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Abstract. In this paper, we address the problem of computing a maxi-
mum-size subgraph of a Ps-sparse graph which admits a perfect match-
ing; in the case where the graph has a perfect matching, the solution
to the problem is the entire graph. We establish a characterization of
such subgraphs, and describe an algorithm for the problem which for a
Py-sparse graph on n vertices and m edges, runs in O(n + m) time and
space. The above results also hold for the class of complement reducible
graphs or cographs, a well-known subclass of Ps-sparse graphs.
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1 Introduction

The class of Py-sparse graphs was introduced by Hoang in his doctoral disser-
tation [11], as the class of graphs for which every set of five vertices induces at
most one P; (chordless path on four vertices). Hoang gave a number of charac-
terizations of these graphs and showed that the Ps-sparse graphs are perfect in
the sense of Berge (a graph G is perfect if for every induced subgraph H of G,
the chromatic number of H equals the clique number of H), and in fact perfectly
orderable in the sense of Chvétal [1I9]. The class of Py-sparse graphs generalizes
the well known class of complement reducible graphs, also known as cographs
[14).

The study of Ps-sparse graphs and cographs led naturally to constructive
characterizations that implied several linear-time recognition algorithms and
also enabled the construction of unique, up to isomorphism, tree representa-
tions [2I4T2/T3]. In addition, since Py-sparse graphs and cographs are perfect,
many interesting optimization problems in graph theory, which are NP-complete
in general graphs, admit polynomial sequential solutions; their tree representa-
tions are used by many researchers to develop algorithms for such problems (see
[119]). In particular, Jamison and Olariu [I3] proposed linear-time algorithms for
solving five optimization problems on the class of P,-sparse graphs: maximum-
size clique, maximum-size stable set, minimum coloring, minimum covering by
cliques, and minimum fill-in. Moreover, in [12] the same authors provided ef-
ficient solutions to other classical optimization problems; that is, finding the
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clique number, the stable number, the chromatic number and the clique cover
number of a Pj-sparse graph. Giakoumakis and Vanherpe [§] obtained linear-
time algorithms for the maximum weight clique and for the maximum weight
stable set problems on Pj-sparse graphs using the modular decomposition tree
representation [BI15]. Yang and Yu [I8] exhibited a linear time algorithm for the
maximum matching problem in cographs, while Fouquet, Parfenoff, and Thuillier
[7] extended this algorithm to Py-tidy graphs, a class containing both Py-sparse
graphs and cographs.

A matching M of a graph G is a subset of the edge set F(G) such that no two
edges in M share a common endpoint; M is a maximum matching if it contains
a maximum number of edges; M is a perfect matching if every vertex of G is an
endpoint of an edge in M. The best known algorithm for solving the maximum
matching problem in general graphs is due to Micali and Vazirani [16] and has
O(y/nm) time complexity; recall that in Pj-sparse graphs and cographs, the
same problem is solved in linear time due to the algorithm of Fouquet, Parfenoff,
and Thuillier [7].

In this paper, we are interested in solving the problem of finding a maximum-
size subgraph of a P;-sparse graph which has a perfect matching. In other words,
we want to find and remove the smallest number of edges so that the graph which
we obtain if we ignore any isolated vertices has a perfect matching. The problem
belongs to the class of problems in which we are asked to remove as few edges or
vertices as possible so that the resulting subgraph has some particular properties.

We show that any maximum-size subgraph of a graph G which has a perfect
matching is a subgraph induced by the vertices of a maximum matching of G.
In this way, we reduce the problem to that of finding a maximum-size subgraph
induced by the vertices of a maximum matching of G. Then, we establish a char-
acterization of such subgraphs which by means of the modular decomposition
tree representation of the P;-sparse graphs enables us to obtain a linear-time
solution to the problem we consider.

2 Preliminaries

We consider finite undirected graphs with no loops or multiple edges. For a
graph GG, we denote its vertex and edge set by V(G) and E(G), respectively. Let
S be a subset of the vertex set of a graph G. Then, the subgraph of G induced
by S is denoted by G[S]. Moreover, we denote by G — S the graph G[V (G) — S].

Modular Decomposition

A subset M of vertices of a graph G is said to be a module of G, if every
vertex outside M is either adjacent to all vertices in M or to none of them.
The emptyset, the singletons, and the vertex set V(G) are trivial modules and
whenever G has only trivial modules it is called a prime (or indecomposable)
graph. A module M of G is called a strong module if, for any module M’ of G,
either M’ N M = ) or one module is included into the other. Furthermore, a
module in G is also a module in G (i.e., the complement of the graph G).



70 S.D. Nikolopoulos and L. Palios

v
V1 o——y
t
V11
v
V2 o1
V12
V3 e—N
v
(¥

6
7
'8
9

10

V1 U2 U3 Vg U7 U

V13

U11 V12 V4 Us Vg V10
v

Fig.1. A disconnected Pj-sparse graph on 13 vertices and its md-tree

The modular decomposition of a graph G is a linear-space representation of
all the partitions of V(G) where each partition class is a module. The modular
decomposition tree T(G) of the graph G (or md-tree for short) is a unique labeled
tree associated with the modular decomposition of G in which the leaves of T'(G)
are the vertices of G and the set of leaves associated with the subtree rooted at an
internal node induces a strong module of G. Thus, the md-tree T'(G) represents
all the strong modules of G. An internal node is labeled by either P (for parallel
module), S (for series module), or N (for neighborhood module). It has been
shown that for every graph G the md-tree T(G) is unique up to isomorphism
and it can be constructed in linear time; the first linear-time algorithms for the
construction of the md-tree are described in [B/15], while more recent and more
practical ones can be found in [6/10]. Figure 1 depicts a Pj-sparse graph G on
13 vertices and its md-tree T'(G).

Let ¢t be an internal node of the md-tree T'(G) of a graph G. We denote by
M (t) the module corresponding to ¢ which consists of the set of vertices of G
associated with the subtree of T(G) rooted at node . Let u, ug, ..., u, be the
children of the node t of T(G). We denote by G(t) the representative graph of the
module M (t) defined as follows: V(G(t)) = {u1,usg,...,up} and u;u; € E(G(t))
if there exists edge vive € E(G) such that vy, € M(w;) and vp € M(u;); by
the definition of a module, if a vertex of M (t;) is adjacent to a vertex of M(t;)
then every vertex of M (;) is adjacent to every vertex of M (¢;). Thus, G(t) is
isomorphic to the graph induced by a subset of M (t) consisting of a single vertex
from each maximal strong submodule of M (t) in the modular decomposition of
G. For the P-, S-, and N-nodes, the following lemma holds (see also [§]):

Lemma 2.1. Let G be a graph, T(G) its modular decomposition tree, and t an
internal node of T(G). Then, G(t) is an edgeless graph if t is a P-node, G(t) is
a complete graph if t is an S-node, and G(t) is a prime graph if t is an N-node.

P,-sparse Graphs

A graph G is called a spider if the vertex set V(G) of the graph G admits a
partition into sets S, K, and R such that:
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= > 2, the set S is an independent set, and the set 1s a clique;
P1) |S K 2, th S i ind d d th Ki li
all the vertices in R are adjacent to all the vertices in K and to no vertex
P2 11 th i in R dj 11 th i in K and
in S;
there exists a bijection f : § — K such that exactly one of the followin,
P3) th i bijection f : S K h th 1 f the following
statements holds:
(i) for each vertex v € S, N(v) N K = {f(v)};
(ii) for each vertex v e S, Nv)NK =K — {f(v)}.

The triple (S, K, R) is called the spider-partition. A graph G is a prime spider if
G is a spider with |R| < 1. If the condition of case P3(i) holds then the spider G
is called a thin spider, whereas if the condition of case P3(ii) holds then G is a
thick spider; note that the complement of a thin spider is a thick spider and vice
versa.

Observation 2.1 (Observation 2.8 in [12]). If a graph G is a spider, then exactly
one of the following statements holds:

(i) for every v € S and u € K, degree(v) =1 and degree(u) = |V (G)| — |S|;
(ii) for everyv € S and u € K, degree(v) = |K| —1 and degree(u) = |V(G)| — 2.

Observation 2.2 (Observation 2.9 in [12]). If a graph G is a spider and R is
nonempty, then for every choice of v, u, and r in S, K, and R, respectively,
degree(v) < degree(r) < degree(u).

It is not difficult to see that a spider with |K| = |S| = k contains exactly
@ + ¢ Pys, where £ is the number of Pys in the subgraph G[R]. From the
definition of the spider and Observations 2.1 and 2.2, it follows that if G is a
spider, then S, K, and R are unique (see [12]). Finally, from the properties of a
spider GG, and also from the definition of the P,-sparse graphs, it easily follows
that G is Py-sparse iff the graph G|[R] is P,-sparse.

Let us now return to general Pj-sparse graphs. Then, the following result
holds:

Lemma 2.2 (Theorem 1 in [12]). For a graph G, the following conditions are
equivalent:

(i) G is a Py-sparse graph;

(ii) for every induced subgraph H of G with at least two vertices, exactly one of
the following statements is satisfied: (a) H is disconnected; (b) H is discon-
nected; (c¢) H is a spider.

Regarding the modular decomposition of P4-sparse graphs, Giakoumakis and
Vanherpe [8] showed the following result (recall that the graph G(t) has vertices
the children of the node ¢ in T'(G)):

Lemma 2.3. Let G be a graph and let T(G) be its modular decomposition tree.
The graph G is Py-sparse iff for every N-node t of T(G), G(t) is a prime spider
with a spider-partition (S, K, R) and no vertex of SU K is an internal node in
T(G).
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3 Finding a Max-size Subgraph That Has a Perfect
Matching

In this section we give an optimal sequential algorithm for the problem of finding
a maximum-size subgraph which has a perfect matching. It is important to note
that such a subgraph is an induced subgraph; the condition that this subgraph
be of maximum size requires that the subgraph be the subgraph induced by
its vertex set. Below, we show that any maximum-size subgraph of a graph G,
which has a perfect matching, is induced by the matched vertices in a maximum
matching of G (Lemma 3.1); then, we prove the property that characterizes a
maximum-size subgraph of G, among the subgraphs that are induced by the
vertices of maximum matchings of G (Observation 3.1).

Lemma 3.1. Let G be a graph and let G be a mazimum-size subgraph of G
which has a perfect matching. Then, the subgraph G is induced by the vertices
participating in a maximum matching of G.

Proof: Let M, be a maximum matching of G, whose vertex set is Vjuqqz; if
Nmaz = |Vinaz| then any matching involving n,,4, matched vertices is a maxi-
mum matching of G. If V7 C V(G) is the vertex set of the subgraph Gy, then,
because G; has a perfect matching, |Vi| < nuaz. We will show that |Vi| = ninas,
because then any perfect matching of G; is a maximum matching of G. It suffices
to show that |Vi| > nma.. Suppose, for contradiction, that |Vi| < nnae. Then,
we have that V; € V4., since otherwise the vertices in V4, would induce a
subgraph that has a perfect matching and is of size larger than that of G, in
contradiction to the maximality of G;. Yet, we will show that we can construct
a matching of G whose vertex set has cardinality n,,., and is a proper superset
of V7; this will yield a contradiction to the maximality of Gy.

Let M; be a perfect matching of G; (the vertices in V; are all matched in
the matching M;) and let us consider the graph H spanned by the non-common
edges of the matchings My and M, 4. Then, the vertices in H have degree at
most 2; in particular, the vertices in Vi3 — V4, have degree exactly 1 and are
incident on an edge that participates in M;. The fact that the degrees of the
vertices of H do not exceed 2 implies that each connected component of H is
either a path or a cycle. Additionally, edges of M, and M; alternate on these
paths and cycles.

Let us consider a vertex x € Vi — V40 and let p = vgvy -+ - vy, t > 1, be the
path (connected component) of H to which 2 belongs; since z is an endpoint
of p, we assume without loss of generality that © = vg. Then, the length of p
cannot be 1; otherwise, v1 € Vi — V44, which implies that the edges in M4,
and the edge zv; define a matching of G larger than M, .., in contradiction to
the optimality of M,,4.. In fact, the length of p cannot be odd: if ¢ = 2¢ + 1,
where ¢ > 1, then the edges vo;_1v2;, 1 <7 < g, belong to M4, and the edges
v9;024+1, 0 < 7 < g, belong to Mj; thus, the vertices vy, vs,...,v;—1 belong to
Vi N Vinee and the vertices vg, vy belong to Vi — V4., which implies that we
can replace all the edges vg;—1v2;, 1 <4 < g, by the remaining edges and obtain
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a matching of G with vertex set Vi,a. U {2, v:}, again in contradiction to the
maximality of M,,.,. Therefore, the path p has even length, say, t = 2¢q where
q > 1. Then, as above, the edges vo;_1v2;, 1 < 7 < ¢, belong to M4, the
edges v9;v9,+1, 0 <1 < g — 1, belong to My, the vertices vy, v, ...,v—1 belong
to Vi N Viee and vg € Vi — Ve and vy € Vi — Vi Thus, if we replace all
the edges vg;—1v2;, 1 < i < ¢, by the remaining edges, we obtain a matching
of G with vertex set (Vmw U {vo}) — {wv:}; this matching has n,., matched
vertices among which we find vertex x whereas the vertex vy € Vi, — V7 is left
unmatched.

By doing the above process for each vertex in V; — V4, and by taking into
account that the paths in H to which the vertices in V1 —V,,, 4. belong are disjoint,
we obtain a matching M of G with vertex set Vs such that |Vis| = 1. and
Vi C V. But then, the subgraph G[Vi] has a perfect matching and is of size
larger than the size of G; = G[V4], a contradiction to the maximality of Gj.
Therefore, the number of vertices of a maximum-size subgraph of G which has
a perfect matching is 7,4, and thus is induced by the vertices of a maximum
matching of G. ]

Lemma 3.1 implies that each maximum-size subgraph of a graph G which
has a perfect matching is a maximum-size subgraph of G induced by the vertices
of a maximum matching of G. Therefore, in the following, we will be referring
to the problem of finding a maximum-size subgraph that has a perfect matching
while concentrating on maximum-size subgraphs induced by maximum match-
ings. Then, the following observation allows us to characterize the maximum
matching that will yield a maximum-size induced subgraph of G which we seek.

Observation 3.1. Among all maximum matchings of a graph G, any one whose
vertices induce a maximum-size subgraph of G exhibits the minimum sum of
degrees of unmatched vertices.

Proof: Observe that any two vertices left unmatched during the computation
of a maximum matching are not adjacent; otherwise, the edge connecting them
would produce a larger matching. Hence, the number of edges of the subgraph
of GG induced by the vertices participating in a maximum matching is equal to
the total number of edges of G minus the sum of the degrees of the unmatched
vertices. Thus, in order to obtain a maximum-size subgraph of G induced by the
vertices of a maximum matching of G, we need to find a maximum matching of
G such that the unmatched vertices have the smallest sum of degrees in G. 1

Based on Observation 3.1, one might think that, if we know the number &
of vertices left unmatched in a maximum matching of G, the maximum-size
subgraph of G that we seek can be obtained by removing the k vertices of
G of smallest degrees. This is not however the case: consider for example the
graph H on 14 vertices {v,z1, 22, 3,91, ..,Ys5, 21, .., 25} where v is adjacent
to all the remaining vertices, H[{x1,x2,x3}] is a complete graph on 3 vertices,
and H[{y1,...,ys}] and H[{z1,...,25}] are complete graphs on 5 vertices each;
H has a maximum matching involving 12 vertices, yet, the subgraph induced by
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removing any two of the vertices {z1, 22, x3} (which exhibit the smallest degrees
in H) does not have a perfect matching.

The following lemma establishes another useful property pertaining to a max-
imum matching.

Lemma 3.2. Let G be a graph, M,y be a mazimum matching of G inducing
a subgraph of G whose size is maximum (among all subgraphs induced by the
vertices of a mazimum matching), M be any other mazimum matching of G, and
Uopt (resp. U) be the set of vertices of G left unmatched by Moy, (resp. M ). Then
there is a bijection f : U — U,y such that for each vertex x € U, degree(f(x)) <
degree(zx) in G, where by degree(v) we denote the degree of vertex v in G.

Our algorithm relies on the following lemma as well.

Lemma 3.3. Let G be a spider and let (S, K, R) be its spider-partition. If a
mazimum-size subgraph of G[R| induced by a mazimum matching results after
removal of the vertices in U C R, then

(i) if |U| < |S|, a mazimum-size subgraph of G induced by a mazimum matching
is G — X where X is an arbitrary subset of S of cardinality |U|;

(i) if |U| > |S|, a mazimum-size subgraph of G induced by a maximum matching
is G— (SUY) where Y is the set of the |U| — |S| vertices of U of smallest
degrees in G.

Our algorithm takes advantage of the modular decomposition tree T'(G) of the
input graph G. To simplify the computations, we “binarize” the S-nodes and
P-nodes of the tree T'(G). The algorithm processes the resulting tree 77(G) as
follows: in each node t of the tree, it computes a maximum matching for the
subgraph G[M (t)] of G corresponding to the subtree of 7"(G) rooted at ¢, while
at the same time minimizing the sum of the degrees of the vertices of G[M (t)]
left unmatched.

Algorithm MaxSubgraph
Input: a Py-sparse graph G.
Output: a maximum-size subgraph of G which has a perfect matching.

1. Compute the degrees of all the vertices in the graph G and store them in an
array;

2. Construct the md-tree T'(G) of G;
Make each S-node or P-node of T'(G) binary, obtaining the modified modular
decomposition tree T'(G);

3. Execute the subroutine process(root), where root is the root node of the
modified md-tree T'(G); the sought subgraph is the subgraph G — U, where
U is the set of vertices returned by the subroutine.

where the description of the subroutine process() is as follows:
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process(node t)

Input: node t of the modified md-tree T’(G) of the input graph G.
Output: the set U; of vertices whose removal leaves a maximum-size subgraph
of G[M (t)] which has a perfect matching.

1. if tis aleaf
then return({v}), where v is the vertex associated with the leaf t;
2. if tis an N-node
then compute the spider-partition (S, K, R) of G(t); {note: |R| < 1}
if R={tr}
then Up < process(tr);
else Up < 0; {note: R =10}
it [Un] < IS
then X « arbitrary subset of S of cardinality |Ug|;
else Y « set of [Ug| — |S] vertices of Ur of smallest degrees in G;
X —SUY;
return(X);
3. {node t is an S-node or a P-node that has a left and a right child with
associated vertex subsets Vy; and V,. respectively}
Uy « process(left child of t);
U, < process(right child of t);
suppose without loss of generality that |Uy| > |U,|, otherwise swap the two
children of ¢ and the corresponding sets;
4. if tis a P-node
then return(U,UU,);
5. if tis an S-node
then if |Uy| = |V;|
then return(();
else if |Up| < |V,
then if |Uy| — |U,| is even
then return();
else v« vertex in V; U V,. of smallest degree in G|
return({v});
else  {|UM] > [Vi}
X « set of |Ug| — |V;| vertices of Uy of smallest deg. in G;
return(X);

For each node ¢ of the tree T(G), subroutine process() computes a maximum
matching for the subgraph G[M (¢)] implicitly; it can be easily modified to store
and print such a matching. The correctness of Algorithm MaxSubgraph follows
from Lemma 3.4.

Lemma 3.4. When applied on a Py-sparse graph G, Algorithm MaxSubgraph
correctly computes a maximume-size subgraph of G which has a perfect matching.

Proof: 'We need only prove the correctness of subroutine process(). The proof
proceeds inductively on the height of the (sub)tree of the modified md-tree T'(G)
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of the input graph G rooted at the node t that is currently processed by the
subroutine. If the (sub)tree is of height 0, then ¢ is a leaf. Hence, it corresponds
to a subgraph on 1 vertex; such a graph has no matching and its single vertex
is left unmatched, which is what the subroutine returns (Step 1).

For the inductive hypothesis, we assume that the subroutine process() cor-
rectly handles any (sub)tree of height at most A > 0; we show that it correctly
handles any (sub)tree of height h+ 1. Let ¢ be the root of such a (sub)tree; then,
t is an N-node, a binarized S-node, or a binarized P-node. If ¢ is an N-node,
then the graph G(t) is a prime spider (Lemma 2.3); let (S, K, R) be its spider
partition (recall that R = () or R = {{g}). Lemma 3.3 certifies the correctness of
the computation in Step 2 taking into account that the ordering of the vertices
of G(t) by their degree in G(t) is identical to the ordering based on their degree
in G (note that V(G(t)) is a module and thus each vertex in V(G(t)) is adjacent
to the same vertices in V(G) — V(G(t))), and that if R = {tr}, by the induc-
tive hypothesis, subroutine process() has correctly computed a maximum-size
subgraph of G[M (tr)] which has a perfect matching. Suppose now that ¢ is a P-
node or an S-node; in either case, t has two children. If V; and V,. are the vertex
subsets corresponding to the leaves of the left and right child of ¢ respectively,
and Uy and U, are the sets of unmatched vertices returned by subroutine pro-
cess( ) respectively, then by the inductive hypothesis, the subgraphs G[V; — Uy]
and G[V, — U,| are maximum-size subgraphs of G[V;] and of G[V;.] which have
a perfect matching.

If t is a P-node, then there are no edges of G connecting a vertex in Vp to a
vertex in V,.; hence, the optimal solution for the subgraph of G corresponding to
t, i.e., induced by V; UV, is the union of the optimal solutions for the subgraphs
G[V;] and G[V;], just as the algorithm does (Step 4).

Finally consider that ¢ is an S-node, and assume without loss of general-
ity (as the algorithm assumes) that |Uy| > |U,|. Then, if |U;| = |V;|, the sub-
graph G[V,UV,] has a perfect matching: extend the perfect matching of G[V; —Uy]
with a matching resulting from an arbitrary bijection from U, to V;.; subroutine
process( ) correctly reports that no vertex remains unmatched in this case. An
optimal solution is also produced if |Uy| < |V;|: a perfect matching is obtained
if the total number of vertices is even, otherwise exactly the vertex of U, with
the smallest degree in G (which has the smallest degree in G[M (t)] as well be-
cause Vp UV, is a module) is left unmatched (the optimality of this solution
follows from Observation 3.1), and this can be easily shown to be feasible since
Ur| < U < Vi .

Consider now the case in which |Uy| > |V;|. In this case, the algorithm
constructs the set X containing the |Up| — |V, | vertices in Uy of minimum degrees
in GG, which it returns as the set of vertices left unmatched; this is indeed a feasible
solution because a perfect matching in G[(V; — X)UV,] can be constructed from
a matching of G[V; — Uy] and a matching resulting from an arbitrary bijection
from Uy — X to V,.. Suppose for contradiction that this is not an optimal solution
for the subgraph G[M (t)] of G corresponding to the subtree of T/(G) rooted at
the S-node t; let U be the set of unmatched vertices in an optimal solution for
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G[M (t)]. Then, |U| = |X|: the optimality of G[M(¢t)] — U implies that |U| <
| X|, while if |U] < |X| the fact that the subgraph G[M(t)] — U has a perfect
matching would imply that a maximum-size subgraph of G[V;] which has a
perfect matching would leave a number of unmatched vertices at most |U|+|V;.| <
|Uy|, in contradiction to the optimality of the solution for G[V;] which leaves
unmatched the vertices in Uy. The optimality of G[M (¢)] — U and the choice of
X also imply that

Zdegree(v) < Zdegree(v) < Zdegree(v) (1)

velU veX vEA

for any subset A of U, of cardinality |U| — |V;|, where degree(v) denotes the
degree of vertex v in G.

Additionally, U C Vp; if not, then the fact that U cannot contain both a
vertex in V; and V,. (for otherwise two such vertices would be matched resulting
in a larger matching) would imply that U C V,, which would in turn imply
that G[V;] has a matching leaving unmatched at most |V,.| — |U| < |V;.| < |Uy|
vertices, a contradiction. We note however that it does not have to be the case
that U C Uy; nevertheless, we will show that there exists a bijection g : U — W,
where W C Uy, such that for each vertex x € U, degree(g(z)) < degree(x).

Let us consider the restriction of the matching which yields the optimal
solution for the graph G[M(t)] (and leaves unmatched the vertices in U) to
the vertex set Vy; if Z is the set of vertices left unmatched by the resulting
matching M’, then clearly U C Z and |Z| < |U| + |V,| = |Ug|. Thus, since
the optimal matching for this subgraph (by the inductive hypothesis) leaves
unmatched the vertices in Uy, |Z| = |Uy| and the matching M’ is maximum
for the subgraph G[V;]. Then, Lemma 3.2 applied on the two matchings for
the graph G[Vp], which leave unmatched the vertices in Z and U, respectively,
yields that there exists a bijection f : Z — Uy such that for each x € Z,
degree(f(z)) < degree(x). Then, the desired bijection g is the restriction of the
bijection f to the domain U, and the set W is the set of images f(x) of the
vertices z in U. The properties of the bijection g imply that

Z degree(v) < Zdegree(v),

veW velU

which comes into contradiction with Inequality (1), since W is a subset of Uy of
cardinality |U| = |U;| — |Vi-|. Therefore, the solution produced by the algorithm
for the case when |U;| > |V, is also optimal. 1

Time and Space Complexity of Algorithm MaxSubgraph: Let n and m be the
number of vertices and edges of the input P;-sparse graph G. Then, the degrees
of the vertices of G can be computed in O(n+m) time and can be stored in O(n)
space, so that Step 1 of the algorithm takes O(n+m) time and O(n) space. The
md-tree T(G) can be constructed in O(n + m) time and space [BI5J6II0] and
has O(n) size. Binarizing the S- and P-nodes takes O(n) time and the resulting
tree T'(G) has O(n) size. Thus, Step 2 takes O(n + m) time and space as well.
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Let us now bound the time and space needed by all the executions of sub-
routine process( ). The set of unmatched vertices returned by a call to process()
is stored in an unordered linked list so that linking two such lists takes constant
time. Observe that each node t of the tree T"(G) is processed exactly once. If ¢
is a leaf, then the processing of ¢ takes constant time (Step 1). If ¢ is an N-node,
then t’s processing takes O(|S| + |Ugr|) time (see Step 2): the set S is readily
available from the md-tree; forming the set Y requires copying the vertices in Ur
along with their degrees in an array, applying the linear-time selection algorithm
[3] on this array to locate the value of the (|[Ur| — |S|)-th smallest degree, and
using this value to partition the vertices in Ug based on their degrees (special
attention is needed for the vertices with degree equal to the partitioning value).
In turn, the processing of a P-node takes constant time (thanks to the linked list
representation of the set of unmatched vertices), while the processing of an S-
node takes O(|V;| + |V;|) time (again, forming the set X requires the application
of the linear-time selection algorithm). We get a bound on the time taken for the
processing of the entire tree T/(G) by using the following crediting scheme: we
credit each leaf and each (binary) P-node with 1 credit; we credit each N-node
(corresponding to a spider with partition sets S, K, and R) with the number of
edges of G connecting vertices in S and K, and additionally if R = {¢tg} with
the number of edges connecting vertices in K and M (tr), which is at least equal
to |S] or |S|+ | K| - |M(tr)| respectively; we credit each (binary) S-node with 1
plus the number of edges of G connecting a vertex associated with a leaf in the
left subtree of the S-node to a vertex associated with a leaf in the right subtree,
that is, with 1+ [Vy| - |V, credits. Since |K| > 2, [V| + V.| < 1+ |Vi| - |V,|, and
|Ug| < |M(tgr)| if R = {tg}, the time taken is bounded by a constant multiple
of the number of credits. Then, because each edge of G contributes at most one
credit in our crediting scheme and because the size of T'(G) is O(n), the time
required for the completion of Step 3 of Algorithm MaxSubgraph is O(n 4+ m).
Clearly, the space needed by subroutine process( ) is O(n).

The results of this section can be summarized in the following theorem.

Theorem 3.1. Let G be a Py-sparse graph on n wvertices and m edges. The
problem of finding a maximum-size subgraph of G admitting a perfect matching
is solved in O(n 4+ m) time and space.

4 Concluding Remarks

Motivated by this work, it would be interesting to consider the related problem
where edges are added so that the resulting graph has a perfect matching while
remaining in the same class of graphs, that is,

o Given a Py-sparse graph (or cograph) G, find the minimum number of edges
which need to be added to the edge set of G such that the resulting graph
is a Pj-sparse graph (or cograph) and admits a perfect matching.



Maximum-Size Subgraphs of P4-Sparse Graphs 79

We expect that the structural results and the algorithmic approach used in this
paper can help develop efficient algorithms for solving this problem as well.
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