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Abstract. In this work we propose an efficient model for watermarking
images that are intended for uploading on the web under intellectual
property protection. Headed to this direction, we recently suggested a
way in which an integer number w which being transformed into a self-
inverting permutation, can be represented in a two dimensional (2D)
object and thus, since images are 2D structures, we propose a watermark-
ing algorithm that embeds marks on them using the 2D representation
of w in the frequency domain. In particular, we propose a watermarking
technique that uses the 2D representation of self-inverting permutations
and utilizes marking at specific areas thanks to partial modifications of
the image’s Discrete Fourier Transform (DFT). Those modifications are
made on the magnitude of specific frequency bands and they are the least
possible additive information ensuring robustness and imperceptiveness.
We have experimentally evaluated our algorithms using various images
of different characteristics under JPEG compression, Gaussian noise ad-
dition, and geometric transformations. The experimental results show an
improvement in comparison to the previously obtained results and they
also depict the validity of our proposed codec algorithms.

Keywords: Watermarking techniques, Image watermarking algorithms;
Self-inverting permutations; 2D representations of permutations; Encod-
ing; Decoding; Frequency domain; Experimental evaluation.

1 Introduction

Internet technology, in modern communities, becomes day by day an indispens-
able tool for everyday life since most people use it on a regular basis and do
many daily activities online [1]. This frequent use of the internet means that
measures taken for internet security are indispensable since the web is not risk-
free [2, 3]. One of those risks is the fact that the web is an environment where
intellectual property is under threat since a huge amount of public personal data
is continuously transferred, and thus such data may end up on a user who falsely
claims ownership.

It is without any doubt that images, apart from text, are the most frequent
type of data that can be found on the internet. As digital images are a charac-
teristic kind of intellectual material, people hesitate to upload and transfer them
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via the internet because of the ease of intercepting, copying and redistributing
in their exact original form [4]. Encryption is not the problem’s solution in most
cases, as most people that upload images in a website want them to be visible
by everyone, but safe and theft protected as well. Watermarks are a solution to
this problem, since thanks to them someone can claim the property of an image
if he previously inserted one in it.

Watermarking. Digital watermarking (or, hereafter, watermarking) is a tech-
nique for protecting the intellectual property of a digital object; the idea is
simple: a unique marker, which is called watermark, is embedded into a digital
object which may be used to verify its authenticity or the identity of its owners
[6, 7]. More precisely, watermarking can be described as the problem of embed-
ding a watermark w into an object O and, thus, producing a new object Iw, such
that w can be reliably located and extracted from Ow even after Ow has been
subjected to transformations [7]; for example, compression, scaling or rotation
in case where the object is an image.

In the image watermarking process the digital information, i.e., the water-
mark, is hidden in image data. The watermark is embedded into image’s data
through the introduction of errors not detectable by human perception [8]; note
that, if the image is copied or transferred through the internet then the water-
mark is also carried with the copy into the image’s new location.

Motivation. Intellectual property protection is one of the greatest concerns of
internet users today. Digital images are considered a representative part of such
properties so we consider important, the development of methods that deter
malicious users from claiming others’ ownership, motivating internet users to
feel more safe to publish their work online.

Image Watermarking, is a technique that serves the purpose of image in-
tellectual property protection ideally as in contrast with other techniques it
allows images to be available to third internet users but simultaneously carry an
“identity” that is actually the proof of ownership with them. This way image
watermarking achieves its target of deterring copy and usage without permis-
sion of the owner. What is more by saying watermarking we don’t necessarily
mean that we put a logo or a sign on the image as research is also done towards
watermarks that are both invisible and robust.

Our work suggests a method of embedding a numerical watermark into the
image’s structure in an invisible and robust way to specific transformations, such
as JPEG compression, Gaussian noise addition, and geometric transformation.

Contribution. In this work we present an efficient and easily implemented
technique for watermarking images that we are interested in uploading in the
web and making them public online; this way web users are enabled to claim the
ownership of their images.

What is important for our idea is the fact that it suggests a way in which
an integer number can be represented with a two dimensional representation
(or, for short, 2D representation). Thus, since images are two dimensional ob-
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jects that representation can be efficiently marked on them resulting the water-
marked images. In a similar way, such a 2D representation can be extracted for
a watermarked image and converted back to the integer w.

Having designed an efficient method for encoding integers as self-inverting
permutations, we propose an efficient algorithm for encoding a self-inverting
permutation π∗ into an image I by first mapping the elements of π∗ into an
n∗ ×n∗ matrix A∗ and then using the information stored in A∗ to mark specific
areas of image I in the frequency domain resulting the watermarked image Iw.
We also propose an efficient algorithm for extracting the embedded self-inverting
permutation π∗ from the watermarked image Iw by locating the positions of the
marks in Iw; it enables us to recontract the 2D representation of the self-inverting
permutation π∗.

It is worth noting that although digital watermarking has made considerable
progress and became a popular technique for copyright protection of multimedia
information [8], our work proposes something new. We first point out that our
watermarking method incorporates such properties which allow us to success-
fully extract the watermark w from the image Iw even if the input image has
been compressed with a lossy method, scaled and/or rotated. In addition, our
embedding method can transform a watermark from a numerical form into a
two dimensional (2D) representation and, since images are 2D structures, it can
efficiently embed the 2D representation of the watermark by marking the high
frequency bands of specific areas of an image. The key idea behind our extracting
method is that it does not actually extract the embedded information instead it
locates the marked areas reconstructing the watermark’s numerical value.

We have evaluated the embedding and extracting algorithms by testing them
on various and different in characteristics images that were initially in JPEG
format and we had positive results as the watermark was successfully extracted
even if the image was converted back into JPEG format with various JPEG
compression ratios. We had also positive results on Gaussian noise addition and
geometric transformation attacks. All the algorithms have been developed and
tested in MATLAB environment [9].

2 Theoretical Framework

In this section we first describe discrete structures, namely, permutations and
self-inverting permutations, and briefly discuss a codec system which encodes
an integer number w into a self-inverting permutation π. Then, we present a
transformation of a watermark from a numerical form to a 2D form (i.e., 2D
representation) through the exploitation of self-inverting permutation properties.

2.1 Self-inverting Permutations

Permutations may be represented in many ways [10]. The most straightforward
is simply a rearrangement of the elements of the set Nn = {1, 2, . . . , n}; in this
way we think of the permutation π = (5, 6, 9, 8, 1, 2, 7, 4, 3) as a rearrangement
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of the elements of the set N9 such that “1 goes to 5”, “2 goes to 6”, and so on
[10, 11]. Hereafter, we shall say that π is a permutation over the set N9.

Definition 2.1.1. Let π = (π1, π2, . . . , πn) be a permutation over the set Nn,
n > 1. The inverse of the permutation π is the permutation q = (q1, q2, . . . , qn)
with qπi = πqi = i. A self-inverting permutation (or, for short, SiP) is a permu-
tation that is its own inverse: ππi = i.

By definition, a permutation is a SiP (self-inverting permutation) if and
only if all its cycles are of length 1 or 2; for example, the permutation π =
(5, 6, 9, 8, 1, 2, 7, 4, 3) is a SiP with cycles: (1, 5), (2, 6), (3, 9), (4, 8), and (7).

2.2 Encoding Numbers as SiPs

There are several systems that correspond integer numbers into permutations or
self-inverting permutation [10]. Recently, we have proposed algorithms for such a
system which efficiently encodes an integer w into a self-inverting permutations π
and efficiently decodes it. The algorithms of our codec system run in O(n) time,
where n is the length of the binary representation of the integer w. The key-idea
behind our algorithms is mainly based on mathematical objects, namely, bitonic
permutations [12].

2.3 2D and 2DM Representations

In the 2D representation, the elements of the permutation π = (π1, π2, . . . , πn)
are mapped in specific cells of an n× n matrix A as follows:

• number πi −→ entry A(π−1
i , πi)

or, equivalently, the cell at row i and column πi is labeled by the number πi, for
each i = 1, 2, . . . , n. Figure 1(a) shows the 2D representation of the self-inverting
permutation π = (6, 3, 2, 4, 5, 1).

Based on the previously defined 2D representation of a permutation π, we
next propose a two-dimensional marked representation (2DM representation) of
π, which is an efficient tool for watermarking images. In our 2DM representation,
a permutation π over the set Nn is represented by an n×n matrix A∗ as follows:

• the cell at row i and column πi of matrix A∗ is marked by a specific symbol
(in our implementation we use the asterisk “*”), for each i = 1, 2, . . . , n.

Figure 1(b) shows the 2DM representation of the permutation π. It is easy to see
that, since the 2DM representation of π is constructed from the corresponding
2D representation, there is one symbol in each row and in each column of the
matrix A∗. It is also easy to see that we can extract π from A∗ in linear time
(i.e., linear in the size of matrix A∗); we call Extract π from 2DM the extraction
algorithm.
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Fig. 1. The 2D and 2DM representations of the self-inverting permutation π =
(6, 3, 2, 4, 5, 1).

Remark 2.3.1. Since the permutation π is a self-inverting permutation, its 2D
matrix A has the following property: A(i, j) = j if πi = j and A(i, j) = 0
otherwise, 1 ≤ i, j ≤ n. Thus, the corresponding matrix A∗ is symmetric.

Hereafter, we shall denote by π∗ a SiP and by n∗ the number of elements of π∗.

2.4 The Discrete Fourier Transform

The Discrete Fourier Transform (DFT) is used to decompose an image into its
sine and cosine components. The output of the transformation represents the
image in the frequency domain, while the input image is the spatial domain
equivalent. In the image’s fourier representation, each point represents a partic-
ular frequency contained in the image’s spatial domain.

Typically, in our method, we are interested in the magnitudes of DFT coeffi-
cients. The magnitude |F (u, v)| of the Fourier transform at a point is how much
frequency content there is [14].

3 The Frequency Domain Approach

Having described an efficient method for encoding integers as self-inverting per-
mutations using the 2DM representation of self-inverting permutations, we next
describe codec algorithms that efficiently encode and decode a watermark into
the image’s frequency domain [15, 16, 14].

3.1 Embed Watermark into Image

We next describe the embedding algorithm of our proposed technique which
encodes a self-inverting permutation (SiP) π∗ into a digital image I. Recall that,
the permutation π∗ is obtained over the set Nn∗ , where n∗ = 2n+1 and n is the
length of the binary representation of an integer w which actually is the image’s
watermark [12].
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The watermark w, or equivalently the self-inverting permutation π∗, is in-
serted in the frequency domain of specific areas of the image I. More precisely,
we mark the DFT’s magnitude of an image’s area using two ellipsoidal annuli,
denoted hereafter as “Red” and “Blue” (see, Figure 2). The ellipsoidal annuli
are specified by the following parameters:

◦ Pr, the width of the “Red” ellipsoidal annulus,

◦ Pb, the width of the “Blue” ellipsoidal annulus,

◦ R1 and R2, the radiuses of the “Red” ellipsoidal annulus on y-axis and x-axis,
respectively.

The algorithm takes as input a SiP π∗ and an image I, and returns the water-
marked image Iw; it consists of the following steps.

Algorithm Embed SiP-to-Image

Input: the watermark π∗ ≡ w and the host image I;
Output: the watermarked image Iw;

Step 1: Compute first the 2DM representation of the permutation π∗, i.e., con-
struct an array A∗ of size n∗ × n∗ such that the entry A∗(i, π∗

i ) contains the
symbol “*”, 1 ≤ i ≤ n∗.

Step 2: Next, compute the size of the input image I, say, N ×M , and cover the
image I with an imaginary grid C with n∗×n∗ grid-cells Cij of size

⌊
N
n∗

⌋
×
⌊
M
n∗

⌋
,

1 ≤ i, j ≤ n∗.

Step 3: For each grid-cell Cij , compute the Discrete Fourier Transform (DFT)
using the Fast Fourier Transform (FFT) algorithm, resulting in a n∗ × n∗ grid
of DFT cells Fij , 1 ≤ i, j ≤ n∗.

Step 4: For each DFT cell Fij , compute its magnitude Mij and phase Pij

matrices which are both of size
⌊
N
n∗

⌋
×
⌊
M
n∗

⌋
, 1 ≤ i, j ≤ n∗.

Step 5: Then, the algorithm takes each of the n∗×n∗ magnitude matrices Mij ,
1 ≤ i, j ≤ n∗, and places two imaginary ellipsoidal annuli, denoted as “Red” and
“Blue”, in the matrix Mij (see, Figure 2). In our implementation,

◦ the “Red” is the outer ellipsoidal annulus while the “Blue” is the inner one.
Both are concentric at the center of the Mij magnitude matrix and have
widths Pr and Pb, respectively;

◦ the radiuses of the “Red” ellipsoidal annulus are R1 (y-axis) and R2 (x-axis),
while the “Blue” ellipsoidal annulus radiuses are computed in accordance to
the “Red” ellipsoidal annulus and have values (R1 − Pr) and (R2 − Pr),
respectively;

◦ the inner perimeter of the “Red” ellipsoidal annulus coincides to the outer
perimeter of the “Blue” ellipsoidal annulus;

◦ the values of the widths of the two ellipsoidal annuli are Pr = 2 and Pb = 2,
while the values of their radiuses are R1 =

⌊
N
2n∗

⌋
and R2 =

⌊
M
2n∗

⌋
.
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Fig. 2. The embedding process.

The areas covered by the “Red” and the “Blue” ellipsoidal annuli determine two
groups of magnitude values on Mij (see, Figure 2).

Step 6: For each magnitude matrix Mij , 1 ≤ i, j ≤ n∗, compute the average of
the values that are in the areas covered by the “Red” and the “Blue” ellipsoidal
annuli; let AvgRij be the average of the magnitude values belonging to the “Red”
ellipsoidal annulus and AvgBij be the one of the “Blue” ellipsoidal annulus.

Step 7: For each magnitude matrixMij , 1 ≤ i, j ≤ n∗, compute first the variable
Dij as follows:

◦ Dij = |AvgBij −AvgRij |, if AvgBij ≤ AvgRij

◦ Dij = 0, otherwise.

Then, for each row i of the matrix Mij , 1 ≤ i, j ≤ n∗, compute the maximum
value of the variables Di1, Di2, . . . , Din∗ in row i; let MaxDi be the max value.

Step 8: For each cell (i, j) of the 2DM representation matrix A∗ of the per-
mutation π∗ such that A∗

ij = “ ∗ ” (i.e., marked cell), mark the corresponding
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grid-cell Cij , 1 ≤ i, j ≤ n∗; the marking is performed by increasing all the values
in magnitude matrix Mij covered by the “Red” ellipsoidal annulus by the value

AvgBij −AvgRij +MaxDi + c, (1)

where c = copt. The additive value of copt is calculated by the function f (see,
Subsection 3.3) which returns the minimum possible value of c that enables
successful extracting.

Step 9: Reconstruct the DFT of the corresponding modified magnitude matrices
Mij , using the trigonometric form formula [14], and then perform the Inverse
Fast Fourier Transform (IFFT) for each marked cell Cij , 1 ≤ i, j ≤ n∗, in order
to obtain the image Iw.

Step 10: Return the watermarked image Iw.

In Figure 2 we demonstrate the main operations performed by our embedding
algorithm. In particular, we show the marking process of the grid-cell C44 of
the Lena image; in this example, we embed in the Lena image the watermark
number w which corresponds to SiP (6, 3, 2, 4, 5, 1).

3.2 Extract Watermark from Image

In this section we describe the decoding algorithm of our proposed technique.
The algorithm extracts a self-inverting permutation (SiP) π∗ from a watermarked
digital image Iw, which can be later represented as an integer w.

The self-inverting permutation π∗ is obtained from the frequency domain of
specific areas of the watermarked image Iw. More precisely, using the same two
“Red” and “Blue” ellipsoidal annuli, we detect certain areas of the watermarked
image Iw that are marked by our embedding algorithm and these marked areas
enable us to obtain the 2D representation of the permutation π∗. The extracting
algorithm works as follows:

Algorithm Extract SiP-from-Image

Input: the watermarked image Iw marked with π∗;
Output: the watermark π∗ = w;

Step 1: Take the input watermarked image Iw and compute its N × M size.
Then, cover Iw with the same imaginary grid C, as described in the embedding
method, having n∗ × n∗ grid-cells Cij of size

⌊
N
n∗

⌋
×

⌊
M
n∗

⌋
.

Step 2: Then, again for each grid-cell Cij , 1 ≤ i, j ≤ n∗, using the Fast Fourier
Transform (FFT) get the Discrete Fourier Transform (DFT) resulting a n∗ ×n∗

grid of DFT cells.

Step 3: For each DFT cell, compute its magnitude matrix Mij and phase matrix
Pij which are both of size

⌊
N
n∗

⌋
×
⌊
M
n∗

⌋
.
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Step 4: For each magnitude matrix Mij , place the same imaginary “Red” and
“Blue” ellipsoidal annuli, as described in the embedding method, and compute
as before the average values that coincide in the area covered by the “Red” and
the “Blue” ellipsoidal annuli; let AvgRij and AvgBij be these values.

Step 5: For each row i of Cij , 1 ≤ i ≤ n∗, search for the jth column where
AvgBij −AvgRij is minimized and set π∗

i = j, 1 ≤ j ≤ n∗.

Step 6: Return the self-inverting permutation π∗.

Having presented the embedding and extracting algorithms, let us next comment
on the function f which returns the additive value c = copt (see, Step 8 of the
embedding algorithm).

3.3 Function f

In our watermarking model, the embedding algorithm amplifies the marks in the
“Red” ellipsoidal annulus by adding the output of the function f . What exactly
f does is returning the optimal value that allows the extracting algorithm under
the current requirements, such as JPEG compression, noise addition, to still be
able to extract the watermark from the image.

The function f takes as an input the characteristics of the image and the
parameters R1, R2, Pb, and Pr of our proposed watermark model (see, Step 5
of embedding algorithm and Figure 2), and returns the minimum possible copt
that added as c to the values of the “Red” ellipsoidal annulus enables extracting
(see, Step 8 of the embedding algorithm). More precisely, the function f initially
takes the interval [0, cmax], where cmax is a relatively great value such that if
cmax is taken as c for marking the “Red” ellipsoidal annulus it allows extracting,
and computes the copt in [0, cmax].

Note that, cmax allows extracting but because of being great damages the
quality of the image (see, Figure 3). We mentioned relatively great because it
depends on the characteristics of each image. For a specific image it is useless
to use a cmax greater than a specific value, we only need a value that definitely
enables the extracting algorithm to successfully extract the watermark.

We next describe the computation of the value copt returned by f ; note that,
the parameters Pb and Pr of our implementation are fixed with the values 2 and
2, respectively. The main steps of this computation are the following:

(i) Check if the extracting algorithm for c = 0 validly obtains the watermark
π∗ = w from the image Iw; if yes, then the function f returns copt = 0;

(ii) If not, that means, c = 0 doesn’t allow extracting; then, the function f uses
binary search on [0, cmax] and computes the interval [c1, c2] such that:

◦ c = c1 doesn’t allow extracting,
◦ c = c2 do allow extracting, and
◦ |c1 − c2| < 0.2;

(iii) The function f returns copt = c2;



10 Lecture Notes in Computer Science: Authors’ Instructions

As mentioned before, the function f returns the optimal value copt. Recall that,
optimal means that it is the smallest possible value which enables extracting
π∗ = w from the image Iw. It is important to be the smallest one as that
minimizes the additive information to the image and, thus, assures minimum
drop to the image quality.

4 Experimental Evaluation

In this section we present the experimental results of the proposed watermarking
codec algorithms which we have implemented using the general-purpose math-
ematical software package Matlab (version 7.7.0) [9]. We tested our codec algo-
rithms on various 24-bit digital color images of various sizes (from 200× 130 up
to 4600 × 3700) and quality characteristics. Many of the images in our image
repository where taken from a web image gallery [17] and enriched by some other
images different in characteristics.

In this work we used JPEG images due to their great importance on the web,
since they are small in size, while storing full color information (24 bit/pixel),
and can be easily and efficiently transmitted. Moreover, robustness to lossy com-
pression is an important issue when dealing with image authentication. It should
be observed that the design goal of lossy compression systems is opposed to that
of watermark embedding systems. The Human Visual System (HVS) attempts to
identify and discard perceptually insignificant information of the image, whereas
the goal of the watermarking system is to embed the watermark information
without altering the visual perception of the image [21].

In order to evaluate the quality of the watermarked image obtained from our
watermarking method we used two objective image quality assessment metrics,
namely the Peak Signal to Noise Ratio (PSNR) and the Structural Similarity In-
dex Metric (SSIM). Our aim was to prove that the watermarked image is closely
related to the original (image fidelity [5]), because watermarking should not in-
troduce visible distortions in the original image as that would reduce images’
commercial value.

The PSNR metric is the ratio between the reference signal and the distortion
signal, i.e., watermark, in an image given in decibels (dB). It is well known that,
PSNR is most commonly used as a measure of quality of reconstruction of lossy
compression codecs (e.g., for image compression). The higher the PSNR value
the closer the distorted image is to the original or the better the watermark
conceals. It is a popular metric due to its simplicity, although it is well known
that this distortion metric is not absolutely correlated with human vision. The
SSIM image quality metric, developed by [18], is considered to be correlated with
the quality perception of the HVS [19]. The highest value of SSIM is 1, and it is
achieved when the original I and watermarked image Iw are identical.

4.1 Performance

Initially, we had to choose the appropriate values for the parameters of the
quality function f . In our implementation we set both of the parameters Pr
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Fig. 3. The original image of Lena and its two watermarked images with c = cmax and
c = copt; the watermark corresponds to SiP (6,3,2,4,5,1).

and Pb equal to 2 (see, Section 3.3). Recall that, the value 2 is a relatively
small value which allows us to modify a satisfactory number of pixels in order
to embed the watermark and successfully extract it, without affecting images’
quality. Note that, for great in size images, a smaller width reduces the strength
of the watermark. There isn’t a distance between the two ellipsoidal annuli as
that enables the algorithm to apply a small additive information to the values
of the “Red” annulus. The two ellipsoidal annuli are inscribed to the rectangle
magnitude matrix, as we want to mark images’ cells on the high frequency bands.

We mark the high frequencies by increasing their values using mainly the
additive parameter c = copt because alterations in the high frequencies are less
detectable by human eye [20]. What is more, in high frequencies most images
contain less information.

The quality function f returns the factor c, which has the minimum value copt
that allows the extracting algorithm to successfully extract the watermark. In
fact, this value copt (see, Formula 1) is the main additive information embedded
into the image. Depending on the images and the amount of compression, we
need to increase the watermark strength by increasing the factor c. The value
of c increases as the quality factor of JPEG compression decreases. It is obvious
that the embedding algorithm is image dependent. It is worth noting that, the
copt values are small for images of relatively small size while these values increase
as we move to images of greater size.

To demonstrate the differences on watermarked image quality, with respect
to the values of the additive factor c, we watermarked the original image lena.jpg
and we embedded a watermark with c = cmax and c = copt, where cmax >> copt
(see, Figure 3); in the watermarked image in the middle we used c = cmax for
illustrative purposes.
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Original WatermarkedName / Size

Fig. 4. Some original images and their corresponding watermarked ones; for each im-
age, its size and its copt, and PSNR and SSIM values are also shown, for Q = 55.

4.2 Attack Issues

In this section we present the experimental results of our watermarking method
under several attacks. In fact, we test the robustness of our method after applying
the following attacks:

(A) JPEG Compression

(B) Gaussian Noise

(C) Geometric Transformations

Recall that, for the evaluation process we use the PSNR and SSIM metrics.

(A) JPEG Compression. The quality factor (or, for short, Q-factor) is a
number that determines the degree of loss in the compression process when
saving an image. In general, JPEG recommends a quality factor of 75–95 for
visually indistinguishable quality difference, and a quality factor of 50–75 for
merely acceptable quality. We compressed the images with Matlab using imwrite
with different JPEG quality factors; we present results for Q = 85, Q = 75,
Q = 65, and Q = 55.
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PSNR SSIM

Filename Q=85 Q=75 Q=65 Q=55 Q=85 Q=75 Q=65 Q=55

Lena.jpg 54.04 50.10 46.82 44.86 0.997 0.993 0.986 0.981
Baboon.jpg 49.19 46.17 42.48 41.53 0.995 0.989 0.980 0.977
Trattoria.jpg 67.79 60.59 53.50 46.36 0.999 0.999 0.996 0.984
Aquarium.jpg 65.19 61.20 58.26 56.18 0.999 0.999 0.998 0.997
Ibook.jpg 51.47 47.78 44.76 42.21 0.994 0.987 0.976 0.963
City.jpg 57.20 52.86 48.63 51.54 0.998 0.995 0.987 0.993
Statue.jpg 63.58 58.40 54.90 50.30 0.998 0.995 0.990 0.977

Table 1. The PSNR and SSIM values of the original and watermarked images, for
compression of qualities Q = 85, Q = 75, Q = 65, and Q = 55.

Our watermarked images have excellent PSNR and SSIM values. In Figure 4
we present six images of different sizes, along with their corresponding PSNR
and SSIM values. Typical values for the PSNR in lossy image compression are
between 40 and 70 dB, where higher is better. In our experiments, the PSNR
values of 90% of the watermarked images were greater than 40 dB. The SSIM
values are almost equal to 1, which means that the watermarked image is quite
similar to the original one, which explains the method’s high fidelity.

In Table 1 we demonstrate the PSNR and SSIM values of some images that
are used in this work. We observe that these values are decreasing on smaller
quality factors. Also, as the additive value c = copt increases for each quality
factor, the quality decreases. Moreover, the additive value c that embeds robust
marks for qualities Q = 85, Q = 75 and Q = 65, does not result in a significant
image distortion as the tables suggest.

original

Fig. 5. The original image of Lena and its watermarked images with σ2 = 0.01, σ2 =
0.001 and σ2 = 0.0001;
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Filename σ2 = 0.01 σ2 = 0.001 σ2 = 0.0001

Lena.jpg 24.94 34.75 44.62
Baboon.jpg 24.89 34.79 44.65
Trattoria.jpg 25.04 34.83 44.73
Aquarium.jpg 25.97 35.27 44.81
Ibook.jpg 25.01 34.79 44.62
City.jpg 24.89 34.76 44.70
Statue.jpg 25.37 35.12 44.92

Table 2. The PSNR values of the original and watermarked images, for Gaussian noise
with variance values σ2 = 0.01, σ2 = 0.001, and σ2 = 0.0001.

(B) Gaussian Noise We test the robustness of our watermarking model by
adding Gaussian noise in the images with mean = 0 and deferent variances σ2,
that is, we use σ2 = 0.01, σ2 = 0.001 and σ2 = 0.0001. Figure 5 illustrates the
original image of Lena and the watermarked images with Gaussian noise of these
three variance values. We have to mention that the watermark can be extracted
successfully from the attacked image.

Table 2 presents the PSNR values of the original image and the watermarked
image with Gaussian noise. As Table 2 and Figure 5 indicate, although Gaus-
sian noise with σ2 = 0.01 introduces significant perceptual distortion in images,
watermark remains imperceptible.

(C) Geometric Transformations The robustness of the proposed model
against geometric attacks was evaluated by applying common geometric attacks,
which included rotation, cropping, and scaling.

C.1. Rotation Attacks

It is possible to detect whether the watermarked image has been subject to
rotations, thanks to the following two properties of the 2DM representation of
self-inverting permutations.

Due to the fact that the 2DM representation that has been used to mark the
image is the result of a self-inverting permutation the sequence of the marked
cells on the image is not random but there are the two properties that can be
used to determine the angle of a watermarked image in respect with the original
one and that has to do with the position of the marked cell in the main diagonal
of the grid. The two properties are the following:

◦ The main diagonal of the n∗ × n∗ symmetric matrix A∗ has always one and
only one marked cell.

◦ The marked cell on the diagonal is always in the entry (i, i) of A∗ where:
i = ⌈n∗

2 ⌉+ 1, ⌈n∗
2 ⌉+ 2, . . . , n∗.
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(a) (b) (c) (d)

Fig. 6. (a) Watermarked image of Lena, (b) 90 degrees angled image, (c) 180 degrees
angled image, and (d) cropped image.

In case the watermarked image has been subject to 90 degree rotation as demon-
strated in Figure 6(b) you may notice that the main diagonal has not any cells
marked which means that we are dealing with a non valid watermark as there
should have been exactly one marked cell.

The second case is when the watermarked image has been subject to 180
degree rotation as demonstrated in Figure 6(c). In this case, beginning with the
first property someone may notice that the main diagonal has one and only one
marked cell meaning that the first property is satisfied confirming that the image
has not been subject to 90 degree rotation.

The diagonal marked cell is situated in the grid’s position (i, i); in our image
i = 3 and thus i < ⌈n∗

2 ⌉ since n∗ = 9. It is against the second property meaning
that the watermarked image has been subject to 180 degree rotation.

C.2. Cropping

Once again thanks to the fact that the 2DM representation a SiP has a symmetric
property, i.e., the n∗ × n∗ matrix A∗ is symmetric, our algorithm successfully
extracts the watermark even marked parts of the watermarked image have been
lost. This loss can be the result of cropping procedures to certain areas of the
image. Recall that, this property is a consequence of the fact that at a self-
inverting permutation, each element has its own inverse.

In Figure 6(d) the removed marked part of the image can be recovered as
marks using a SiP are symmetric on A∗ with respect to the main diagonal. As
a result, because of the fact that A∗(4, 8) is marked, A∗(8, 4) is marked as well.
Taking that into account we conclude that the lost marked cell is A∗(8, 4) and
then we correctly extract the embedded watermark.

C.3. Scaling

In the case where a watermarked image has underwent significant scaling then
extracting a watermark may be unsuccessful. In our model if an image has been
scaled by a known ratio then each cell of the imaginary grid has underwent
exactly the same scaling meaning that the magnitude cell has now a different
size as well. Due to this fact, the width of the annuli will be incorrect making
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it impossible to calculate the appropriate difference between them. A solution
to this would be to use different sized annuli in order to calculate the valid
difference between them so that to spot marked areas.

The idea is simple, considering that we know the scaling ratio that the image
has underwent we apply the same ratio calculating the new width for the two
annuli. So if for example we used Pb = 2 and Pr = 2 for the width of the
“Blue” and the “Red” annulus respectively when we performed the embedding
procedure and the image has underwent 50% scaling then in order to extract the
embedded watermark from the image we have to use P ∗

b = 1 and P ∗
r = 1.

In order to calculate the difference between the same frequency bands, in the
second case where the magnitude cell has 50% of the initial size, we use annuli
that have 50% less width in comparison with the ones originally embedded.

5 Concluding Remarks

In this paper we propose a watermarking model for embedding invisible water-
marks into digital images.

We experimentally tested our codec algorithms on color JPEG images with
various and different characteristics. We obtained positive results as the wa-
termarks were invisible, they didn’t affect the images’ quality and they were
extractable despite the JPEG compression and Gaussian noise addition. It is
worth noting that the proposed algorithms are robust against rotation or crop-
ping attacks.

The study of our quality function f remains an interesting problem for further
investigation; indeed, f could incorporate learning algorithms [22] so that to be
able to return the copt accurately and in a very short computational time.
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