
Contents lists available at SciVerse ScienceDirect
Information Systems

Information Systems 38 (2013) 927–945
0306-43

http://d

n Corr

E-m

panos.v
1 W
journal homepage: www.elsevier.com/locate/infosys
Scheduling strategies for efficient ETL execution

Anastasios Karagiannis a, Panos Vassiliadis b, Alkis Simitsis c,n

a Livemedia.gr, Inventics S.A., Thessaloniki, Hellas1

b University of Ioannina, Ioannina, Hellas
c HP Labs, Palo Alto, CA, United States
a r t i c l e i n f o

Available online 25 December 2012

keywords:

Data warehouses

Extract-transform-load (ETL)

ETL optimization
79/$ - see front matter & 2012 Elsevier Ltd.

x.doi.org/10.1016/j.is.2012.12.001

esponding author.

ail addresses: tasos.karagiannis@outlook.com

assiliadis@cs.uoi.gr (P. Vassiliadis), alkis@hp

ork performed while with University of Ioa
a b s t r a c t

Extract-transform-load (ETL) workflows model the population of enterprise data warehouses

with information gathered from a large variety of heterogeneous data sources. ETL workflows

are complex design structures that run under strict performance requirements and their

optimization is crucial for satisfying business objectives. In this paper, we deal with the

problem of scheduling the execution of ETL activities (a.k.a. transformations, tasks, operations),

with the goal of minimizing ETL execution time and allocated memory. We investigate the

effects of four scheduling policies on different flow structures and configurations and experi-

mentally show that the use of different scheduling policies may improve ETL performance in

terms of memory consumption and execution time. First, we examine a simple, fair

scheduling policy. Then, we study the pros and cons of two other policies: the first

opts for emptying the largest input queue of the flow and the second for activating the

operation (a.k.a. activity) with the maximum tuple consumption rate. Finally, we

examine a fourth policy that combines the advantages of the latter two in synergy with

flow parallelization.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Enterprise data warehouses (EDW or simply, DW) are
complex systems serving as a repository of an organiza-
tion’s data. Apart from their role as enterprise data storage
facilities, they include tools to manage and retrieve meta-
data, tools to integrate and cleanse data, and finally,
business intelligence tools for performing analytical opera-
tions. Conceptually, data warehouses are used for the
timely translation of enterprise data into information useful
for analytical purposes. In doing so, they have to manage
the flow of data from operational systems to decision
support environments. The process of gathering, cleansing,
transforming, and loading data from various operational
systems that perform day-to-day transaction processing
All rights reserved.

(A. Karagiannis),

.com (A. Simitsis).

nnina.
(hereafter, sources or source data stores) is assigned to
the Extract-Transform-Load (ETL) processes.

ETL processes constitute the backbone of a DW archi-
tecture, and hence, their performance and quality are of
significant importance for the accuracy, operability, and
usability of data warehouses. ETL processes involve a
large variety of activities (a.k.a. stages, transformations,
operations) organized as a workflow. Typical activities are
schema transformations (e.g., pivot, normalize), cleansing
activities (e.g., deduplication, check for integrity con-
straint violations), filters (e.g., based on some regular
expression), sorters, groupers, flow operations (e.g., rou-
ter, merge), function application (e.g., built-in function,
script written in a declarative programming language, call
to an external library—hence, functions having ‘black-
box’ semantics), text/data analytics and machine learning
operations, and so on. Due to such a rich variety of
operations and the typical structural complexity of ETL
workflows, the ETL optimization problem goes beyond
traditional query optimization and requires a fresher look,
as discussed in the literature (e.g., [1,2,4,5,22]).

www.elsevier.com/locate/infosys
www.elsevier.com/locate/infosys
dx.doi.org/10.1016/j.is.2012.12.001
dx.doi.org/10.1016/j.is.2012.12.001
dx.doi.org/10.1016/j.is.2012.12.001
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.is.2012.12.001&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.is.2012.12.001&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.is.2012.12.001&domain=pdf
mailto:tasos.karagiannis@outlook.com
mailto:panos.vassiliadis@cs.uoi.gr
mailto:alkis@hp.com
dx.doi.org/10.1016/j.is.2012.12.001

A. Karagiannis et al. / Information Systems 38 (2013) 927–945928
The ideal execution of ETL workflows suggests pipelin-
ing the flow of data all the way from the source to the
target data stores. Typically, this cannot happen seam-
lessly due to the blocking nature of many ETL activities
(e.g., sorters) and to the structural nature of the flow (e.g,
activities with multiple input/output schemata). Appro-
priate scheduling strategies are required for orchestrating
the smooth flow of data towards the target data stores. In
this context, workflow scheduling during ETL execution
involves the efficient prioritization of which activities are
active at any time point, with the goal of minimizing
execution time and/or memory consumption without any
data losses.2

In available ETL engines – and in the corresponding
industrial articles and reports, as well – the notion of
scheduling refers to a higher design level than the one
considered here, and specifically, to the functionality
of managing and automating the execution of either
the entire ETL workflow or fragments of it, according
to the business needs, and based on time units manu-
ally specified by the designer. In this paper, we deal
with the problem of scheduling ETL workflows at the
data level and in particular, our first research contribu-
tion is an answer to the question: ‘‘what is the appro-
priate scheduling protocol and software architecture for
an ETL engine in order to minimize the execution time
and the allocated memory needed for a given ETL
workflow?’’.

A commonly used technique for improving perfor-
mance is parallelization, through either partitioning or
pipeline parallelism. Typically, in the ETL context, the
former refers to data partitioning. That is we split a
dataset into N chunks and create N parallel subflows each
working on a different chunk. Data partitioning works
well with simple flow structures or the final data load to a
target data store. However, when it comes to executing
more complex ETL flows, data partitioning per se is not
very effective without pipeline parallelism. Even with the
best partitioning strategy, if the data is blocked at several
points in the flow (e.g., in the very common cases of
surrogate key generation, duplicate detection, pivoting,
blocking joins or aggregations), we lose the advantage
that partitioning parallelism may offer. Hence, it is
important to group and execute operations in favor of
pipeline parallelism too. Thus, here, a second important
contribution is an answer to a rather neglected aspect in
ETL execution, which is: ‘‘how to schedule flow execution at
the operations level (blocking, non-parallelizable operations
may exist in the flow) and how we can improve this with
pipeline parallelization’’.

Although scheduling policies have been studied before
in various research areas, in the context of ETL, the related
work has only partially dealt with such problems so far.
There are some first results in the areas of ETL optimiza-
tion [1–3] and update scheduling in the context of near-
2 In a different context, stream processing frequently uses tuple

shedding as a mechanism to improve execution time by reducing the

amount of data being processed. However, in DWing all tuples should

find their way into the target data stores, and thus, data losses are not

typically allowed.
real time warehousing [4,5,22]. The former efforts do not
consider scheduling issues. The latter efforts are not con-
cerned with the typical case of data warehouse refreshment
in a batch, off-line mode; moreover, the aforementioned
papers are concerned with the scheduling of antagonizing
updates and queries at the data warehouse side (i.e., during
loading) without a view to the whole process. We discuss
related efforts in more detail in Section 2.

In this work, we experiment with scheduling algo-
rithms specifically tailored for batch ETL processes and try
to find an ETL configuration that improves two perfor-
mance objectives: execution time and memory require-

ments. Based on our experience and publicly available
documentation for ETL engines, state-of-the-art tools use
two main techniques for scheduling ETL activities: the
scheduling is relied on the operating system’s default
configuration or is realized in a round robin fashion,
which decides the execution order of activities in FIFO
order. Our implementations and experimentation showed
that deadlocks are possible in the absence of low-level
scheduling; hence, scheduling is necessary for an ETL
engine. We demonstrate that three scheduling techni-
ques, namely MINIMUM COST PREDICTION, MINIMUM MEMORY

PREDICTION, and MIXED POLICY serve our goals better, as
compared to a simple ROUND ROBIN scheduling. The first
technique improves the execution time by favoring at
each step the execution of the activity having more data
to process at that given time. The second reduces the
memory requirements by favoring activities with large
input queues, thus, keeping data volumes in the system
low. As our research shows, different workflow fragments
may be executed best under different scheduling strate-
gies. Therefore, we present an approach for splitting a
workflow in parts that can be scheduled individually
using a third scheduling strategy called MIXED POLICY. MIXED

POLICY exploits parallelization opportunities and combines
the benefits of MINIMUM COST PREDICTION and MINIMUM MEMORY

PREDICTION.
Moreover, we discuss how these results can be

incorporated into an ETL engine and for that, we present
our implementation of a generic and extensible software
architecture of a scheduler module. We are using a
realistic, multi-threading environment (which is not a
simulation), where each node of the workflow is imple-
mented as a thread. A generic monitor module orches-
trates the execution of ETL activities based on a given
policy and guarantees the correct execution of the work-
flow.

Finally, the evaluation of and experimentation with
ETL workflows is not a trivial task, due to their large
variety. An additional problem is that the research land-
scape is characterized by the absence of a commonly
agreed framework for the experimentation with ETL
flows. Hence, for evaluating our techniques against a
realistic ETL environment, we have used a set of ETL
patterns built upon a taxonomy for ETL workflows that
classifies typical real-world ETL workflows in different
template structures. By studying the behavior of these
patterns on their own, we come up with interesting
findings for their composition, and thus, for the schedul-
ing of large-scale ETL processes.

A. Karagiannis et al. / Information Systems 38 (2013) 927–945 929
Contributions: Our main contributions are as follows.
�
 This paper is the first that deals with the problem
of scheduling batch ETL processes, as we discuss in
Section 2. We formally define the problem (Section 3)
and discuss scheduling mechanisms that improve ETL
execution in terms of execution time and memory
requirements (Section 4).

�
 We present a novel approach for splitting an ETL

workflow into fragments, each of which can run in
parallel and exploit its own scheduling policy for
better leveraging the effect of scheduling (Section 5).

�
 We propose a generic software architecture for incor-

porating a scheduler to an ETL engine and present its
implementation as a proof of concept (Section 6).

�
 Finally, through a series of experiments, we demon-

strate the benefits of the presented scheduling techni-
ques. The findings are based on template ETL
structures that constitute representative patterns of
real-world ETL processes (Section 7).

2. Related work

Related problems studied in the past include the
scheduling of concurrent updates and queries in real-
time warehousing and the scheduling of operators in data
streams management systems. However, since ETL work-
flows have some unique characteristics, we argue that a
fresher look is needed in the context of ETL technology.

2.1. Scheduling for ETL

Related work in the area of ETL includes efforts towards
the optimization of entire ETL workflows [1–3,6] and of
individual operators, such as the DataMapper [7]. On the
other hand, and despite the fact that ETL operations
comprise a richer set than traditional relational operators,
traditional query optimization techniques (e.g., as in [8,9]),
although related in a broader sense (and indeed integrated
in our work in terms of algebraic optimization; e.g., joins or
sorts order) (a) are based on assumptions that do not
necessarily hold for ETL workflows like left-deep plans (as
opposed to arbitrary trees in ETL settings), and (b) are in
general orthogonal to the problem of scheduling operators.
For the same reasons, previous work on continuous queries
(e.g., as in [10]) cannot be directly applied in our problem.

Thiele et al. [4] deal with workload management in
real-time warehouses. The scheduler at the warehouse
handles data modifications that arrive simultaneously
with user queries, resulting in an antagonism for compu-
tational resources. Thomsen et al. discuss a middleware-
level loader for near real time data warehouses [5]. The
loader synchronizes data load with queries that require
source data with a specific freshness guarantee. Luo et al.
[11] deal with deadlocks in the continuous maintenance
of materialized views. To avoid deadlocks, the paper
proposes reordering of transactions that refresh join or
aggregate-join views in the warehouse. Golab et al. [12]
discuss the scheduling of the refreshment process for a
real-time warehouse, based on average warehouse stale-
ness i.e., the divergence of freshness of a warehouse
relation with respect to its corresponding source relation.

Interestingly, despite the plethora of ETL tools in the
market, there is no publicly available information for the
scheduling of operators in their internals. Overall, related
work for ETL scheduling has invested mostly on the
loading part in the real-time context and specifically,
on the antagonism between queries and updates in the
warehouse. Here, we deal with workflows involving
the entire ETL process all the way from the source to
the warehouse and we consider the off-line, batch case.

2.2. Stream scheduling

The Aurora system can execute more than one contin-
uous query for the same input stream(s) [13]. Every stream
is modeled as a graph with operators (a.k.a. boxes). Sche-
duling each operator separately is not very efficient, so
sequences of boxes are scheduled and executed as an
atomic group. The Aurora stream manager has three tech-
niques for scheduling operators in streams, each with the
goal of minimizing one of the following criteria: execution
time, latency time, and memory. The Chain scheduler
reduces the required memory when executing a query in
a data stream system [14]. This work focuses on the aspect
of real-time resource allocation. The basic idea for this
scheduler is to select an operator path which will have the
greatest data consumption than the others. The scheduler
favors the path that will remove the highest amount of data
from the system’s memory as soon as possible. Urhan and
Franklin [15] present two scheduling algorithms that exploit
pipelining in query execution. Both algorithms aim to
improve the system’s response time: the first by scheduling
the stream with the biggest output rate and the second by
favoring important data, especially, at joins.

Stream scheduling is very relevant to our problem since it
involves the optimization of response time or memory
consumption for flows of operations processing (consuming)
tuples (possibly with a data shedding facility for voluminous
streams). Still, compared to stream processing, ETL work-
flows present different challenges, since they involve com-
plex processing (e.g., user-defined functions, blocking
operations, cleansing operations, data and text analytics
operations [16]) and they must respect a zero data loss
constraint (as opposed to data shedding, which involves
ignoring part of the data stream whenever the stream rate is
higher than the ability of the stream management system to
process the incoming data). Moreover, in the special case of
off-line ETL, the goal is to minimize the overall execution
time (and definitely meet a time-window constraint) instead
of providing tuples as fast as possible to the end-users.

3. Problem formulation

Conceptually, an ETL workflow is divided into three
generic phases. First, data are extracted from data sources
(e.g., text files, database relations, XML files, unstructured
documents, and so on). Then, appropriate transformation,
cleaning, and/or integration activities are applied to the
extracted data for making them free of errors and compliant

Fig. 1. Example ETL workflow.

A. Karagiannis et al. / Information Systems 38 (2013) 927–945930
to target (e.g., data warehouse) schema. Other types of
activities, like analytics operations, machine learning algo-
rithms, and so on may exist as well. Finally, the data
processed are loaded into the data warehouse. Note that
different flavors of an information integration flow like ETL,
ELT, ETLT, etc., fit seamlessly into our framework. Therefore,
without loss of generality, in the rest of the paper, we use
the term ETL in a broader sense that covers such structural
variations.

The full layout of an ETL workflow, involving activities
and recordsets may be modeled as a directed acyclic
graph (DAG) [17]. ETL activities and recordsets (either
relations or files) constitute the graph nodes. According to
their placement into one of the three ETL phases, record-
sets can be classified as source, intermediate (including
any logging, staging or temporary data store), and target.
The relationships among the nodes constitute the graph
edges. Each node has input and output schemata, which
can be empty as well; e.g., a source recordset has an
empty input schema. The workflow is an abstract design
at the logical level, which has to be implemented physi-
cally, i.e., to be mapped to a combination of executable
programs/scripts that perform the ETL workflow. Typi-
cally, a logical-level activity is mapped to a concrete
physical implementation, possibly, by picking one out of
many candidates for this role; e.g., a logical join operation
can be realized by a nested-loops, sort-merge, hash-join
variation.

Example. Fig. 1 depicts an example ETL workflow start-
ing with two relations PartSupp and Supplier. Assume that
these relations stand for the differentials for the last
night’s changes over the respective source relations. The
data are first cleansed and tuples containing null values in
critical attributes are quarantined in both cases (Not Null).
Then, two transformations take place, one concerning
the derivation of a computed attribute (Total Cost) and
another concerning the reformatting of textual attributes
(Phone Format). The data are reconciled in terms of their
schema and values with the data warehouse rules and
stored in the warehouse fact and dimension tables. Still,
the processing continues and the new tuples are joined in
order to update several forms, reports, and so on, which
we represent as materialized views View1, . . ., and View4

via successive aggregations.

Notation: We employ bold letters to refer to sets (e.g.,
of timepoints, nodes). We typically use v to refer to an
arbitrary node of the workflow.

3.1. Workflow scheduling

First, we formally model the following problem:
‘‘Given a workflow deployed on a single server, what are
the objectives and correctness guarantees for the schedul-
ing of the workflow?’’

Time: We consider T as an infinite countable set of
timestamps. Time can be organized in time intervals.
Hence, we divide T into disjoint and adjacent intervals
T¼ T1 [T2 [. . . with (see Fig. 2):
�
 Ti ¼ ½Ti:first,Ti:last�,

�
 Ti:last¼ Tiþ1:first�1.
Graph: Formally, an ETL workflow comprises a directed
acyclic graph GðV,EÞ, where V¼ VA [VR. VA denotes the
activities of the graph and VR the recordsets. The nodes of
V can further be divided to two subsets with respect
to their execution status: candidates (nodes that are
still active and participate in the execution) and
finished (nodes that have finished their processing), i.e.,
V¼ VCAND [VFIN .

Ti.F Ti.L Ti+1.F Ti+1.L

TLASTT1 Ti Ti+1

Fig. 2. Timestamps for scheduling.

in1

in2

inN
outm

out1

...
...

Fig. 3. ETL activity structure.

A. Karagiannis et al. / Information Systems 38 (2013) 927–945 931
For a node v, we use the term producers(v) to denote
all nodes u that populate node v with data (i.e., there is an
edge (u,v) with v being the successor node. We will also
use the term consumers(u) for the opposite edge direction.

Activities: A generic ETL activity is depicted in Fig. 3.
For each activity node v 2 VA we define:
�
 mðvÞ, as the consumption rate of node v,

�
 sv, as the selectivity of node v,

�
 Q ðvÞ, as the set of all input queues of v,

�
 queuei

t as the size of the ith input queue of an activity v

at the time point t,

�
 queuet(v) as the sum of all the input queue sizes of an

activity v at t.
The consumption rate (measured in tuples per time
unit) refers to the amount of memory gained per time
unit due to the activation of a node of the workflow.
Assuming that a node v is activated for a time interval Tv,
we measure inputTuples as the number of tuples within all
queues of Q ðvÞ and outputTuples the number of tuples in
all the queues of the consumer nodes of v. The consump-

tion rate mðvÞ is the difference of these two measures
divided by Tv. The selectivity is the ratio outputTuples over
inputTuples and shows how selective the node v is.

We define sizet(q) as the memory size of a queue q at a
time point t and MaxMem(q), as the maximum memory
size that the queue can obtain at any time point.

Recordsets: For each recordset node v 2 VR we assume
an activity responsible for reading or writing from node v

and we define its consumption rate as the consumption
rate of node v, mðvÞ. Furthermore, for each source record-
set node we define volumet(v), as the size of the recordset
at timepoint t.

Scheduler: The scheduler (equipped with a scheduling
policy P) has to check which operator to activate and for
how long. So, whenever a new interval Ti begins, (at
timestamp Ti:first) the scheduler has to decide on the
following issues: (1) which is the next activity to run and
(2) how long the time slot for this activity’s execution will
be. This is formally expressed as follows:
1.
 v¼ activeðTiÞ. According to the scheduling policy P

used, the scheduler has to choose the next activity to
run: the function active() returns a node of the graph to
be activated next. Note that in order to do this, every
scheduling strategy implementing active() has to take
into consideration the status of all queues, in order to
avoid overloading queues that have reached their
maximum capacity, thus resulting in data loss.
2.
 Ti:last. This is the timestamp that determines when
operator activeðTiÞ will stop executing. (It also deter-
mines the scheduler time slot Ti:lengthðÞ.)
The node that has been selected and activated as a
result of invoking activeðTiÞ will stop its processing at a
time point t if one of the following occurs:
1.
 t¼Ti:last. In this case, the time slot is exhausted and it
is time to reschedule the next node.
2.
 queuetðactiveðTiÞÞ ¼ 0, for any time point t within Ti.
Then, the active operator has no more input data to
process and so the scheduler must assign a new node
to be activated.
3.
 There exists a node u 2 consumerðactiveðTiÞÞ, such that
for any of its queues, say q, sizet(q)¼MaxMem(q). In
this case, one of the consumers of the active activity
activeðTiÞ has a full input queue and further populating
it with more tuples will result in data loss.
At this point, we must check if the node v activated by
activeðTiÞ should be moved to VFIN . In order for a node v to
be moved to VFIN , either v is an empty source recordset, or
both of the following conditions must be valid: (a) all the
nodes feeding v with data have exhausted their input and
(b) the queues of v have been emptied. Formally, this is
expressed as follows:

VFIN :¼ VFIN
S
fvg, v¼activeðTiÞ, if
1.
 volumet(v)¼0, if v is a source recordset, or else

2.
 (a) 8u 2 producers(v), it holds that u 2 VFIN , and (b)

queueTi :lastðvÞ ¼ 0.
A workflow represented by a graph GðV,EÞ ends when
V¼VFIN . The interval during which this event takes place
is denoted as T:last.

Problem statement: Our goal is to decide a scheduling
policy P for a workflow represented by a graph GðV,E),
such that:
�
 P creates a division of T into intervals T1 [T2 [� � �Tlast .

�
 8t 2 T, v 2 V, 8q 2 Q ðvÞ, sizetðqÞrMaxMemðqÞ (i.e., all

data are properly processed without any data losses).

�
 One of the following objective functions is minimized:

J Tlast is minimized, where Tlast is the interval where
the execution of the workflow ends.

J max
P

queuetðvÞ is minimized, where t 2 T, and
v 2 V.

A. Karagiannis et al. / Information Systems 38 (2013) 927–945932
The above problem formulation comes with different
choices for the scheduler’s strategy and specifically: (a) a

strategy where the scheduler tries to minimize the execu-
tion time; or (b) a strategy where the scheduler tries to
minimize the maximum memory consumption. We use
this exclusive manner of presenting the choice of the
scheduler based on the practical observation that the two
goals are antagonistic as, typically, memory is the price to
pay for speeding things up and vice versa; in practice, one
can also think of the problem with a threshold in one of the
two measures and the goal of minimizing the other. Of
course, the list is not exhaustive. In fact, it is possible to
devise combinations of goals in the scheduler’s strategy (at
the price of complicating and slowing down the scheduler’s
operation). However, an exhaustive exploration of all possi-
ble such goals is outside the scope of this paper.

3.2. Workflow fragmentation and stratification

Once the main problem of workflow scheduling has
been dealt with, we can explore an extra alternative. The
goal of the workflow fragmentation problem is to divide a
large workflow (represented as graph GðV,EÞ) into appro-
priately connected subflows, such that each of these
components recursively deals with the workflow schedul-
ing problem. So, we can increase parallelism by dividing
the larger problem of scheduling a large workflow into
many smaller problems of activating many independent
subflows simultaneously.

3.2.1. Workflow fragmentation

The problem of workflow fragmentation tries to frag-
ment a large workflow into components, or subflows.
Every subflow has the property that it allows the pipelin-
ing of intermediate results between its activities. As a side
effect, we produce a zoomed-out version of the graph,
with subflows as the nodes of the zoomed-out graph.

Problem statement: Given a graph GðV,EÞ representing
an ETL workflow, a fragmentation of the graph, F ðGÞ, is
a pair comprising (a) a set of disjoint subflows SF¼
fF1, . . . ,Fkg, and, (b) a set of subflow connecting edges EF

such that the following hold:
�
 Each subflow Fi is a connected subgraph of G,
FiðVi,EiÞDG, such that (a) all edges of Ei allow pipelin-
ing, (b) there is a single fountain and a single sink node
of the subflow, Fi:fountain and Fi:sink. S

�
 The edges of EF are produced as E- iðEiÞ and we

require that if an edge e 2 EF , then e is of the form
eðFi:sink,Fj:fountainÞ, iaj. S

�
 There is a full coverage of G, specifically iðViÞ ¼V andS

iðEiÞ
S

EF ¼ E, with the extra constraint that subflows
are mutually disjoint.

In practice, subflows are simple lines, within which the
activities may pipeline intermediate results, without the
need to store them at persistent storage. Note that the above
definition allows blocking operations that require the exis-
tence of the entire input to be available (typically stored in a
hard disk) to be a subflow of their own, comprising a single
node, without edges. This is also why we do not require that
the fountain and sink of the subflow are distinct nodes.
Since subflows do not share edges, these blocking operators
are the boundaries between the other subflows.

Subflow graph: We can produce a zoomed out version
of the graph with subflows replacing its nodes. Specifi-
cally, given a graph GðV,EÞ representing an ETL workflow,
as well as a fragmentation of the graph G into a set of
disjoint subflows SF¼ fF1, . . . ,Fkg and a set of subflow
connecting edges EF , we can produce the zoomed out
version of the graph, or subflow graph, GSðVS,ESÞ by (a)
replacing the nodes of V with the subflow to which they
belong and (b) replacing each edge eðFi:sink,Fj:fountainÞ of
EF , with an edge eSðFi,FjÞ.

3.2.2. Workflow stratification

Once a subflow graph GSðVS,ESÞ has been obtained, we
need to detect mutually independent subflows: mutually
independent subflows can execute simultaneously (each
with its own scheduling policy). We can recursively
obtain a stratification of the subflow graph, i.e., an assign-
ment of subflow nodes to subsequent layers of execution
(or strata), as follows:
�
 Stratum S0 comprises the fountains of the subflow
graph, i.e., the sources of the data warehouse.

�
 Stratum Siþ1 comprises the nodes of VS that fulfill the

following:
J they have at least one incoming edge from Si,
J they may have incoming edges from any stratum Sj

as long as jo iþ1,
J they have no other incoming edges.
Practically, a modified topological sorting algorithm can
obtain such a stratification (cf. Section 5). We call the flows
of a stratum a Stratified Subflow Independent Set, as they are
mutually independent (i.e., there is no data path, neither
direct, nor transitive, between any of them). As already
mentioned, once the strata of the subflow graph have been
identified, we can activate each stratum in its own turn.
Subflows within the same stratum can execute indepen-
dently and with different scheduling policies if necessary.

4. Scheduling algorithms for ETL

Related work on scheduling suggests four generic
categories of scheduling algorithms based on the goal
they try to achieve: (a) token-based algorithms (e.g.,
round robin) used mostly as a baseline for evaluating
more sophisticated algorithms, and then algorithms that
opt for improving (b) the total execution time (when the
last tuple lands on the target data stores), (c) the response
time (how fast the first tuple arrives at the target), and (d)
the required memory during the execution. Since in our
context the response time is an issue of secondary
importance (see Section 2 and our differences with
streams and real-time processing), we investigate sche-
duling policies belonging to the other three categories.
First, we explore three generic algorithms: ROUND ROBIN,
MINIMUM COST PREDICTION, and MINIMUM MEMORY PREDICTION

belonging to one of the aforementioned categories.

Table 1
Decision criteria for scheduling algorithms.

Pick next Reschedule when

RR Operator id Input queue is exhausted

MC Max size of input queue Input queue is exhausted

MM Max consumption rate Time slot

A. Karagiannis et al. / Information Systems 38 (2013) 927–945 933
Table 1 shows the different criteria of the three algo-
rithms concerning the decision on (a) which activity is
favored each time the scheduler is called, and, (b) for how
long the selected activity will continue to operate until
the scheduler makes a new decision.

4.1. Round robin

The ROUND ROBIN (RR) scheduling algorithm handles all
activities without any particular priority. It assigns time
slices to each activity in equal portions and in an order
based on a unique identifier that every activity has.
Assuming a list VCAND containing activities to be sched-
uled, at each iteration the algorithm picks the first activity
from VCAND. Its main advantages are as follows: every
activity gets the same chances to run (fairness) and the
system always avoids starvation.

Algorithm ROUND ROBIN.
In: A list VCAND containing activities

Out: The next activity RR_next
1
 begin

2
 9return VCAND:pop;
3
 end
4.2. Improving cost

The MINIMUM COST PREDICTION (MC) scheduling algorithm
opts for reducing the execution time of ETL workflows.
Therefore, the overhead imposed by the scheduler (e.g.,
the communications among the activities) is minimized.
The selected activity should have data ready for proces-
sing, and typically, this activity is the one having the
largest volume of input data. Since there are no time slots,
the selected activity processes all data without any inter-
ruption from the scheduler. For the sake of simplicity, in
our implementation we have considered that all activities
that read data from an external source are always avail-
able for execution.

Algorithm MINIMUM COST PREDICTION.
In: A list VCAND containing activities

Out: The next activity MC_next
1
 begin�

2

3

4

5

6

7

MaxInput¼�1;

for v 2 VCAND do

if ðMaxInputovQ Þ then

MC_next¼ v;

MaxInput¼ vQ ;

$
6666664
return MC_next;

����������������

8
 end
4.3. Improving memory

The MINIMUM MEMORY PREDICTION (MM) algorithm sche-
dules the flow activities in a way that improves the
system memory required during the workflow execution.
In each step, MM selects the activity that will consume
the biggest amount of data. We can compute the con-
sumption rate directly, considering the number of tuples
consumed (input data–output data) divided by the pro-
cessing time of the input data. This fraction shows the
memory gain rate throughout the execution of activity so
far. Given a specific time interval (which is the same for
all candidates), multiplying this fraction by the input size
of the candidates returns a prediction for the one that will
reduce the memory most in absolute number of tuples.
Thus, the overall memory benefit is

MemBðpÞ ¼ ððInðpÞ�OutðpÞÞ=ExecTimeðpÞÞ � QueueðpÞ

where In(p) and Out(p) denote the number of input and
output tuples for activity p, ExecTime(p) is the time that p

needs for processing In(p) tuples, and, Queue(p) is the
number of tuples in p’s input queues. MM selects the activity
with the biggest MemBðÞ value at every scheduling step.

In practice, the amount of data that an activity consumes
is the data that the activity removes from memory, either by
rejecting tuples or writing them into a file, for a specific
portion of time. Small selectivity, large processing rate, and
input size help an activity to better exploit this scheduling.
Small selectivity helps an activity to consume large portion
of its input tuples. Large input size helps an activity to
process and possibly, reduce the in-memory data. Finally,
large processing rate expedites data consumption.

Note that when the workflow execution starts no
activity has processed any data, so the above formula
cannot be applied. In this case, resembling MINIMUM COST

PREDICTION, the activity with the biggest input size is selected.

Algorithm MINIMUM MEMORY PREDICTION.
In: A list VCAND containing activities

Out: The next activity MM_next
1
 begin

2

3

4

5

6

7

8

9

10

11

12

13
MaxInput¼�1;

MMem¼�1;

for v 2 VCAND do

if ðMMemovmemÞ then

MM_next¼ v;

MMem¼ vmem;

$

if ðMaxInputovQ Þ then

MC_next¼ v;

MaxInput¼ vQ ;

$

666666666666664
if ðMMemr0Þ then

MM_next¼MC_next;
�
return MM_next;

���������������������������������

14
 end
4.4. Mixed policy

Our experiments have indicated that on average,
MC performs better than RR, in terms of execution time,
while MM is slower than the other two (Fig. 4). However,

0

25

50

75

100

0.1 0.5 1

A
v

e
ra

g
e

 M
e

m
o

ry

Input Size (GB)

Various Workflows

RR MC MM

Fig. 5. Avg memory consumption (# row packs) for various workflows

and data sizes.

0

100

200

300

400

500

0.1 0.5 1

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
e

c
)

Input Size (GB)

Various Workflows

RR MC MM

Fig. 4. Avg execution time for various workflows and data sizes.

A. Karagiannis et al. / Information Systems 38 (2013) 927–945934
Fig. 5 shows that MM is clearly superior to the other too in
terms of memory gain. This observation motivates us to
explore the opportunity of exploiting the memory gains of
MM for parallelizing the workflow execution (or of parts of
it). Hence, this creates the challenge of finding subflows of
the original workflow that can be executed using different
scheduling policies so that (a) simple subflows can use a
faster policy as the MC and (b) more complicated subflows
that involve memory consuming tasks and blocking opera-
tors can use the MM policy for gaining in memory, and thus,
for freeing some resources. Then, the memory gained can be
reused for boosting the faster workflows with paralleliza-
tion. We discuss this challenge in detail in the next section.

5. Segmentation of a workflow to subflows

This section describes the steps required for using MIXED

POLICY (MP). The motivation for segmenting a workflow to
fragments (or, subflows) and deploying each of them to a
single CPU lies on the observation that we can exploit
memory and pipelining to speed up the whole process, by
dividing the workflow to fragments that can be executed
in parallel and with different scheduling policies. Assuming
that several sources populate a warehouse, the respective
ETL workflow can be split into fragments that have
no dependencies with each other—practically
corresponding to different sources. The same applies to
the part of the workflow that populates different materi-
alized views, which can be populated in parallel from
different threads. Overall, the principles that guide the
segmentation of a workflow to subflows that can be
executed in parallel are:
�
 Activities that feed each other in a pipelined manner
should be placed in the same subflow to increase the
benefit of pipeline parallelism.

�
 Subflows with no dependencies to each other may be

executed in parallel.

�
 Blocking activities (i.e., activities that produce output

only after they have consumed their entire input) split
the overall workflow in two parts that have to be
synchronized: unless the first part is completed, there
is no use of allocating resources to the subsequent part.
Hence, there is an opportunity of splitting an ETL
workflow into groups of subflows. Each such a group
should contain subflows that can be executed in parallel.
Modern ETL tools offer the functionality for parallelizing
the workflow. However, to the best of our knowledge,
none of them automates the procedure of identifying the
parts of the workflow that can be executed in parallel;
this task is performed manually by the designer according
to her experience [6,16].
5.1. Subflow creation

An ETL workflow may be seen as a directed acyclic
graph GðV,EÞ, where its nodes are activities or recordsets
and the edges show the data flow among the nodes (see
Section 3). We extend G by adding two types of nodes: a
reader for each edge feeding an activity from a recordset
and a writer for each edge staging data to a recordset.

A subflow is a connected component of a subset of the
original graph, which allows data to flow from one activity
to another without being (intermediately) saved at persis-
tent storage from its starting nodes towards its ending node
(data pipelining). A node v is a boundary of two subflows if it
belongs to one of the following categories:
�
 v is a recordset. Recordsets are staging points and,
moreover, they are not to be scheduled.

�
 v is a blocking activity (for the reasons we discussed

earlier in this section).

�
 v is a router activity. Since many flows can stem out of

a router, we may split them a priori into different
subflows and reserve the right to merge the anteceding
subflow with one of the subsequent subflows later.

�
 v is a binary activity with two blocking inputs.

Remember that typically binary activities are join
variants (e.g., join, difference, sorted union). A binary
activity may be a boundary in the case of two pipelines
that need to be staged and sorted before joined or two
recordsets as inputs. On the other hand, the case of one
activity and one recordset as inputs is not necessarily
blocking, if the activity is a ‘nested-loops’ variant.

A. Karagiannis et al. / Information Systems 38 (2013) 927–945 935
same subflow if they are adjacent in the graph and none

Two nodes are mergeable and can be merged in the

of them is a boundary. Boundaries form subflows of their
own. Assuming we remove boundaries from the graph,
the components of the graph that remain produce the
subflows of the overall workflow.

Algorithm BREAKINTOSUBFLOWS (BIS) produces the subflows
of a workflow. First, it puts each node into a subflow. Then,
it progressively merges subflows whenever they contain
nodes that can be merged. Two subflows s1 and s2 can be
merged, if they contain two activities a1 and a2 that can be
merged. In this case, it is possible to pipeline data from one
to another. Therefore, the two subflows can be merged. The
following property is easy to prove.

Algorithm BREAKINTOSUBFLOWS (BIS).
In: an ETL workflow GðV,EÞ
Out: a set of subflows SF
1
 begin�

2

3

4

5

6

7

8

9

10
for all v 2 V do

create a new subflow sðvÞ;

SF ¼ SF [sðvÞ;

$

while no merge happens do

for all edges ðv,u 2 E, s:t: ðv,uÞ=2 visited do

if mergeableðv,uÞ then

merge sðvÞ and sðuÞ into sðvÞ;

remove sðuÞ from SF ;

add ðv,uÞ in visited;

66664

666666664

6666666666664

��������������������������

11
 end
Property. If the numbering of the nodes in the adjacency

matrix corresponds to their topological sorting, then the

algorithm BREAKINSUBFLOWS runs in linear time.

5.2. Subflow parallelization

Once a graph is split in subflows, the next step is to
decide which of the subflows can be deployed to different
CPUs at the same time.

We use the term stratified independent subflow set

(SISS) being close to the traditional graph theory termi-
nology. In graph theory, an independent set is a set of
nodes that are mutually non-adjacent. Our SISS differs
from the independent sets of graph theory in two ways:
(a) we use subflows instead of nodes, and, (b) non-
adjacency is a weak constraint; in our setting, there is
no path between the members of an SISS. The latter
requirement explains the term ‘‘stratified’’ in the name:
we practically split the workflow in strata of subflows
that are mutually independent. Hence, in our context, an
SISS is defined as a set of subflows that can be executed in
parallel over different CPUs. SISS’s can be derived via the
following method.

Each subflow is characterized by its last node (which is
typically a blocking or a routing activity or a persistent
recordset). We can construct a zoomed-out graph of the
ETL workflow comprising the subflows as its nodes. For
each edge connecting nodes of two subflows in the graph
of the original workflow, we add an edge between the two
subflows in the zoomed-out graph.
Two subflows sa and sb belong in the same SISS if there
is no path from sa to sb. Assuming each SISS has a unique
integer as id, for finding SISS’s we work as follows:
�
 Sources belong to SISS 0.

�
 Every node belong to the SISS with id equal to the

highest of id of all its ancestors, augmented by 1:
SISSðvÞ ¼ 1þmaxðSISSðuÞÞ, 8u s.t. (an edge (u,v) in the
zoomed-out graph.

Formally, this task is performed by a modified topolo-
gical sort algorithm that annotates each node with the
SISS id of the node responsible for pushing it in the stack.
Algorithm DERIVESISSETS (DSISS) performs this task.

Algorithm DERIVESISSETS (DSISS).
In: a graph GsðVs ,EsÞ with subflows being the nodes of the graph

Out: a set of SISS’s W¼W1 , . . . ,Wk

Variables: a counter current counting which SISS is currently

produced, and an array s characterizing the SISS of each node v
1
 begin�

2

3

4

5

6

7

8

9

current¼ 0; sðvÞ ¼ �1, 8v 2 Vs;

while (v 2 Vs s:t: sðvÞ ¼ �1 do

for all v 2 Vs , s:t:; sðvÞo0 do

if in-degreeðvÞ ¼ ¼ 0 then

sðvÞ ¼ current;

remove all edges from v to other nodes in Vs;

add v to Wcurrent and remove it from Vs;

66664
currentþþ ;

6666666664

66666666666664

����������������������

10
 end
5.3. Subflow execution

Working as in BIS and DSISS, we determine a set of
SISS W for a graph G. Next, we execute the subflows si

j

within an SISS Wj based on the following observations:
�
 Subflows constitute local units of scheduling where
pipelining takes place and time is the scheduling
criterion.

�
 When subflows are independent to each other, i.e.,

within the same SISS, they can exploit parallelization.
If there are more CPUs than subflows within an SISS,
they can all be used for executing the subflows in
parallel (assuming memory is readily available).

�
 SISS’s provide boundaries for ETL workflows where the

scheduling policy can change. Specifically, lightweight
subflows can be scheduled with a policy that favors
fast delivery of tuples (like MC), whereas areas with
memory-intensive blocking or binary operators can
utilize scheduling policies that reduce the antagonism
for memory (like MM).

Algorithm EXECUTESISS (EIS) describes how we run
subflows within SISS’s. SISS’s are explored according to a
topological sort. The subflows contained in a given
SISS Wj may run in parallel; each subflow runs as a
single thread. In our implementation, if the number of
subflows is smaller or equal to the number of available
CPUs, then each subflow thread is assigned to a different
CPU (often, the OS does this by itself; we supervise

A. Karagiannis et al. / Information Systems 38 (2013) 927–945936
the process to ensure that this is the case and fix it if
needed). Otherwise, we let OS take over, since we
observed that typically, the OS may handle adequately
the communication cost and design complexity in such a
case.

Within a subflow si
j
, the activities are executed accord-

ing to a scheduling policy P. P is determined based on the
nature of activities in si

j
. If si

j
contains memory-intensive

activities (e.g., blocking operations) then as a heuristic, we
favor using the MM policy to enable better buffer man-
agement. Otherwise, we boost pipelining using MINIMUM

COST PREDICTION. In general, we tune the choice on the
scheduling policy with a threshold parameter y showing
the number of memory-intensive activities that should be
contained in a subflow before we choose to use the
MM policy.

Algorithm EXECUTESISS (EIS).
In: a set of SISS’s W
Out: a plan for running subflows S using a scheduling policy P
1
 begin

2

3

4

5

6

7

8

for all Wj 2W do

for all sj
i 2Wj do

if cardðuÞ4y, where u 2 sj
i

and u is a memory� intensive operation then

P¼MM;
�
else

P¼MC;
�
run sj

i as a thread using P;

66666666666666664

666666666666666666664

���������������������������

9
 end
In practice, as we discuss in Section 7 too, we consider
a set of pattern ETL workflows for which we have ran
extensive micro-benchmarks for understanding their
behavior under different settings (e.g., various data sizes,
selectivity). We have identified what policy works best for
each pattern in a given setting. Therefore, we leverage
these observations and use them as heuristics in the
choice of a scheduling policy. We further discuss these
issues in our experimental findings.
6. Software architecture

We have implemented a scheduler and a generic ETL
engine in a multi-threaded fashion. One reason for our
choice is that, in general, commercial ETL tools are not
amenable to modification of their scheduling policy. Our
software architecture is generic enough to be maintained
and extended. Each workflow node is a unit that performs
a portion of processing; even if that is simply reading or
writing data. Hence, we consider every node (either
activity or recordset) as an execution item or operator

and represent it as a single thread. (Representing a
recordset as a thread means that a dedicated thread is
responsible for reading from or writing data to the
recordset.) A messaging system facilitates communication
among threads.
Function EXECUTE().
1
 begin�

2

3

4

5

6

while ðexecution item not finishedÞ do

check inbox for scheduler messages;

if ðstalledÞ then

thread sleep
�

;

else DataProcessðÞ;

66666664

�������������

7
 end
All intermediate data processed by the various opera-
tors are stored in data queues and thus, we enable
pipelined execution. Processing every tuple separately is
not efficient (see also [13]), so data queues contain and
exchange blocks of tuples, called row packs. Each operator
(a) has a mailbox for supporting the messaging system,
(b) knows the mailbox of its producers and consumers,
and (c) knows the monitor’s mailbox. The monitor is a
system component that supervises and directs workflow
execution.

Fig. 6 shows the class diagram of our system architec-
ture. Next, we elaborate on two core system components,
namely the execution item and monitor.
6.1. Execution item

When flow execution starts, a function called Execute()

is called for each operator. An operator’s execution
completes when the respective Execute() terminates.
For a short period, an operator may not have data to
process. Then, for performance reasons, we stall that
operator for a small time fragment (every thread sleeps
for a while).

Execute() implements a loop in which (a) the respec-
tive operator checks its inbox regularly for messages
either from the monitor or some other operator and (b)
decides whether to process some data or to stall for a
small time fragment. Each operator has two flags: status

indicates whether it must process data or not and finished

indicates whether the operator should terminate Exe-

cute(). The DataProcess() function is implemented inde-
pendently of the ExecutionItem; therefore, in our
extensible and customizable scheduling and data proces-
sing framework, each operator implements its own data
processing algorithm.

An operator’s inbox receives messages from the moni-
tor with directives on when the current execution round
completes (and hence, another operator should be acti-
vated). For relating an operator to such notifications,
DataProcess() processes ‘small’ data volumes, which are
small enough, so that their processing has been com-
pleted before the designated deadline arrives. In addition,
DataProcess() respects the constraint that whenever the
output queue is full, the operator must be stalled; hence,
it does not allow data loss.

The Execution Item class is extended to the Execution

Recordset and Execution Activity abstract classes, and can
be appropriately specialized depending on the function-
ality of the recordset or activity represented by this
execution item. For an Execution Activity, DataProcess()

(a) reads from its data queues, (b) processes the tuples,

+Execute()
#InboxManagement()
#DataProcess()

ExecutionItem
#Id : Integer
-myBox : MailBox

#InboxManagement()

ExecutionRSet
-ConstructRecordSet : RecordSet

#InboxManagement()

ExecutionActivity
-ConstructActivity : Activity

+DataProcess()

Reader
-MyProxy : ProxyReader

+ReadTuple()
+Destroy()

ProxyReader

+DataProcess()

Writer
-MyProxy : ProxyWriter

+WriteTuple()
+Destroy()

ProxyWriter

FilerReader
-Path : String

FileWriter
-Path : String

#DataProcess()

Filter

#DataProcess()

NLJ

+GetData()
+PutData()
+Limit() : Boolean

DataQueue
-Size

+Send()
+Receive() : Message

MailBox
-Queue

+GetSenderId() : String
+GetType() : String
+GetInfo() : String

Message
-Id : String
-Type : String
-Info : String

-Monitoring()
+Rise()

Monitor
-Scenario
-MonOptimizer : Optimizer
-MonScheduler

+TopologicalSort()
+LogicalToPhysical ()

Optimizer Status
+Finished : Boolean
+Stalled : Boolean
+LastMessage : Boolean
+Counter : Integer

#DataProcess()

GenericActivity

1

1

1

*

1
1

1
1

1
1

1

*

1

*

1

*

+NextActivity ()() : Integer
+Remove()()

Scheduler
-ItemList

1

*

Fig. 6. Software architecture of the scheduler.

Table 2
Example message types.

Message type Receiver’s reaction

MsgEndOf

Data

Receiver knows that its producer has finished

producing data.

MsgTerminate Receiver terminates even if its processing is not

complete. If sent to the monitor, it signifies that the

sender has terminated.

MsgResume Receiver resumes the data processing by switching

the flag Stalled to false.

MsgStall Receiver temporarily stops processing data by

switching the flag Stalled to true.

MsgDummy-

Resume

Used to force all operators to execute DataProcess()

once. This is used only when the scheduler cannot

select the next thread and it gives the chance to

operators to update some flags used internally.

A. Karagiannis et al. / Information Systems 38 (2013) 927–945 937
and then, (c) forwards them to its producers. As an
example, we present an abstract implementation of Data-

Process() for a Filter. The operator checks the status of the
consumer’s queue, and if it is full the data processing
temporarily stops. For more complex activities, the logic
of DataProcess() remains the same, although its imple-
mentation is more complicated. In all cases, DataProcess()

processes small batches of input data, so that the operator
can check its inbox frequently. At the same time, Execu-

tion Recordsets are instantiated as Readers or Writers, each
of which implements DataProcess() and operates as a
dedicated thread to read from (or write to) the appro-
priate text files.

Every Execution Item has a Status that keeps track of
the status of an operator, which can be one of the
following:
(a) Stalled allows the operator to call the DataProcess(),
(b) LastMessage indicates whether the operator will
receive or not more messages from its producers, and,
(c) Finished indicates whether the operator’s execution is
complete.

6.2. Monitor

The Monitor is responsible for the correct initialization
and execution of the workflow. It initiates a thread for
every operator by calling the Execute() function and starts
monitoring the entire process. Monitor uses a Scheduler
to select the next thread to activate. The interface of
Scheduler is as follows: (a) on creation it creates a list
with all threads, (b) a NextActivity() function returns the
id of the selected thread, and, (c) a Remove(Id) function
removes a thread from the list whenever this thread has
finished its operation. When the monitor needs to activate
and execute a thread, it uses NextActivity() for selecting
the best operator according to the scheduling policy
enforced.

A. Karagiannis et al. / Information Systems 38 (2013) 927–945938
Function DATAPROCESS() for Reader.
1
 begin�

2

3

4

5

6

7

8

for all tuples t in current pack do

read tuple t;

if t is NULL then

status¼ finished;
�
else

status¼ forwardToConsumersðtÞ;

if status¼ false then stall thread;

$

66666666666664

�������������������

9
 end
Function DATAPROCESS() for a Filter.
1
 begin�

2

3

4

5

6

7

8

9

if no pack then

if last message then status¼ finished;

else stall thread;

$

else
while exists next tuple in input do

if can process current tuple then

status¼ status & forwardToConsumersðtÞ;
j

6664
if status¼ false then stall thread;

6666666664

����������������������

10
 end
Once initialized, the monitoring process is a loop in

which the monitor thread checks its mailbox and gathers
statistics for the required memory during flow execution.
The monitor checks whether an operator has stalled or
finished its execution and acts accordingly. Each operator
has a mailbox and knows also the mailbox of the monitor
Fig. 7. Selected workflows used in our experiments: (clockwis
and of its neighbors. All these objects communicate by
sending messages. Table 2 lists the most important of them.

7. Experiments

In this section, we report on the experimental assess-
ment of our algorithms. We start with presenting a
principled set of experimental configurations for ETL
workflows, which we call butterflies due to their struc-
ture. Then, we compare the various algorithms for their
performance with respect to memory consumption and
efficiency. Finally, we demonstrate that a mixed schedul-
ing policy provides improved benefits.

7.1. Archetype ETL patterns

We have experimented with a set of ETL workflows
described in a benchmark comprising characteristic cases of
ETL workflows [18]. The main design artifact used for the
workflow construction is the butterfly, which is an archetype
ETL workflow composed of three parts: (a) the left wing,
which deals with the combination, cleaning and transforma-
tion of source data; (b) the body of the butterfly, which
involves the main points of storage of these data in the
warehouse; and (c) the right wing, which involves the
maintenance of data marts, reports, etc., after the fact table
has been refreshed—all are abstracted as materialized views
that have to be maintained. A butterfly workflow can be
recursively decomposed to components that have an arche-
type structure themselves (e.g., surrogate key assignment,
e from top left) primary flow, wishbone, fork, and tree.

Table 3
Fine tuning for different scheduling policies.

RR MC MM

TmSl (ms) 0 0 70 (60–70)

DQS (row packs) 100 (30–150) 100 (80–150) 100

RPS (tuples) 400 (200–500) 400 (200–450) 400

A. Karagiannis et al. / Information Systems 38 (2013) 927–945 939
slowly changing dimensions). More details can be found in
[18]. Fig. 7 illustrates some example workflow archetype
patterns.

The line workflow has the simplest form of all since it
linearly combines a set of filters, transformations, and
aggregations over the data of a single table on their way
to a singe warehouse target. A wishbone workflow joins
two parallel lines into one and refers, for example, (a) to
the case when data from two lines, stemming from the
sources should be combined in order to be loaded to the
data warehouse, or, (b) to the case where we perform
similar operations to different data that are later ‘‘joined’’
(possibly via a sorted union operation). The primary flow

is a common archetype workflow in cases where the
source table must be enriched with several surrogate
keys; therefore, source data pass via a sequence of
surrogate key assignment activities which use lookup
tables to replace production keys with surrogate keys.
The tree workflow joins several source tables and applies
aggregations to the result recordset. The joins are per-
formed over either heterogeneous relations, whose con-
tents are combined, or homogeneous relations, whose
contents are integrated into one unified (possible sorted)
data set. The fork workflow is an archetype heavy on the
right wing and is used to apply a large set of different
aggregations over the data arriving to a warehouse table.

Having such archetypes in hand, one may compose
them for producing large-scale ETL workflows according
to the desired characteristics. For example, a number of
primary flows can be combined with a number of trees for
producing an ETL workflow having a really heavy load
among the sources and the data warehouse. Clearly, such
a workflow offers opportunities for parallelization.

7.2. Experimental setting

The experimental assessment of the constructed sche-
duling and the proposed scheduling policies aims at the
evaluation of two metrics: (a) execution time that mea-
sures the necessary time for the completion of each
workflow and (b) memory consumption that measures the
memory requirements of every scheduling policy during
execution.

In terms of time, we focus on the execution time and not
on response time, which is typically targeted by streaming
systems, because, as discussed, it is quite irrelevant to
traditional ETL workflows (see also Section 2). In addition,
in the ETL context we do not normally have the luxury of
data shedding. In terms of memory, we are interested in
both, average and maximum memory requirements. The
assessment of memory requirements has been performed as
follows: in regular time intervals, we get a snapshot of the
system, keeping information for the size of all queues. We
keep the maximum value and a sum, which eventually gives
the average memory per experiment.

Important parameters that affect the performance of
the alternative scheduling policies are: (a) the size and
complexity of a workflow, (b) the size of data processed by
a workflow, and (c) the selectivity of a workflow (or, in
other words, the degree of cleansing performed due to the
‘dirtiness’of source data). Workflow complexity is
determined via the variety of butterfly workflows used.
Our test data have been generated with the TPC-H [19]
generator, and all scale factors refer to TPC-H numbers
too. With respect to the data sizes used, we have experi-
mented with various data sizes and we report here some
indicative results. Although the overall data volumes
processed by ETL processes are quite large, usually, these
are not processed in a single batch. In fact, when freshness
is desirable, smaller batches are processed each time –
and more frequently – for optimizing parts of the process
like the load. In this sense, due to space consideration, we
report here on results regarding scale factors up to 1 GB,
which is a fairly realistic size for micro-batch ETL
processing.

Workflow execution requires the fine-tuning of both
the engine and scheduler. Hence, we need to tune: (a) the
stall time, i.e., the duration for which a thread will remain
stalled; (b) the time slot (TmSl) given each time to an
activated operator; (c) the data queue size (DQS), which
gives the maximum size of the system’s data queues; and
(d) the row pack size (RPS), i.e., the size (number of tuples)
of every row pack.

Stall time is used as parameter for the system com-
mand Thread.Sleep(Engine StallTime). This parameter
should be kept small enough, as large values lead the
system to an idle state for some time. (Large values make
operators idle for a long period of time and also, make
them read their messages long after they are sent.) Other
techniques can be used for stalling threads, as well.
However, since each activity runs as a different thread
and each queue is connected with a single provider, there
is no concurrent access to write in a queue. Thus, after
executing extensive micro-benchmarks on stall time, and
on the aforementioned parameters too, we tuned the
sleeping period in a reasonably small value of 4 ms and
used that value for all experiments.

Tuning the time slot depends on the policy tested.
Using time slots in the RR and MC scheduling policies
would lead to more communication and scheduling over-
head and finally to a longer execution time. In MC,
consider for example an operator p that needs 150 ms to
empty its data queue. If the time slot is 50 ms, the
scheduler will interrupt p two times before its queue is
empty. These two interrupts are unnecessary and add
additional cost to the execution. Since our concern is to
minimize execution time, we avoid such unnecessary
scheduling interrupts by not using time slots.

For all remaining parameters requiring tuning, we have
experimented with different values for various ETL arche-
types and found a stable region of values that performs
best. Table 3 depicts both, the chosen values and good value

0

100

200

300

0.1 0.5 1

E
x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c
)

Input Size (GB)

Line Workflow

RR MC MM 0

50

100

150

0.1 0.5 1

E
x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c
)

Input Size (GB)

Wishbone Workflow

RR MC MM
0

200

400

600

800

1000

0.1 0.5 1

E
x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c
)

Input Size (GB)

Primary Flow Workflow

RR MC MM

0

50

100

150

0.1 0.5 1

E
x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c
)

Input Size (GB)

Butterfly Workflow

RR MC MM
0

50

100

150

0.1 0.5 1

E
x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c
)

Input Size (GB)

Tree Workflow

RR MC MM
0

200

400

600

800

1000

1200

0.1 0.5 1

E
x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c
)

Input Size (GB)

Fork Workflow

RR MC MM

Fig. 8. Effect of data size and scheduling policy to execution time.

A. Karagiannis et al. / Information Systems 38 (2013) 927–945940
ranges (inside the parentheses) for time slot, queue, and
row pack sizes. For additional details and a complete listing
of experiments and measurements regarding the tuning of
our system, we refer the interested reader to a document
describing our system in more detail [20].

All experiments have been conducted on a Dual Core 2
PC at 2.13 GHz with 1 GB main memory and a 230 GB SATA
disk. All findings reported here are based on actual execu-
tions and not simulations. (Using additional nodes would
implicate our analysis, as we would need to consider net-
work issues like availability, bandwidth, and so on. How-
ever, this is a topic for future work that builds on the current
findings.)

7.3. Experimental results with single policies

Next, we report on our findings on the behavior of the
measured scheduling policies with respect to their execu-
tion time and memory requirements when varying data
size, selectivity, and structure of the flow. In these
experiments, a single scheduling policy was used for each
single scenario. Detailed results on selectivity impact are
omitted for lack of space; still our findings are consistent
with the effect of data size.

Effect of data size and selectivity on execution time: The
effect of data size processed by the scheduling algorithms
to the total execution time is linear in almost all occasions
(Fig. 8). Typically, the MM algorithm behaves worst of all
the others. MC is slightly better than the RR algorithm.
Still, the difference is small and this is mainly due to the
fact that the RR scarcely drives the execution to a state
with several idle activities; therefore, the pipelining
seems to work properly. The effect of selectivity to the
execution time is similar (Fig. 11 shows representative
results for selectivity and two workflow types: butterfly
and primary flow, for data with scale factor 1). However,
each workflow type performs differently. Workflows with
heavy load due to blocking and memory-consuming
operators, as the Primary Flow and the Fork, demonstrate
significant delays in their execution.

Effect of data size and selectivity on average memory: The
average memory used throughout the entire workflow
execution shows the typical requirements of the scheduling
protocol normalized over the time period of execution. In
all occasions, the MM algorithm significantly outperforms
the other two, with the RR algorithm being worse than MC.
The effect is the same if we vary data size (specifically, the
TPC-H scale factor—cf. the x-axis in Fig. 9) or the selectivity
of the workflow (see Fig. 11 for butterfly and primary flow).
Workflows containing a large number of activities, espe-
cially the ones with a right butterfly wing (e.g., fork)
necessarily consume more memory than others. Still, the
benefits of MM are much more evident in these cases
(bottom three graphs of Fig. 9), as this algorithm remains
practically stable to its memory requirements indepen-
dently of workflow type.

Effect of data size and selectivity on maximum memory:
The maximum memory measure tries to capture the
possible peaks in memory consumption that occur
throughout the execution of a workflow. Again, we vary
the data size (Fig. 10) and the selectivity of the workflow
(see Fig. 11 for butterfly and primary flow) and assess the
impact to the maximum memory on different workflows.
The workflows with a large number of activities or with
memory-intense activities (like primary flows for example)
result in much higher peaks that are practically indifferent
to the affecting factors like data size and selectivity of the
workflow. In most cases, the MC algorithm provides the
lowest peaks; moreover, it constantly gives impressively
smaller peaks in memory intensive workflows than the
other two algorithms (see for example the fork and the
primary flow cases in Figs. 10 and 11). In cases with low
percentage of joins in the workflow, or, small data sizes, the
MM algorithm prevails.

0

20

40

60

0.1 0.5 1

0.1 0.5 1 0.1 0.5 1 0.1 0.5 1

0.1 0.5 1 0.1 0.5 1

A
v

e
ra

g
e

 M
e

m
o

ry

Input Size (GB)

Line Workflow

RR MC MM

RR MC MM

RR MC MM RR MC MM

RR MC MMRR MC MM

0

20

40

60

80

100

120

A
v

e
ra

g
e

 M
e

m
o

ry

Input Size (GB)

Wishbone Workflow

0

20

40

60

A
v

e
ra

g
e

 M
e

m
o

ry

Input Size (GB)

Primary Flow Workflow

0

50

100

150

200

A
v

e
ra

g
e

 M
e

m
o

ry

Input Size (GB)

Butterfly Workflow

0

20

40

60

80

A
v

e
ra

g
e

 M
e

m
o

ry

Input Size (GB)

Tree Workflow

0

50

100

150

A
v

e
ra

g
e

 M
e

m
o

ry

Input Size (GB)

Fork Workflow

Fig. 9. Effect of data size and scheduling policy to avg memory consumption (] row packs).

A. Karagiannis et al. / Information Systems 38 (2013) 927–945 941
Observations so far: In general, the state-of-practice
tactics of round robin scheduling is efficient in terms of
time behavior, but lags in memory consumption effec-
tiveness. It is possible to devise a scheduling policy (i.e.,
MC) with time performance similar (actually: slightly
better) to the round robin policy and observable earnings
in terms of average memory consumption. A slower policy
(i.e., MM) can give significant earnings in terms of average
memory consumption that range between 1=2 and 1=10
of the memory used by the other policies. MM can be
used in an environment where more than one concurrent
operations run, being memory efficient is important, and
memory has to be available at peak times. On the other
hand, if maximum memory is really important, then for
certain classes of workflow structure it is possible to
derive even better achievements by picking the appro-
priate policy. In most cases, although outperformed with
respect to average memory requirements, MC provides
the solution with the less peaks for memory consumption
in most of the experiments conducted (however, in
few other cases it is the MM that achieves this property).
Hence, overall MC provides a good equilibrium for both
the antagonizing measures of time and resource
efficiency.

7.4. Mixture of scheduling policies

Next, we experiment with MIXED POLICY (MP) that builds
on top of our findings for RR, MC, and MM and aims at
combining their best characteristics. Having tested each
policy on entire workflows, we use MP to separately
schedule the execution of different workflow fragments.

As we discussed in Section 5, MP may schedule arbitrary
workflow fragments with different policies. The criteria of
such a choice involve the structure of the workflow, like
for example, how many memory-intensive operations it
involves (this is regulated by the y parameter). Our experi-
ments show that as the data volume increases, a smaller
value of y may be used (e.g., for scale factor 1, y may be as
low as 4 to 6; for scale factor 10, even a y¼ 2 makes a
difference). Obviously, y may need to take different values
with different settings (e.g., larger available physical mem-
ory), but the trend remains: the choice of y should largely
depend on the data volume.

Having tuned y, we tested MP on 20 workflows contain-
ing a varying number of nodes between 20 and 45. Overall,
MP improves memory utilization and may result in an
average 35–53% improvement in execution time. MP de-
composes a workflow into subflows that in large fall into
the archetype workflow categories discussed earlier in this
section (examples are depicted in Fig. 7) possibly extended
with longer lines (e.g., subflows containing a series of
pipeline operations). MP schedules the lines with the
MC scheduling policy to boost pipelining and to achieve a
better execution time (see the discussion in Section 5). The
‘‘core’’ of the workflows (e.g., the body of a butterfly) and
subflows containing memory-intensive operations (like
blocking operators as joins, sorted unions, etc.) are executed
using the MM policy. As an example, in the ‘tree’ workflow
depicted in Fig. 7, the two joins constitute the core of the
workflow. Also, in cases as the ‘butterfly’ workflow of Fig. 1,
there are four extremes that can pursue speed whereas the
central join with its blocking activities constitute the core.
Finally, the nodes next to the router of the ‘fork’ scenario
(bottom right in Fig. 7) along with the router also constitute
the core of the butterfly.

Fig. 12 illustrates example results of using the MIXED

POLICY strategy for executing three workflows. The first
workflow corresponds to the extraction phase of an ETL
scenario. It involves a tree archetype having five joins as a
core component and it is extended by three long (8–12
pipeline operations each) and two short (3–6 pipeline
operations each) lines from the left and one short line
(four operations) from the right. The lines contain data
computation, filter, and schema modification operations,
which are not memory-intensive. The second workflow
corresponds to the transformation and cleansing phase
of the same ETL scenario. It may be seen as a butterfly

0

100

200

300

0.1 0.5 1

0.1 0.5 1 0.1 0.5 1 0.1 0.5 1

0.1 0.5 1 0.1 0.5 1

M
a

x
im

u
m

 M
e

m
o

ry
M

a
x

im
u

m
 M

e
m

o
ry

M
a

x
im

u
m

 M
e

m
o

ry

M
a

x
im

u
m

 M
e

m
o

ry

M
a

x
im

u
m

 M
e

m
o

ry

M
a

x
im

u
m

 M
e

m
o

ry

Input Size (GB)

Input Size (GB) Input Size (GB)Input Size (GB)

Input Size (GB) Input Size (GB)

Line Workflow

RR MC MM

RR MC MM RR MC MM

RR MC MM RR MC MM

RR MC MM

0

100

200

300

400
Wishbone Workflow

0

100

200

300

400
Primary Flow Workflow

0

100

200

300

400

500
Butterfly Workflow

0

50

100

150

200

250
Tree Workflow

0

100

200

300

400

500
Fork Workflow

Fig. 10. Effect of data size and scheduling policy to max memory consumption (] row packs).

A. Karagiannis et al. / Information Systems 38 (2013) 927–945942
pattern extended with four lines (3–7 cpu-intensive
operations each). The butterfly body has a sorted union
and two blocking aggregate operations. The third work-
flow describes the load phase. It involves three fork-like
structures that load 2, 3, and 6 target data stores,
respectively, through 14 lines in total connected before
and after the fork structures.

Observe that in all cases the savings can go up to 40%
of time as the amount of data increases. The reason for
these savings has to do with the fact that the scheduling
exploits both the SISS’s and the knowledge on the arche-
type patterns’ behavior. Using SISS’s, we identify the
boundaries where staging takes place and so there is an
opportunity for a change in the scheduling policy. Then,
we assign an appropriate scheduling policy to each
subflow based on the lessons learned from the extensive
set of micro-benchmarks we conducted (similar to the
experiments on different archetypes shown in Section
7.3) on various workflow structures like those discussed
in Section 7.1. Hence, we speed up fast workflow frag-
ments with MC and we switch to a different policy, MM,
when there is a pressing need for memory.

Note that the overall gain is achieved by using the
exact same system resources (the allocation of additional
resources favors MIXED POLICY, since the single scheduling
policies do not ‘‘know’’ how to efficiently handle them).
This observation is important, since a common problem
that real-life warehouse administrators often have is that
they cannot improve the ETL execution (or equally, they
cannot meet the strict restrictions in the desired execu-
tion time window) by simply adding more resources [6].
ETL optimization techniques are needed, and currently,
such techniques are very limited in ETL tools.

8. Conclusions

In this paper, we have dealt with the problem of
scheduling off-line ETL scenarios, aiming at improving
both the execution time and memory consumption, with-
out allowing data shedding. We have proposed an exten-
sible architecture for implementing an ETL scheduler
based on the pipelining of results produced by ETL
operations. We have used a real implementation – not a
simulation – to evaluate our techniques. We have
assessed a set of scheduling policies for the execution of
ETL flows and have shown that a MINIMUM COST PREDICTION -
policy that aims at emptying the largest input queue of
the workflow, typically performs better with respect to
execution time, whereas a MINIMUM MEMORY PREDICTION po-
licy that favors activities with the maximum tuple con-
sumption rate, is better with respect to the average
memory consumption. Apart from a single policy sche-
duling, we have also proposed a principled method for
segmenting ETL workflows in parts that can be executed
with different scheduling policies. This way, memory
intensive parts of a workflow can benefit from less
antagonism for resources. Our MIXED POLICY strategy
exploits that to achieve better time performance.

Future work can be directed to other prioritization
schemes (e.g, due to different user requirements) and the
encompassing of active data warehouses (a.k.a. real-time
data warehouses) in the current framework. So far, in the
context of our work, the related research on active ware-
houses has focused mostly on the loading part. Still, there
are several open problems concerning the orchestration of
the entire process from the sources all the way to the final
data marts [21].

In addition, although our implementation does sup-
port and favor pipeline parallelism (parallelism within a
subflow), we do not consider partitioning parallelism
(parallelism within ETL activities) yet. In theory, the most
obvious consequence would be a reduction of the data
volume processed by a single workflow, without differ-
entiating much the overall analysis. However, this would
add an interesting perspective to our problem (mostly, to
the workflow segmentation).

0

500

1000

1500

2000

0.5 0.8 10.5 0.8 1

0.5 0.8 1

0.5 0.8 1

0.5 0.8 10.5 0.8 1

E
x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c
)

Selectivity

Primary Flow Workflow

RR MC MM

RR MC MM

0

20

40

60

80

A
v

e
ra

g
e

 M
e

m
o

ry
A

v
e

ra
g

e
 M

e
m

o
ry

A
v

e
ra

g
e

 M
e

m
o

ry
A

v
e

ra
g

e
 M

e
m

o
ry

Primary Flow Workflow Primary Flow Workflow

RR MC MM RR MC MM

RR MC MM

0

100

200

300

400

500

0

50

100

150

200

250

300

E
x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c
)

Selectivity

Butterfly Workflow

0

50

100

150

200
Butterfly Workflow

RR
MC
MM

0

100

200

300

400

500
Butterfly Workflow

Fig. 11. Example selectivity and scheduling policy effect for two workflows.

0

100

200

300

400

500

600

0.1 0.5 1 0.1 0.5 1 0.1 0.5 1

E
x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c
)

Input Size (GB)

RR MC MP
0

100

200

300

400

500

600

E
x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c
)

Input Size (GB)

RR MC MP
0

300

600

900

1200

1500

1800

E
x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c
)

Input Size (GB)

RR MC MP

(a) (b) (c)
Fig. 12. MIXED POLICY behavior for workflows containing combinations of multiple line archetypes with (a) tree, (b) butterfly and (c) fork archetypes.

A. Karagiannis et al. / Information Systems 38 (2013) 927–945 943
Appendix A. An example ETL scenario on X-rays

To further illustrate the motivation behind our work,
we present in detail the execution of the balanced
butterfly ETL scenario shown in Fig. 1, which involves
(a) a left wing of the butterfly, with checks and value
computations and function applications, and, (b) a right
wing, with the population of two target tables and four
materialized views via a central join operation that
combines the two sources. The left wing has two parallel
lines, one for loading table PartSupp (along with isolating
NULL values and deriving some statistics) and another
for loading table Supplier (along with not null checks
isolation and some formatting of strings). The right wing
groups by (i) nation and part, (ii) part, (iii) nation and
supplier, and, (iv) supplier. In the body of the butterfly,
the join is a sort-merge join and the results are stored in a
target table too.

Next, we show what happens in the internals of the
scheduler and execution engine, and why it pays off to
improve the scheduling compared to a simple round-
robin mechanism. To this end, we have heavily monitored
the execution of the scenario for different scheduling
policies. Our logging traces the choices of the scheduler,
as well as, the memory load, by inspecting the queues of
the activities approximately every 100 ms. The results of
our analysis are shown in Fig. A1. Before proceeding, two
notes on the experimental validity:
�
 We have executed each scenario 10 times, without
observing noticeable differences. Therefore, the
reported executions are characteristic of their category.

�
 Due to heavy monitoring and logging, the execution

times are simply dominated by the logging and irrele-
vant in this discussion. The reader should refer to the
experimental section of the paper for the behavior of
the engine in terms of time. At the same time, the
scheduling order and the memory consumption are
accurately monitored, and they constitute the focus of
our deliberations.
First, we start with the RR execution, which gives a fair
chance to all parts of the scenario. This results in useless
calls to the right wing early enough. RR comes with a
heavy price on main memory: as data are loaded, queues
start to fill up and, as the activities that will consume
these data are not fired as soon as possible, the data reside
in the main memory for long. Whenever activities storing
data to their ultimate targets are fired, the memory used
drops significantly (see MC for explanations). The visual
representation of activity executions and memory

Fig. A1. RR, MC, and MM behavior. Top: memory consumption over time. Bottom: timepoints when an activity (including readers and writers for data stores) is invoked; durations are not depicted, however,

long-lasting executions are highlighted with arrows.

A
.

K
a

ra
g

ia
n

n
is

et
a

l.
/

In
fo

rm
a

tio
n

Sy
stem

s
3

8
(2

0
1

3
)

9
2

7
–

9
4

5
9

4
4

A. Karagiannis et al. / Information Systems 38 (2013) 927–945 945
consumptions shows that after the sort phase of the join
in the body has been executed we have the entire right
wing alive and this results in keeping large amounts of
data in main memory (join results) before being aggre-
gated and stored at their target materialized views.

Thus, it is evident that we can do better than RR in
many ways: (a) reduce the calls to activities that should
not be invoked, (b) reduce the switching of activities by
keeping ‘‘hot’’ activities active, and (c) save memory by
prioritizing memory emptying activities. These opportu-
nities are depicted in the strategies that we have
implemented.

The MC scheduling mechanism is much more compact
in execution: the early stages are also characterized by high
peaks of memory, yet activity switching is reduced. As in
the case of ROUND ROBIN, the three periods of execution are
evident in the diagrammatic layout (observe also that when
the left part is done, its activities are removed from the task
list). We use MC as an opportunity to explain how the
internals of memory management work. At the early stages,
as data are retrieved from the sources, the input queues of
the left wing start to fill up. They are temporarily relieved
(see the slopes in the diagram) whenever the join is awaken
or some data reach the two target tables of the left wing.
Since the join is a sort-merge join, the early wake-ups of the
join push data to the temporary cache files of the sorters
that await to receive all input before they start sorting.
When sorting starts, all is quiet (as we use an external
sorter for the task). When the sorting of the sort-merge join
is over and merging starts, join results start to be pushed
towards the join consumers (the first two aggregators plus
the Jointable writer). This builds up memory usage. The
operation of the right wing is memory intensive as the
aggregators use memory to produce the results of the two
large views (V1 and V3); when these views are done, the
flushing of the results and the computation of the smaller
views takes place fast and with low memory consumption.
Overall, as the memory ‘‘cardiograms’’ show, the differences
from RR are not many, mainly concern the smaller amount
of activity switching, and, as demonstrated in the experi-
ments, typically make MC present slightly better times and
memory than RR.

A drastic difference comes with MM. MM suffers from a
couple of problems, namely (a) the early wake-ups of the
body and (b) late prioritization of the loading of the second
source table (Supplier), due to its small size. The frequent
wake-ups of the join make us pay in execution time (as they
flush interim results) but prevent the system from reaching
the memory heights of the other two methods. At the same
time, we observe a very different pattern of execution. In the
beginning, we have first the upper line of the left wing, and
then the lower line of the left wing (which is not so good,
esp. since the lower line involves small data amounts). Then,
we have a mixed execution of the join activity along with its
immediate right wing consumers, since, when the sorting is
done the consumers can consume join results. Finally,
as data are produced in the right wing, the execution
follows a practically RR fashion, where data are consumed
and pushed immediately to their destinations, resulting to
lower memory usage—unfortunately with longer periods of
execution. As our experiments have shown, the activity
switching that MM does as well as the fact that the writers
are activated frequently eventually degrades performance
(remember: writers are the ones who eventually gain
memory for us, albeit at the price of the increased I/O cost).
However, this comes at highly significant gains in terms of
memory consumption: as data get unblocked, they are
quickly pushed towards their target, keeping memory low,
not only on average, but in terms of peaks too (compare the
peak of MM with the averages and the peaks of the two
other methods to see the extent of the difference). In fact,
the gains from the MM policy cannot be underestimated:
assuming that a server has memory constraints (due to the
data sizes or the existence of other ETL tasks running
simultaneously) the MM strategy is by far the method of
choice.

References

[1] A. Simitsis, P. Vassiliadis, T.K. Sellis, State-space optimization of ETL
workflows, IEEE Transactions on Knowledge and Data Engineering
17 (10) (2005) 1404–1419.

[2] A. Simitsis, K. Wilkinson, U. Dayal, M. Castellanos, Optimizing ETL
workflows for fault-tolerance, in: ICDE, 2010, pp. 385–396.

[3] V. Tziovara, P. Vassiliadis, A. Simitsis, Deciding the physical imple-
mentation of etl workflows, in: DOLAP, 2007, pp. 49–56.

[4] M. Thiele, U. Fischer, W. Lehner, Partition-based workload schedul-
ing in living data warehouse environments, in: DOLAP, 2007,
pp. 57–64.

[5] C. Thomsen, T.B. Pedersen, W. Lehner, Rite: providing on-demand
data for right-time data warehousing, in: ICDE, 2008, pp. 456–465.

[6] A. Simitsis, K. Wilkinson, M. Castellanos, U. Dayal, QoX-driven ETL
design: reducing the cost of ETL consulting engagements, in:
SIGMOD Conference, 2009, pp. 953–960.

[7] P.J.F. Carreira, H. Galhardas, J. Pereira, A. Lopes, Data mapper: an
operator for expressing one-to-many data transformations, in:
DaWaK, 2005, pp. 136–145.

[8] R. Avnur, J.M. Hellerstein, Eddies: Continuously adaptive query
processing, in: SIGMOD Conference, 2000, pp. 261–272.

[9] G. Graefe, Query evaluation techniques for large databases, ACM
Computing Surveys 25 (2) (1993) 73–170.

[10] M.A. Sharaf, P.K. Chrysanthis, A. Labrinidis, K. Pruhs, Algorithms
and metrics for processing multiple heterogeneous continuous
queries, ACM Transactions on Database Systems, 33 (1) (2008).

[11] G. Luo, J.F. Naughton, C.J. Ellmann, M. Watzke, Transaction reordering
and grouping for continuous data loading, in: BIRTE, 2006, pp. 34–49.

[12] L. Golab, T. Johnson, V. Shkapenyuk, Scheduling updates in a real-
time stream warehouse, in: ICDE, 2009, pp. 1207–1210.

[13] D. Carney, U. C- etintemel, A. Rasin, S.B. Zdonik, M. Cherniack,
M. Stonebraker, Operator scheduling in a data stream manager,
in: VLDB, 2003, pp. 838–849.

[14] B. Babcock, S. Babu, M. Datar, R. Motwani, Chain: operator schedul-
ing for memory minimization in data stream systems, in: SIGMOD,
2003, pp. 253–264.

[15] T. Urhan, M.J. Franklin, Dynamic pipeline scheduling for improving
interactive query performance, in: VLDB, 2001, pp. 501–510.

[16] U. Dayal, M. Castellanos, A. Simitsis, K. Wilkinson, Data integration
flows for business intelligence, in: EDBT, 2009, pp. 1–11.

[17] P. Vassiliadis, A. Simitsis, P. Georgantas, M. Terrovitis, S. Skiadopoulos,
A generic and customizable framework for the design of ETL
scenarios, Information Systems 30 (7) (2005) 492–525.

[18] A. Simitsis, P. Vassiliadis, U. Dayal, A. Karagiannis, V. Tziovara,
Benchmarking ETL workflows, in: TPCTC, 2009, pp. 199–220.

[19] TPC, The TPC-Hbenchmark, Technical Report, Transaction Proces-
sing Council, 2007. Available at: /http://www.tpc.org/tpch/S.

[20] A. Karagiannis, Scheduling policies for the refresh management of
data warehouses, Master’s Thesis, 2007. Available at: /http://
www.cs.uoi.grS.

[21] P. Vassiliadis, A. Simitsis, Near real time ETL, in: New Trends in
Data Warehousing and Data Analysis, 2009, pp. 1–31.

[22] X. Liu, C. Thomsen, T.B. Pedersen, ETLMR: a highly scalable dimen-
sional ETL framework based on MapReduce, in: DaWaK, 2011,
pp. 96–111.

http://www.tpc.org/tpch/
http://www.cs.uoi.gr
http://www.cs.uoi.gr

	Scheduling strategies for efficient ETL execution
	Introduction
	Related work
	Scheduling for ETL
	Stream scheduling

	Problem formulation
	Workflow scheduling
	Workflow fragmentation and stratification
	Workflow fragmentation
	Workflow stratification

	Scheduling algorithms for ETL
	Round robin
	Improving cost
	Improving memory
	Mixed policy

	Segmentation of a workflow to subflows
	Subflow creation
	Subflow parallelization
	Subflow execution

	Software architecture
	Execution item
	Monitor

	Experiments
	Archetype ETL patterns
	Experimental setting
	Experimental results with single policies
	Mixture of scheduling policies

	Conclusions
	An example ETL scenario on X-rays
	References

