŝ′

1(x),
Ŝ′

2(x), . . . , Ŝ′
rx

(x), and connected components S′
1(x), S′

2(x), . . . , S′
rx

(x), S′
rx+1(x)

respectively, the following properties hold:

(i) Ŝ′
rx−i(x) = Ŝ�′x−i(x) = Ŝ�′y−i(y) for all i = 0, 1, 2, . . . , �′x − kx − 1, and

S′
rx+1−i(x) = S�′x+1−i(x) = S�′y+1−i(y) for all i = 0, 1, 2, . . . , �′x − kx (see

Figures 3 and 4);
(ii) if Skx(x) contains at least one connected component in addition to Cy, then

Ŝ′
rx−(�′x−kx)(x) = Ŝkx(x) = Ŝky(y) and S′

rx−(�′x−kx)(x) = Skx(x) − {Cy} (see
Figure 3);

(iii) if Skx(x) contains just the connected component Cy, then all the co-
components in Ŝkx(x) form co-components in Ŝ′

rx−(�′x−kx)(x) (see Figure 4).



222 S.D. Nikolopoulos and L. Palios

In terms of the cotree of the graph G, Lemma 2 implies that all changes that
need to be done in order to obtain the cotree of the graph G′ are restricted in
the subtree rooted at the least common ancestor of x and y.

The remaining sets of co-components and components in the component-
partition of the optimal graph G′ with respect to x are obtained from an opti-
mal “grouping” of the vertices in Vkx−1(x)∪Cy = Vkx−1(x)∪{y}∪Vky−1(y) (see
Property P2). The following lemma gives the possible cases of such a “group-
ing.” It does not take into account case (iii) of Lemma 2; if this case applies,
then the set Ŝ′

rx−(�′x−kx)(x), in addition to the co-components that result by the

“grouping,” contains the co-components in Ŝkx(x) as well (see Figure 4).

Lemma 3. Let G be a cograph, x, y be two non-adjacent vertices of G, and let

◦ Ŝ1(x), Ŝ2(x), . . . , Ŝ�′x(x) and S1(x), S2(x), . . . , S�′x(x), S�′x+1(x),
◦ Ŝ1(y), Ŝ2(y), . . . , Ŝ�′y(y) and S1(y), S2(y), . . . , S�′y(y), S�′y+1(y),
◦ Vi(x) and Vi(y)

be as described above. Then, an optimal “grouping” of the vertices in Vi(x) ∪
{y} ∪ Vj(y) in order to form sets of co-components Ŝ′

1(x), Ŝ′
2(x), . . . , Ŝ′

k(x) and
sets of connected components S′

1(x), S′
2(x), . . . , S′

k(x) in the component-partition
of an optimal graph G′ with respect to vertex x is of one of the following forms:

(a) k = 1, Ŝ′
k(x) contains a single co-component induced by all the vertices in

Vi(x) ∪ {y} ∪ Vj(y), and S′
k(x) = ∅ (see Figure 5(a));

(b) provided that Vj(y) �= ∅, k = i+1, Ŝ′
k(x) consists of a single co-component in-

volving just vertex y, S′
k(x) consists of a single connected component induced

by the vertices in Vj(y), whereas the remaining sets Ŝ′
1(x), Ŝ′

2(x), . . . , Ŝ′
k−1(x)

and S′
1(x), S′

2(x), . . . , S′
k−1(x) are identical to Ŝ1(x), Ŝ2(x), . . . , Ŝi(x) and

S1(x), S2(x), . . . , Si(x), respectively (see Figure 5(b));
(c) provided that j ≥ 2 or j = 1 and S1(y) �= ∅, Ŝ′

k(x) = Ŝj(y) and S′
k(x) =

Sj(y) (see Figure 5(c));
(d) provided that i ≥ 2 or i = 1 and S1(x) �= ∅, Ŝ′

k(x) = Ŝi(x) and S′
k(x) = Si(x)

(see Figure 5(d)).

Lemma 2 and the fact that the vertices in Ŝkx(x) ∪ Ŝkx+1(x) ∪ . . . ∪ Ŝ�′x(x) see
all the vertices in {x, y} ∪ Vkx−1(x) ∪ Vky−1(y) (see Property P1) imply that
new edges are added only as a result of the “grouping;” it is important to note
that we do not need to add new edges connecting vertices in the same set Ŝ′

t(x)
or S′

t(x) as the vertices in each such set induce subgraphs not containing any
P4s. Then, in light of Lemma 3, we get a recursive expression for the number
of additional edges that such an optimal “grouping” requires; this is given in
Lemma 4.

Lemma 4. Suppose that the conditions of Lemma 2 hold and let cost(i, j) denote
the number of edges with both endpoints in {x} ∪ Vi(x) ∪ {y} ∪ Vj(y) which need
to be added to G in an optimal “grouping” of the vertices in Vi(x) ∪ {y} ∪ Vj(y)
to form sets Ŝ′

t(x) and S′
t(x). Then,



Adding an Edge in a Cograph 223

x

Ŝ

x

y
Ŝ1(x)

S1(x)

Ŝi(x)

Si(x) S

(a) (b)

x

Ŝj(y)

Sj(y)

x

Ŝi(x)

Si(x)

(c) (d)

Fig. 5 Cases (a)-(d) of Lemma 3 where Ŝ contains a single co-component induced by

Vi(x) ∪ {y} ∪ Vj(y) and S contains a single component induced by Vj(y)

(i) the number of additional edges in the graph G′ (optimal solution for the
problem (Cograph,+1)-MinEdgeAddition for G, x, y) is cost(kx − 1, ky − 1);

(ii) the value cost(i, j) is the minimum among the costs of the cases below pro-
vided that they apply:
(a) 1 +

∑i
t=1 |St(x)| +

∑j
t=1

(|Ŝt(y)|+ |St(y)|);
(b) 1 +

∑i
t=1

(|Ŝt(x)|+ |St(x)|) +
∑j

t=1 |St(y)|, provided that j ≥ 1;

(c) cost(i, j − 1) + |Ŝj(y)| ·
(
1 +

∑i
t=1

(|Ŝt(x)|+ |St(x)|)
)
, provided that

j ≥ 2 or j = 1 and S1(y) �= ∅;
(d) cost(i − 1, j) + |Ŝi(x)| ·

(
1 +

∑j
t=1

(|Ŝt(y)|+ |St(y)|)
)
, provided that

i ≥ 2 or i = 1 and S1(x) �= ∅.
It is important to note the symmetry between cases (a) and (b) and between
cases (c) and (d) with respect to x and y, as it is expected. Let us now consider
some special cases.

◦ If i = 0 and j = 0, then only case (a) applies and cost(0, 0) = 1.
◦ If i = 0 and j = 1, then case (d) does not apply while the cost in case (a)

is no smaller that the cost in case (b), thus, cost(0, 1) is the minimum of
1+

∑1
t=1 |St(y)| and of cost(0, j−1)+|Ŝj(y)| assuming that case (c) applies:

if S1(y) �= ∅ then case (c) applies and since cost(0, 0) = 1, we have that
cost(0, 1) = min{1 + |S1(y)|, 1 + |Ŝ1(y)|}; if S1(y) = ∅ then case (c) does



224 S.D. Nikolopoulos and L. Palios

not apply and thus cost(0, 1) is 1 + |S1(y)| = 1. In either case, cost(0, 1) =
min{1 + |S1(y)|, 1 + |Ŝ1(y)|}.

◦ If i = 1 and j = 0, then cases (b) and (c) do not apply, so that cost(1, 0)
is the minimum of 1 +

∑1
t=1 |St(x)| and of cost(0, 0) + |Ŝi(x)| assuming

that case (d) applies. The case is symmetric to the previous case so that
cost(1, 0) = min{1 + |S1(x)|, 1 + |Ŝ1(x)|}.

◦ If i = 0 and j ≥ 2, then case (d) does not apply, while the cost in case (a)
is no smaller than the cost in case (b) since 1 +

∑j
t=1

(|Ŝt(y)| + |St(y)|) <

1 +
∑j

t=1 |St(y)|; thus, cost(0, j) is the minimum of 1 +
∑j

t=1 |St(y)| and of
cost(0, j − 1) + |Ŝj(y)|.

◦ If i ≥ 2 and j = 0, then case (c) does not apply, while the cost in case (b)
is no smaller than the cost in case (a) since 1 +

∑i
t=1

(|Ŝt(x)| + |St(x)|) <

1 +
∑i

t=1 |St(x)|; thus, cost(i, 0) is the minimum of 1 +
∑i

t=1 |St(x)| and of
cost(i− 1, 0) + |Ŝi(x)|.

Based on Lemma 4 and the above discussion, we give below our algorithm.
The algorithm uses four matrices Ax[ ], Bx[ ], Ay[ ], and By[ ], such that Av[i] =
∑i

t=1 |Ŝt(v)| and Bv[i] =
∑i

t=1 |St(v)|. It also uses a 2-dimensional array cost[ , ],
where it saves the values of cost( , ). The algorithm receives as input a cograph G
on n vertices and two non-adjacent vertices x, y of G, and outputs the minimum
number of edges that need to be added to G so that x, y become adjacent and the
resulting graph is a cograph (we note that the algorithm can be easily modified
to produce the set of edges that need to be added, instead of their number only,
within the same time and space complexity). In detail, it works as follows:

Algorithm Add-Edge-in-Cograph

1. Compute the sets
Ŝ1(x), Ŝ2(x), . . . , Ŝ�′x(x) of co-components of G[N(x)] and
S1(x), S2(x), . . . , S�′x(x), S�′x+1(x) of conn. components of G[V (G)−N [x]];

find the set Skx(x) to which y belongs;
compute the sets

Ŝ1(y), Ŝ2(y), . . . , Ŝ�′y(y) of co-components of G[N(y)] and
S1(y), S2(y), . . . , S�′y(y), S�′y+1(y) of conn. components of G[V (G)−N [y]];

find the set Sky(y) to which x belongs;
2. Ax[0]← 0; Bx[0]← 0;

for i = 1, 2, . . . , kx − 1 do
Ax[i]← Ax[i− 1] + |Ŝi(x)|;
Bx[i]← Bx[i− 1] + |Si(x)|;

Ay[0]← 0; By[0]← 0;
for i = 1, 2, . . . , ky − 1 do

Ay [i]← Ay [i− 1] + |Ŝi(y)|;
By[i]← By[i− 1] + |Si(y)|;

3. cost[0, 0]← 1;
for j = 1, 2, . . . , ky − 1 do

cost[0, j]← min{1 + By[j], cost[0, j − 1] + Ay[j]−Ay [j − 1]};



Adding an Edge in a Cograph 225

for i = 1, 2, . . . , kx − 1 do
cost[i, 0]← min{1 + Bx[i], cost[i− 1, 0] + Ax[i]−Ax[i− 1]};
for j = 1, 2, . . . , ky − 1 do

val1← 1 + Bx[i] + Ay[j] + By[j]; {case (a)}
val2← 1 + Ax[i] + Bx[i] + By[j]; {case (b)}
if j ≥ 2 or (j = 1 and By[1] �= 0) {case (c)}
then val3← cost[i, j − 1] + (Ay[j]−Ay[j − 1]) · (1 + Ax[i] + Bx[i])
else val3← n2;
if i ≥ 2 or (i = 1 and Bx[1] �= 0) {case (d)}
then val4← cost[i− 1, j] + (Ax[i]−Ax[i− 1]) · (1 + Ay[j] + By[j])
else val4← n2;
cost[i, j]← min{val1, val2, val3, val4};

return(cost[kx − 1, ky − 1]).

Note that whenever a value cost[ , ] is needed for another cost-computation,
it has already been computed. The correctness of Algorithm Add-Edge-in-
Cograph follows from Lemma 4, the discussion of the special cases, and the
definitions of the arrays Ax[ ], Bx[ ], Ay[ ], and By[ ], which also imply that Ax[i]−
Ax[i− 1] = |Ŝi(x)|, Bx[j]−Bx[j − 1] = |Sj(x)|, and similarly for Ay[ ] and By[ ].

Time and Space Complexity: Suppose that the input cograph G has n ver-
tices and m edges. Then, the sets Ŝ1(x), Ŝ2(x), . . . , Ŝ�′x(x) and S1(x), S2(x), . . .,
S�′x+1(x) can be computed in O(n + m) time and space either by computing
the cotree of G [5], or by computing the co-components of G[N(x)] [3,6] and
the connected components of G[V (G) −N [x]] and then by placing them in the
appropriate Ŝi(x) or Si(x) based on their number of incident edges to vertices
in V (G) − N [x] and in N(x) respectively. Finding the set Skx(x) can be done
in constant time. Similarly, the computation of the corresponding sets Ŝi(y)
and Si(y), and finding Sky(y) takes O(n + m) time and space. For the com-
plexity of Steps 2 and 3, we observe that �′x and �′y are O(

√
m): since every

vertex in any co-component of Ŝi (1 ≤ i ≤ �′x) sees every vertex in the co-
components of Ŝj for j �= i, there exist at least �′x(�′x − 1)/2 edges connecting
vertices in different co-components of G[N(x)]; since G contains a total of m
edges and there are at least �′x edges connecting x to its neighbors, we conclude
that m ≥ �′x + �′x(�′x − 1)/2 > �′x

2
/2, from which the result for �′x follows; a

similar argument holds for �′y. Step 2 takes O(
√

m) = O(n) time, since kx ≤ �′x
and ky ≤ �′y. Step 3 takes O(kx ·ky) = O(�′x ·�′y) = O(m) time. The space needed
by Algorithm Add-Edge-in-Cograph is equal to the space needed for the rep-
resentation of the input graph G and the space taken by the arrays Ax[ ], Bx[ ],
Ay[ ], By[ ], and cost[ , ]; hence, it is O(n + m + kx · ky) = O(n + m). Therefore,
Algorithm Add-Edge-in-Cograph takes O(n + m) time and space.

5 Concluding Remarks

In this paper, we described a linear-time algorithm for the (Cograph,+1)-Min-
EdgeAddition problem; instrumental in our construction are the properties of



226 S.D. Nikolopoulos and L. Palios

the component-partition of a cograph that we establish. Since the cographs are
complement-invariant, the approach we used when applied on the complement of
the given graph gives a solution to the (Cograph,−1)-MinEdgeDeletion problem.

It would be interesting to obtain efficient algorithms for the (Cograph,−1)-
MinEdgeAddition and the (Cograph,+1)-MinEdgeDeletion problems as well as
for the extensions of all these problems in which k edges or non-edges are in-
volved. Finally, it would also be interesting to study the problems for other
classes of graphs; an obvious immediate next step would be to consider the class
of P4-sparse graphs, a superclass of the class of cographs.

Acknowledgment. The authors would like to thank A. Brandstädt for propos-
ing the four variants (Π,±1)-MinEdgeAddition/Deletion problems, D. Corneil
for suggesting a solution to the (Cograph,−1)-MinEdgeDeletion problem, and
D. Kratsch for constructive suggestions and comments.

References

1. A. Brandstädt, V.B. Le, and J.P. Spinrad, Graph Classes: A Survey, SIAM Mono-
graphs on Discrete Mathematics and Applications, 1999.

2. A. Bretscher, D. Corneil, M. Habib, and C. Paul, A simple linear time LexBFS
cograph recognition algorithm, Proc. 29th Int’l Workshop on Graph Theoretic Con-
cepts in Comput. Sci. (WG’03), LNCS 2880 (2003) 119–130.

3. K.W. Chong, S.D. Nikolopoulos, and L. Palios, An optimal parallel co-connectivity
algorithm, Theory Comput. Systems 37 (2004) 527–546.

4. D.G. Corneil, H. Lerchs, and L. Stewart-Burlingham, Complement reducible
graphs, Discrete Appl. Math. 3 (1981) 163–174.

5. D.G. Corneil, Y. Perl, and L.K. Stewart, A linear recognition algorithm for
cographs, SIAM J. Comput. 14 (1985) 926–934.

6. E. Dahlhaus, J. Gustedt, and R.M. McConnell, Partially Complemented Repre-
sentations of Digraphs, Discrete Math. & Theoret. Comput. Sci. 5 (2002) 147–168.

7. P. Hell, R. Shamir, and R. Sharan, A fully dynamic algorithm for recognizing and
representing proper interval graphs, SIAM J. Comput. 31 (2002) 289–305.

8. L. Ibarra, Fully dynamic algorithms for chordal graphs, Proc. 10th Annual ACM-
SIAM Symp. on Discrete Algorithms (SODA’99), (1999) 923–924.

9. M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press,
Inc., 1980.

10. H.A. Jung, On a class of posets and the corresponding comparability graphs,
J. Combin. Theory Ser. B 24 (1978) 125–133.

11. H. Lerchs, On cliques and kernels, Technical Report, Department of Computer
Science, University of Toronto, March 1971.

12. R. Lin, S. Olariu, and G. Pruesse, An optimal path cover algorithm for cographs,
Computers Math. Applic. 30 (1995) 75–83.

13. R. Shamir and R. Sharan, A fully dynamic algorithm for modular decomposition
and recognition of cographs, Discrete Appl. Math. 136 (2004) 329–340.

14. J.P. Spinrad, Efficient Graph Representations, American Mathematical Society,
2003.

15. D.P. Sumner, Dacey graphs, J. Austral. Math. Soc. 18 (1974) 492–502.


	Introduction
	Theoretical Framework
	The Component-Partition
	Adding an Edge in a Cograph
	Concluding Remarks


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


