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Abstract

A new Bayesian model for image segmentation based on

a Gaussian mixture model is proposed. The model structure

allows the automatic determination of the number of seg-

ments while ensuring spatial smoothness of the final output.

This is achieved by defining two separate mixture weight

sets: the first set of weights is spatially variant and incor-

porates an MRF edge-preserving smoothing prior; the sec-

ond set of weights is governed by a Dirichlet prior in order

to prune unnecessary mixture components. The model is

trained using variational inference and the Majorization-

Minimization (MM) algorithm, resulting in closed-form pa-

rameter updates. The algorithm was successfully evaluated

in terms of various segmentation indices using the Berkeley

image data base.

1. Introduction

Image segmentation is the process of grouping image

pixels according to the coherence of certain attributes such

as intensity, spatial relation, texture. As such, it has been

popularly addressed as a special type of data clustering

problem by various techniques [16].

Choosing the appropriate number of clusters for a given

data set is an important issue, on which several approaches

have been proposed. The most straightforward model se-

lection approach is fitting a number of models with varying

number of components, and evaluating the solutions using

a suitable criterion. Such penalty terms, inspired by cod-

ing theory and minimum description length, try to avoid

data overfitting by penalizing solutions with high number of

components. Examples include Akaike’s information crite-

rion, the Bayesian information criterion and the Minimum

message length criterion [1].

In the more specific context of assuming the data being

generated by a mixture model, methodologies include no-
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tably the Bayesian approaches [5, 21] where the number of

kernels and the model parameters are estimated simultane-

ously. In this family of methods, the model is initialized on

a large number of components, and progressively removes

those components that reside in the same region of the data

space. On the contrary, in [4], the model starts with a low

number of components and more kernels are progressively

added by splitting existing kernels when necessary.

It is straightforward to adapt these Bayesian models into

image segmentation, simply by assuming our image feature

vectors to be the data to be clustered. However, the im-

portant feature of an image’s spatial structure would not be

accounted for. Natural images have a spatial smoothness

property which is neglected by standard mixture model ap-

proaches. Approaches like the method proposed in [12] are

based on MRF priors [9] to account for spatial characteris-

tics. However, they assume an a priori known number of

segments.

In this paper, we present a Bayesian model for image

segmentation that enables the estimation of the number of

segments during the training process while accounting for

image spatial smoothness. We assume that the distribution

of the hidden class labels is controlled by two distinct sets of

probability weight vectors, tagged correspondingly as local

and global weights.

The local weights are varying with each pixel. Local

differences in these weights follow a Student’s-t distribu-

tion. The Student’s-t distribution decomposes on two lev-

els: the lower level is a Gaussian pdf with precision (inverse

variance) that is spatially variant, while the higher level is

a Gamma pdf that generates the aforementioned precision

values. This precision variability of the Gaussians allows

the model to incorporate elegantly the image edge structure

along with imposing smoothness constraints.

The global weights control the number of image seg-

ments that are active in the model by imposing a Dirichlet

prior on them. In this way, more probable solutions, which

otherwise exhibit high model complexity by comprising

many kernels, are penalized as low probability states. This
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allows the model to estimate the number of classes in the

segmentation process, by starting from an initial high num-

ber of classes estimate and pruning mixing kernels gradu-

ally during the model training process.

The variational inference framework [1, 7] is used to

train the model. Variational inference involves iteratively

optimizing a lower bound of the model evidence with re-

gard to the posterior distribution of the hidden variables,

and the model parameters. The mean field approximation

is employed on the posterior distribution of the hidden vari-

ables, so as to render its estimation tractable. Let us note

that the proposed model is different with respect to stan-

dard Dirichlet priors imposed on the mixing proportions of

a mixture [1]. In our model, the hidden variables depend on

two priors (local and global weights) and model inference

is not trivial with standard inference techniques. Therefore,

we optimize the variational lower bound by making use of

the Majorization-Minimization (MM) methodology [10].

Thus, unlike state-of-the-art methods in image segmen-

tation like normalized cuts [20] and standard or spatially

varying mixtures [19], the proposed model can produce an

estimate of the number of image classes while at the same

time ensuring a smooth segmentation result. Methods sup-

porting automatic determination of the number of classes

typically depend on a scalar parameter, or a small set of

parameters, that more or less directly control the number

of classes / fit likelihood trade-off (e.g. the bandwidth in

mean shift [3]). Such parameters are meant to be before-

hand empirically adjusted. Concerning the rest of the para-

meters, affecting the quality of the segmentation itself, the

proposed model determines them automatically. We con-

sider this issue as an advantage in comparison with other

methods; graph-cut based methods fall under this latter cat-

egory [19], as well as recently proposed extensions that can

handle number of components determination [8].

Producing a smooth segmentation result while determin-

ing the number of classes has also been addressed in the

Dirichlet process prior models proposed in [6, 15], among

others. However such approaches rely on sampling tech-

niques which are notoriously computationally expensive, in

contrast to the Majorization-Minimization iterative scheme

we propose in this work.

2. Model description

Let X = {xn}N
n=1 be the observed set of the image in-

tensities. Consider also that there exist at most K classes

in our segmentation. Each datum xn is governed by dif-

ferent statistics, according to which class it belongs to. Let

us assume a hidden variable set Z = {zn
j }n=1..N, j=1..K ,

grouped as N one-zero K × 1 vectors that control pixel

class membership.

It is a popular choice in computer vision to choose the

data to be Gaussian and i.i.d distributed, assuming knowl-
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Figure 1. Graphical representation of the proposed model. Super-

script n ∈ [1, N ] denotes pixel index, subscript j ∈ [1, K] denotes

kernel (segment) index, d ∈ [1, D] describes the neighborhood di-

rection type and k ∈ [1, Γ] denotes neighbor index.

edge of class memberships Z:

xn|zn
j = 1 ∼ N (µj ,Λj) (1)

with N representing a Gaussian distribution with µj and

Λj being the mean vector and the precision (inverse covari-

ance) matrix respectively.

The distribution choice of Z plays a drastic role on the

model behavior. Let us recall that under a multinomial

and i.i.d assumption on the zn, the model is essentially a

Gaussian mixture [1] governed by a set of K weights. In

[19] this idea is extended by using spatially varying weights

along with a smoothness prior on them.

In this work we make a design choice meant to lie be-

tween the spatially and non-spatially varying hypotheses for

the mixing proportions. Let zn, ∀n ∈ [1, N ] be indepen-

dently distributed with

p(zn|Ω,Π) =

∏K
j=1(π

n
j ωj)

zn
j

∑K
j=1 π

n
j ωj

. (2)

In the equation above we have introduced Π =
{πn

j }n=1..N, j=1..K and Ω = {ωj}j=1..K weight variable

sets, which are constrained by
∑K

j=1 π
n
j = 1, ∀n ∈ [1, N ]

and
∑K

j=1 ωj = 1. In view that the denominator in (2)

is the probability distribution normalization constant, eq.

(2) acts closely like a multinomial distribution with weights

given by the set [πn
1ω1, π

n
2ω2, ..., π

n
KωK ]. Thus, for each

pixel n ∈ [1, N ], a class membership is determined by

two sets of weight vectors. At first, it depends on the set

Π = [πn
1 , π

n
2 , ..., π

n
K ] whose components are vectors, now

called local weights. The local weights are spatially varying

as they depend on the position (indexed by n). Secondly, it

depends on the set Ω =[ω1, ω2, ..., ωK ] whose components

are scalars and are now called global weights.
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For further insight, note that, if in eq. (2), for a given

pixel indexed by n, we treat its local weights πn
j as para-

meters with probabilities equal to the uninformative 1/K,

the distribution of the hidden variables zn is a multinomial

distribution. This is also true for the global weights ωj .

Thus, in eq.(2), for a given a pixel, both the local and global

weights should have high values for a certain class in order

to be dominant.

2.1. Local weights

Considering the set of local weights Π as random vari-

ables and assuming a proper prior, we can incorporate the

spatial smoothness trait by forcing neighbouring vectors to

be more likely to share the same class label. We assume a

Markov random field on Π, which equivalently means that

Π is governed by a Gibbs distribution [9], generally ex-

pressed by:

p(Π) ∝
∏

C

e−Ψc(Π), (3)

where Ψc is a function on clique c, called clique potential

function in the literature, and the product is over all minimal

cliques of the Markov random field.

An appropriate clique distribution choice would be to

assume that the differences of local weights Π follow a

Student’s-t distribution with its peak set at zero. This set-

ting, proposed previously in [19], also provides our model

with the properties of an edge-preserving line-process [9].

The probability law for local differences is thus expressed

by

πn
j − πk

j ∼ St(0, β2
jd, νjd), ∀n, j, d,∀k ∈ γd(n). (4)

The parameters βjd control how tightly smoothed we

need the vectors of segment j to be. In eq. (4), D stands for

the number of a pixel’s neighbourhood adjacency types and

γd(n) is the set of neighbours of pixel indexed by n, with

respect to the dth adjacency type, where d ∈ [1,D]. In our

model, we assume 4 neighbours for each pixel (first-order

neighbourhood), and partition the corresponding adjacency

types into horizontal and vertical, thus, setting D = 2. This

variability of parameter aims to capture the intuitive prop-

erty that smoothness statistics may vary along clusters and

spatial directions.

It can be observed that the assumption in (4) is equivalent

to

πn
j − πk

j ∼ N (0, β2
jd/u

nk
j ),

unk
j ∼ G(νjd/2, νjd/2), ∀n, j, d, ∀k ∈ γd(n),

where N and G represent a Gaussian and a Gamma distri-

bution respectively. This breaking-down of the Student’s-t

distribution allows clearer insight on how our implicit edge-

preserving line-process works. Since unk
j depends on da-

tum indexed by n, each weight difference in the MRF can be

described by a different instance of a Gaussian distribution.

Therefore, as unk
j → +∞ the distribution tightens around

zero, and forces neighboring local weights to be smooth.

On the other hand, unk
j → 0 signifies the existence of an

edge and consequently no smoothing.

2.2. Global weights

The global weights Ω are introduced in the model in or-

der to cover our model’s second important property which

is the automatic estimation of the number image segments.

The idea is that starting from a predefined maximum seg-

ments figure K, during the training process some seg-

ments ”fade out” eventually to zero-weights [5]. While it

is possible that for a certain class j all local weights πn
j ,

∀n ∈ [1, N ] may attain negligible values, in practice this

is difficult; this is due to the fact that updating each πn
j

∀n ∈ [1, N ] individually must account for MRF local de-

pendencies, which will not lead to an update far from each

site’s neighbours.

Thus, assigning for each class a single global weight

scalar allows us to conveniently treat each class as a distinct

entity during model training. Therefore, Ω is considered to

be a random vector governed by a Dirichlet distribution:

p(Ω;α0) ∝
K
∏

j=1

ωα0−1
j . (5)

By these means, we can penalize solutions with numerous

non-zero components. As hyperparameter α0 → −∞, so-

lutions with less segments are encouraged, and as α0 →
+∞ all K initial segments tend to be preserved. While

α0 < 0 may enforce the prior in (5) to be improper, in prac-

tice negative α0 values are applicable since it is not neces-

sary to compute the normalizing constant of eq. (5) during

inference as it will be explained in the next section.

Finally we impose a Wishart prior on precision matrices

Λj , ∀j ∈ [1,K]:

p(Λj ;W0, η0) ∝ |Λj |
(η0−∆−1)/2e−

1

2
Tr(W−1

0
Λj), (6)

where the matrix W0 and the scalar η0 are such that

E{Λj} = W0η0. Parameter ∆ stands for the number of

variates of the feature vectors xn. Imposing this prior on

precision matrices avoids degenerate cases, for instance,

when the corresponding covariance matrix Λ−1
j has zero

eigenvalues or equivalently |Λj | → +∞ [1]. For an

overview of the proposed model, see fig.(1).

3. Model inference

To perform inference and consequently segmentation,

the model likelihood with respect to model parameters has

to be optimized:

argmax
µ,Π,Ω,β

ln p(X,Π,Ω;µ, β, ν).

2171



Due to the functional form of the involved distributions

the above optimization problem is practically intractable.

Therefore, we resort to variational inference [1]. This in-

volves calculating approximations of the posterior distribu-

tions q(·) of the hidden variables Z, U , Λ, then using them

to find parameter estimates that maximize a lower bound of

the model likelihood.

3.1. Variational inference

Adapting the standard variational methodology [1] to our

problem, the lower bound to be optimized is

L(q,Π,Ω, µ, β, ν) ,

∑

Z

∫

U,Λ

q(Z,U,Λ) ln
p(X,Π, Z, U,Ω;µ, β, ν)

q(Z,U,Λ)
dUdΛ

=<ln p(X,Π, Z, U,Ω;µ, β, ν)>Z,U,Λ −

<ln q(Z,U,Λ)>Z,U,Λ

=<ln p(X|Z,Λ;µ)>Z,Λ + <ln p(Λ)>Λ +

<ln p(Z|Π,Ω)>Z + <ln p(Π|U ;β)>U + ln p(Ω)+

<ln p(U ; ν)>U − <ln q(Z,U,Λ)>Z,U,Λ . (7)

Model evidence is decomposed to the lower bound L and

the Kullback-Leibler distance between the approximation

of the posterior and the posterior itself:

ln p(X,Π,Ω;µ, β, v) = L(q,Π,Ω, µ, β, ν) +KL(q||p).

To proceed with the computation of the optimal distribu-

tion q on L, we recur to the mean field approximation which

stems from statistical physics [1]:

q(Z,U,Λ) = q(Z)q(U)q(Λ). (8)

Note that in the proposed model, we only need to assume

q(Z,U,Λ) = q(Z,U)q(Λ), as q(Z,U) = q(Z)q(U) is in-

duced from the model structure (fig. 1). Thence we can

obtain update equations for the expected values of hidden

variables Z,U ,Λ:

<zn
j>

(t)=
π

n(t)
j ω

(t)
j N (xn;µ

(t)
j | <Λj>

(t))
∑K

l=1 π
n(t)
l ω

(t)
j N (xn;µ

(t)
l | <Λl>(t))

, (9)

<unk
j >(t)= ζ

nk(t)
j /θ

nk(t)
j ,

<lnunk
j >(t)= ψ(ζ

nk(t)
j ) − ln θ

nk(t)
j ,

where ψ(·) stands for the digamma function, and parame-

ters ζ, θ being:

ζ
nk(t)
j =

1

2

(

ν
(t)
jd + 1

)

,

θ
nk(t)
j =

1

2

(

ν
(t)
jd +

(π
n(t)
j − π

k(t)
j )2

β
2(t)
jd

)

.

The required moment for variables Λj are given by

<Λj>
(t)= W

(t)
j η

(t)
j η

(t)
j = η0 +

N
∑

n=1

<zn
j>

(t)

W
−1(t)
j = W−1

0 +
N

∑

n=1

<zn
j>

(t) (xn − µ
(t)
j )(xn − µ

(t)
j )T

3.2. Majorization­Minimization

Estimation of the deterministic parameters µ, Π, Ω, β,

ν is achieved by maximization of (7) with respect to them.

However, optimizing (7) with respect to Ω is difficult due to

the normalizing factor in (2). We can work around this ob-

stacle and find a closed form update for Ω as well, by mak-

ing use of the Majorization-Minimization (MM) methodol-

ogy [10]. MM in its philosophy is quite close to variational

inference and the EM algorithm [1], in the sense that the

problem of minimizing a given objective function is trans-

formed to successive minimizations of surrogate functions,

i.e. majorizers of the original objective function that can be

minimized in closed-form.

For the term of (7) involving ln p(Z|Π,Ω), we note the

following inequality:

<ln p(Z|Π,Ω)>Z=

−
N

∑

n=1

ln
K

∑

j=1

πn
j ωj +

K
∑

j=1

lnωj

N
∑

n=1

πn
j <z

n
j> >

−
N

∑

n=1

ln yn−
N

∑

n=1

1

yn
(

K
∑

j=1

πn
j ωj−y

n)+
K

∑

j=1

lnωj

N
∑

n=1

πn
j <z

n
j>

, ϕ(Z,Π,Ω, y) (10)

where we have introduced y = {y1, y2, ..., yN} as a new

set of auxiliary real parameters. In eq. (10), we made use

of the linear minorization

f(x) > f(y) +
df(y)

dy
(x− y),

which holds for any convex function f . Here f(x) = − lnx

and x =
∑K

j=1 π
n
j ωj .

Consequently, we define our minorant as

LMM (q, µ, β, ν,Π,Ω, y) , (11)

L(q, µ, β, ν,Π,Ω)− <ln p(Z|Π,Ω)>Z +ϕ(Z,Π,Ω, y),

which according to (10) is easily confirmed to be a lower

bound of (7). Therefore, we have an MM approach in a

Minorization-Maximization sense.
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Optimization of (11) leads to parameter value updates

for µ, y, β, ν, Π, Ω. For the first three parameter sets, the

updates are

µ
(t+1)
j =

∑N
n=1 <z

n
j>

(t) xn

∑N
n=1 <z

n
j>

(t)
, yn(t+1) =

K
∑

j=1

ωjπ
n
j ,

β
2(t+1)
jd =

∑N
n=1

∑

k∈γd(n) <u
nk
j >(t) (π

n(t)
j − π

k(t)
j )2

∑N
n=1 |γd(n)|

.

Setting the derivative of the lower bound (11) with re-

spect to the degrees of freedom of the Student’s -t distribu-

tions equal to zero we obtain ν
(t+1)
jd as the solutions of the

equation:

ln(ν
(t+1)
jd /2) − ψ(ν

(t+1)
jd /2)+

+

[

∑N
n=1

∑

k∈γd(n)(<lnunk
j >(t) − <unk

j >(t))
∑N

n=1 |γd(n)|

]

+ 1 = 0,

The solution for parameter ν is obtained using the bisection

method [17].

In order to estimate Π and Ω we have the difficulty that

the optimization is under positivity and sum-to-unity con-

straints as they have to be probability vectors defined by

(2). The local weights πn
j are computed as the roots of a

quadratic equation:

an
j

(

π
n(t+1)
j

)2

+ bnj

(

π
n(t+1)
j

)

+ c
n(t+1)
j = 0 (12)

with coefficients:

an
j = −

D
∑

d=1

{

β
−2(t)
jd

∑

k∈γd(n)

<unk
j >(t)

}

,

bnj =
D

∑

d=1

{

β
−2(t)
jd

∑

k∈γd(n)

<unk
j >(t) π

k(t)
j

}

−
ωj

2yn
,

cnj =
1

2
<zn

j>
(t) .

The solutions of (12) for a given pixel, indexed by n, will

not in general satisfy the constraints πn
j > 0,

∑K
j=1 π

n
j =

1. In order to get proper mixing weight vectors we per-

form a projection step onto the constraints subspace using

the quadratic programming algorithm described in [19].

Motivated by the form of the objective function to be

optimized, we follow a different strategy for the estimation

of the global weights. At first, the unconstrained optimizers

are computed:

ω̃j =

∑N
n=1 <z

n
j> +α0 − 1

∑N
n=1 π

n
j /y

n
(13)

If ω̃j < 0, we fix the corresponding constrained solution to

ωj = 0, so that they comply with the positivity constraint

ωj > 0.

We carry on to the second step with the remaining

J 6 K non-zero components after relabelling them

as {ω1, ..., ωJ} and the K − J zero components as

{ωJ+1, ..., ωK}. Solving the corresponding equation sub-

ject to the constraint
∑J

j=1 ωj = 1, we obtain

ω
(t+1)
j =

∑N
n=1 <z

n
j>

(t) +α0 − 1

λ+
∑N

n=1 π
n(t)
j /yn(t)

(14)

where λ is the Lagrange multiplier. Substituting ωj , j =
1, ..., J from (14) to the sum-to-unity constraint yields

J
∑

j=1

∑N
n=1 <z

n
j>

(t) +α0 − 1

λ+
∑N

n=1 π
n(t)
j /yn(t)

− 1 = 0. (15)

Note that the left-hand side in (15) is continuous and

monotonically decreasing function of:

λ ∈

[

max
j

{

−
N

∑

n=1

π
n(t)
j /yn(t)

}

, +∞

)

Also, as λ → maxj

{

−
∑N

n=1 π
n(t)
j /yn(t)

}

, the left hand

of (15) goes to +∞ and as λ → +∞ the left hand side of

(15) goes to −1. Thus, we can determine the solution for λ
using the bisection method. Substituting it into (14) yields

the updates for the constrained global weights.

Summing up, the updates presented here for the poste-

rior distribution in section 3.1 and the updates for the model

deterministic parameters in 3.2 constitute an iterative model

training scheme. During the training process, some of the

K ωj global weight coefficients may gradually go down to

zero. In view of update (9), no pixels will any longer be

assigned to the corresponding class, and effectively these

classes are pruned from the model.

The iterations terminate with lower bound convergence.

Since bound convergence is guaranteed for both MM [10]

and variational inference [1], the proposed MM-derived

lower bound LMM will also converge in a finite number

of iterations.

4. Numerical Experiments

At first, we have applied the proposed model to the seg-

mentation of a piecewise constant image slightly corrupted

by white Gaussian noise at SNR of 20 dB(Mondrian [15],

fig. 2). As this is a relatively easy segmentation prob-

lem, we use this example to show our algorithm results

over varying Dirichlet hyperparameter values α0. For con-

venience, we express α0 in (5) as a function of the im-

age size N and the maximum number of classes K, with
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α0 = −ǫ−1NK−1. In view of the global weights updates

(14), the value of α0 is compared to the sum of the expected

values zn
j which is of the order of NK−1. Thus, values of

ǫ close to one will encourage pruning of kernels. On the

other hand, as ǫ approaches N−1K kernel pruning is pro-

gressively less encouraged. For the Mondrian image (fig. 2)

we have set ǫ = 1, 5, 50, 1000, starting from an initial num-

ber of kernels K = 12. Low values for parameter ǫ lead

to underestimation of the true number of segments. High

values of ǫ yield over-fitting problems.

Furthermore, to test the dependency of the estimated

number of kernels on the initial number of segments K and

the hyperparameter ǫ (and consequently the Dirichlet para-

meter α0), we have run tests with varying parameter values

on the Mondrian (fig. 2) and Church (fig. 3). The results

presented in figure 4 show that for low values of ǫ, that is,

penalizing configurations with high number of kernels, the

final number of segments are almost invariant with regard

to its initial value K, as it would be desired.

Figure 3. Natural image segmentation using Lab features for ǫ =
5, K = 7 initial number of segments. The algorithm converged to

four segments.
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Figure 4. Estimate of the number of kernels for varying values

of initial segments K and Dirichlet hyperparameter ǫ. Curves are

interpolants for values at points ǫ = 1, 2, 5, 20, 50.

In order to evaluate the combination of both the smooth-

ing MRF, and the automatic determination of the number of

components, we have compared the proposed algorithm to

two other models. The first model comprises an MRF prior

without any automatic component number selection. In that

case, the global weights Ω are inactive. The second model

consists of estimating the number of segments but incorpo-

rates no smoothing prior. Therefore, in this case, the local

weights Π are inactive. Models close to these two may be

found in [19] and [5] respectively.

The experiment was run on a test 3-class piecewise con-

stant image degraded by white additive Gaussian (SNR of

18 dB) as presented in figure 5. The initial number of seg-

ments was set to K = 7 and the Dirichlet parameter ǫ = 5.

The model with no kernel number selection fails as it identi-

fies erroneously the noise as separate classes. Both models

with kernel number selection successfully prune the extra

kernels to the correct number of three. However, the pro-

posed model succeeds also to deal with the noise due to its

smoothing property.

Finally, we have tested our algorithm on the Berkeley

natural image database [13]. We have used a superpixels

initialization [14] as described in [22]. We start by over-

segmenting the images, all at full resolution of 480 × 320,

to typically around 200 superpixels each. Then, we asso-

ciate to each superpixel the medoid of the color feature vec-

tors of the pixels that belong to the superpixel in question.

These superpixels medoids play the role of the X observed

set for our algorithm and represent the whole set of pixels

belonging to the corresponding superpixel. A region adje-

cency graph is also computed to keep track of the superpixel

neighborhoods for the MRF imposed on the local weights.

To this end, we consider for the MRF prior, those medoids

that represent spatially adjacent superpixels.

We have quantitatively evaluated the segmentations us-

ing four performance measures [22]: the Rand index (RI),

the variation of information (VI), the global consistency

error (GCE) and the Boundary displacement error (BDE).

The RI measures the consistency between human segmenta-

tions and the computed segmentation map. VI measures the

amount of information one segmentation conveys about the

other. GCE measures the degree of refinement between two

segmentations. Finally, BDE measures the average cham-

fer distance between the boundaries of two segmentation

maps. The mean values of the results over the 300 images

of the data base are summarized in table 1. As it can be

observed, all of the indices have values comparable to the

ones obtained by state of the art techniques (for example

[22]). It should be noted that the BDE depends highly on

the image size. In figure 6, we present some representa-

tive results using an initial number of kernels K = 15 and

ǫ = {3, 10}. As a final remark concerning the parameter ǫ
(or equivalently α0), let us stress that (a) its choice amounts
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Figure 2. Segmentation results for the Mondrian image, over various Dirichlet hyperparameter values. From left to right: the original

image after degradation by additive white Gaussian noise (SNR of 20 dB), segmentations using ǫ = 1, ǫ = 5, ǫ = 20, ǫ = 1000. For too

low ǫ, the number of segments is undervalued. For too high ǫ, extra segments are formed erroneously out of image noise.

Figure 5. Segmentation results for a 3-class piecewise constant image. From left to right: original image, image degraded by additive

Gaussian noise (SNR of 18 dB), segmentation using the proposed model without global weights (Rand index = 82.14%), segmentation

using the proposed model with ǫ = 5 and without local weights (Rand index = 99.2%), segmentation using the proposed model with ǫ = 5
(Rand index = 99.86%).

Table 1. Segmentation evaluation of the algorithm on the 300 im-

ages of the Berkeley image data base. The mean values of the cor-

responding indices are presented (see text for abbreviations). The

model was applied to the original images of size 480× 320 pixels

and it was initialized to K = 15 starting number of classes. Re-

sults are computed over two different segmentation scales, ǫ = 3
(lower number of classes) and ǫ = 10 (higher number of classes).

Index RI BDE GCE V I
ǫ = 3 0.71 15.6 0.27 2.27
ǫ = 10 0.72 14.4 0.31 2.52

to how coarse or fine we want the segmentation to be, (b)

user-defined parameters with a similar role, affecting the

resulting number of classes are used in other number-of-

class-determining segmentation algorithms to our knowl-

edge (e.g. the Dirichlet hyperparameter in [15] or the band-

width in [3]). Nonetheless, in the experiments on natural

images described here values of ǫ ≃ 5 seem to have given

the best results.

Algorithm runtime is in the order of a few minutes. On

a 2 Ghz workstation each algorithm iteration took around

20 seconds for a 480 × 320 color image (MATLAB code),

converging at 20 − 30 iterations.

5. Conclusion

In this paper, we proposed a segmentation algorithm

based on a Bayesian model. The main novelty of this work

is the use of a smoothness MRF prior along with automatic

selection of the number of segmentation classes. Updates

for the model training are obtained in an efficient manner

by variational inference and the Majorization-Minimization

(MM) methodology. Recently proposed algorithms that

combine a smoothness prior with automatic selection of the

number of kernels have to resort to computationally expen-

sive Monte Carlo sampling instead. As future work, novel

MRF energy minimization techniques such as proposal-

based fusion [11] could be integrated to our model, as MRF

optimization is a critical step. The evaluation of the model

to image data bases using more sophisticated features for

natural images such as the MRF texture features [18] and

the Blobworld features [2] is also envisaged.
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