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Abstract. The publishing of data with privacy guarantees is a task typ-
ically performed by a data curator who is expected to provide guarantees
for the data he publishes in quantitative fashion, via a privacy criterion
(e.g., k-anonymity, l-diversity). The anonymization of data is typically
performed off-line. In this paper, we provide algorithmic tools that facil-
itate the negotiation for the anonymization scheme of a data set in user
time. Our method takes as input a set of user constraints for (i) sup-
pression, (ii) generalization and (iii) a privacy criterion (k-anonymity,
l-diversity) and returns (a) either an anonymization scheme that fulfils
these constraints or, (b) three approximations to the user request based
on the idea of keeping the two of the three values of the user input fixed
and finding the closest possible approximation for the third parameter.
The proposed algorithm involves precomputing suitable histograms for
all the different anonymization schemes that a global recoding method
can follow. This allows computing exact answers extremely fast (in the
order of few milliseconds).

1 Introduction

The area of privacy-preserving data publishing serves the purpose of al-
lowing a data curator publish data that contain sensitive information
for persons in the real world while serving the following two antagonis-
tic goals: (a) allow well-meaning data miners extract useful knowledge
from the data, and, (b) prevent attackers from linking the published,
anonymized records to the individuals to which they refer. Frequently,
the method of choice for the anonymization method involves the gener-
alization of the values of the published tuples to values that are more
abstract. This creates the possibility to hide tuples in the crowd of sim-
ilar tuples. Typically, the privacy guarantee per tuple is expressed as a
privacy criterion, e.g., k-anonymity or l-diversity ([1], [2]) that quantita-
tively assesses each of the groups of similar tuples (k-anonymity for its
size, l-diversity also for the variance of sensitive values within the group).
Overall, the data curator has to negotiate antagonistic goals: (a) the re-
quest to avoid exceeding a certain threshold of deleted (suppressed) tuples,
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(b) maximum tolerated generalization heights per attributes that are ac-
ceptable by the end users, and, (c) the curator’s constraint on the privacy
value. Of course, it might not be possible to achieve a consensus on the
parameters of the problem. So, the desideratum is that the curator in-
teractively explores different anonymization possibilities. If, for example,
the curator sets a suppression threshold too low for the data set to sus-
tain while respecting the rest of the user criteria, then the system should
ideally respond very quickly with a negative answer, along with a set
of proposals on what possible generalizations, close to the one that he
originally submitted, are attainable with the specific data set. As op-
posed to the state of the art methods that operate off-line, our method
informs the curator (a) in user time (i.e., ideally with no delay that a
person can sense), (b) with the best possible solution that respects all the
constraints posed by the involved stakeholders, if such a solution exists,
or, (c) convenient suggestions that are close to the original desiderata
around generalization, suppression and privacy.
The research community has focused on different directions, complemen-
tary but insufficient for the problem. We refer the interested reader to
the excellent survey of Fung et al. [3] for further probing on the state
of the art. The most related works to our problem are (a) [4] who deal
with the problem of finding the local recoding with the least suppressed
cells (not tuples) without any hierarchies in mind, and, (b) [5], where
the author works in a similar setting and prove that the probability of
achieving k-anonymity tends to zero as the number of dimensions rises
to infinite; the theoretical analysis is accompanied with a study of gen-
erated data sets (one of which rises up to 50 dimensions) that supports
the theoretical claim. Still, compared to these works, our method is the
first to simultaneously combine a focus to on-line response, generalization
hierarchies, different values of k or l, and different privacy criteria.
Our approach is based on a method that involves precomputing statistical
information for several possible generalization schemes. A generalization
scheme is determined by deciding the level of generalization for every
quasi-identifier – in other words, a generalization scheme is a vector
characterizing every quasi-identifier with its level of generalization. To
efficiently compute the amount of suppression for a given pair of (i) value
for the privacy criterion, and, (ii) a generalization scheme, we resort to
the precalculation of a histogram per generalization scheme that allows
us to calculate the necessary statistical information. For example, in the
case of k-anonymity, we group the data by the quasi identifier attribute
set in their generalized form and we count how many groups have size
1, 2, . . . etc. So, given a specific value of k, we can compute how many
tuples will be suppressed for any generalization scheme. Similarly, in the
case of naive l-diversity, for each group we count the number of different
sensitive values and the size of the group too.
We organize generalization schemes as nodes in a lattice. A node v is
lower than a node u in the lattice if u has at least one level of gener-
alization higher than v for a certain quasi-identifier and the rest of the
quasi-identifiers in higher or equal levels. The main algorithm exploits
the histograms of the nodes in the lattice and checks whether there exists
a node of height less than h that satisfies k (or, l) without suppressing



more than MaxSupp tuples. This is performed by first checking the top-
acceptable-node vmax defined with generalization levels h=[hc

1, . . . , hc
n].

If a solution exists, then we exploit a monotonicity property of the lat-
tice and look for possible answers in quasi identifiers with less or equal
generalization levels than the ones of the top acceptable node. In the
case that no solution exists in the top acceptable node, the algorithm
provides the user with 3 complementary suggestions as answers:

– The first suggested alternative satisfies k (or, l) and h but not Max-
Supp. In fact, we search the space under the top acceptable node and
provide the solution with the minimum number of suppressed tuples.
In typical situations, we prove that the answer is already found in
the top acceptable node and thus, provide the answer immediately.

– The second alternative is a solution that satisfies k (or, l) and Max-
Supp but violates h. This means that we have to explore the space
of quasi identifiers that are found in generalization levels higher or
equal than the top acceptable node. We exploit the lattice’s mono-
tonicity properties to avoid unnecessary checks and utilize a binary
search exploration of heights on the lattice.

– The third suggested alternative is a solution that finds the maximum
possible k (or, l) for which h and MaxSupp are respected for the quasi
identifiers of the top acceptable node. Similarly to the first case, this
answer can be provided immediately at the top acceptable node.

In Fig. 1 we depict the lattice for the Adult data set where we constrain
the quasi identifier set to Age, Work class and Education. Each node
of the lattice is a generalization scheme; underneath each node you can
see the number of tuples that violate the constraint of 3-anonymity. The
label of each node shows the height of the generalization for each of the
QI attributes. We pose two queries to the lattice, both constraining k
to 3 and the height to level 1 for age, level 2 for Work class and level
1 for Education (coded as 121 for short). Then, the top-acceptable-node
vmax is 121 and the lattice it induces is depicted as the blue diamond
over the lattice. We hide nodes 030 and 102 from the figure as they are
not members of the sublattice induced by vmax. The first query involves
a tolerance for 20 suppressed tuples; in this case, vmax suppresses less
than 20 tuples and we know that its sub-lattice will produce an exact
answer. Out of all candidates, node 111 provides the exact answer with
the lowest height (and since we have a tie in terms of height with node
120, the one with the least suppression among the two). The second query
requires a maximum suppression of 8 tuples; in this case, since vmax fails
the constraint, we provide two suggestions concerning the relaxation of
suppression and privacy directly at vmax, and, a third suggestion for
the relaxation of the height constraint by exploring the full lattice (and
ultimately resulting in node 400).

2 Anonymity Negotiation over a Full Lattice

In this section, we present Algorithm SimpleAnonymityNegotiation. The
proposed algorithm takes as input a relation R to be generalized, a set



Fig. 1. Example of lattice and query answers. The lattice is annotated with suppressed
tuples for |QI|= 3 and k=3. The QI is Age, Work class, Race.

of hierarchies H for the quasi-identifier attributes, the histogram lat-
tice L for all possible combinations of the generalization levels, and the
requirements for the maximum desirable generalization level per quasi-
identifier (h), the maximum tolerable number of tuples to be suppressed
(maxSupp) and the least size of a group (k or l), as the privacy con-
straint. The outputs of the algorithm are (a) either a node of the lattice
(i.e., a generalization scheme) that provides the best possible exact so-
lution to the user requirements (with best possible being interpreted as
the one with the lowest height, and, if more than one candidate solu-
tions have this lowest height, the one with the minimum suppression),
or, (b) three suggestions for approximate answers to the user request,
the first relaxing the number of suppressed tuples, the second relaxing
the constraints on the heights per dimension and the third relaxing the
minimum acceptable privacy criterion (e.g., k in k-anonymity).

Algorithm SimpleAnonymityNegotiation starts by identifying a reference
node in the lattice, to which we refer a vmax. The node vmax is the node
that satisfies all the constraints of h for the quasi-identifiers, at the
topmost level; in other words, vmax is the highest possible node that can
obtain an exact answer to the user’s request. We will also refer to vmax

as the top-acceptable node. Then, two cases can hold: (a) vmax is able
to provide an exact solution (the if part), or (b) it is not, and thus we
have to resort to approximate suggestions to the user (the else part).
The check on whether a node can provide an exact solution is given by
function checkExactSolution that looks up the histogram of a node v and
performs the appropriate check depending on the privacy criterion.



Fig. 2. Algorithm Simple Anonymity Negotiation and accompanying functions

Exact Answer. When an exact answer can be provided by the top-
acceptable node vmax, then we can be sure that the sublattice induced
by vmax contains an exact answer; however, we need to discover the one
with the minimum possible height and, therefore, we need to descend
down the lattice to discover it. The auxiliary variable Candidates holds
all the nodes that conform to the user request, organized per height. Each
time such a node is found, it is added to Candidates at the appropriate
level (Line 5) and its descendants (returned via the function lower()) are
recursively explored via the call of function ExactSublatticeSearch. When
the lattice is appropriately explored we need to find the lowest level with
a solution in the lattice, and, among the (several candidate) solutions of
this level we must pick the one with the least suppression.

If node vmax fails to provide an answer that conforms to the user request,
then we are certain that it is impossible to derive such a conforming
answer from our lattice and we need to search for approximations. So,
we provide the users with suggestions on the possible relaxations that
can be made to his criteria.



Fig. 3. Approximation Functions

Suppression and privacy relaxations. Function ApproximateMax-
Supp respects the privacy criterion k and the max tolerable height h,
and returns the best possible relaxation with respect to the number of
suppressed tuples. Since h is to be respected, we are restricted in the
sub-lattice induced by vmax. Since vmax has failed to provide a conform-
ing answer, no node in the sublattice can provide such an answer, either.
So, we assess the number of tuples that have to be suppressed if we re-
tain k fixed and stay at the highest candidate node vmax. Observe that
any node in the sublattice of vmax will result in higher or equal number
of suppressed tuples – remember that the lower we go, the smaller the
groups are and the higher the suppression. In other words, it will either
be vmax that will give the answer or one of its descendants in the rare
case that the groups of the descendant are mapped one to one to the
groups of vmax, thus resulting in exactly the same number of suppressed
tuples. The relaxation of privacy is identical (omitted for lack of space).

Height relaxation. Function ApproximateH retains the maximum tol-
erable number of suppressed tuples MaxSupp and the privacy criterion of
k and tries to determine what is the lowest height h that can provide an
answer for these constraints. This time, we operate outside the borders



of the sublattice of vmax since h is not to be respected. The function Ap-
proximateH performs a binary search on the height between the height
of vmax and the upper possible height (the top of the lattice). Every time
a level is chosen, we start to check its nodes for possible solutions via
the function checkIfNoSolutionInCurrentHeight. If the function explores
a height fully and fails to find an answer, this is an indication that we
should not search lower than this height (remember: failure to find a
solution signals for ascending in the lattice). Every time the function
finds a node that can answer, then we must search in the lower heights
for possibly lower solutions. When the binary search stops, the value
currentMinHeight signifies the lowest possible height where a solution is
found. Then, we explore this height fully to determine the node with the
minimum suppression.

3 Experiments

We present our results over the Adult data set [6] over two privacy crite-
ria: k-anonymity and naive l-diversity. We have assessed the performance
in terms of time and visited nodes as we vary the value for the privacy cri-
terion, the maximum tolerable generalization height and the maximum
tolerable amount of suppressed tuples. We performed 28 user requests:
each time we keep the two out of the three parameters fixed in their
middle value and vary QI with 3, 4, 5, 6 attributes as well as the pa-
rameters under investigation. The values of k range in 3, 10, 50. The
values for l are smaller (3,6,9) in order to avoid suppressing the entire
data set. The values for h are: (a) low heights having levels with heights
1 and 0, (b) middle heights having mostly 2 and few 1 level heights and,
(c) middle-low in between (remember that they vary per QI). In all our
experiments we have used a Core Duo 2.5GHz server with 3GB of mem-
ory and 300GB hard disk, Ubuntu 8.10, and MySQL 5.0.67. The code is
written in Java.
Effectiveness and Efficiency. The increase of the privacy criterion
(Fig. 14, k) has divergent effects. When QI is small, there is an exact
answer and the search is directed towards lower heights. Consequently,
as k increases the solution is found earlier. On the contrary, for larger
QI sizes and relaxations to user request, the increase of k sublinearly
increases the search space.
The increase of the maximum tolerable height (Fig 14, h) has a consistent
behavior. When the QI size is small, we can have exact solutions; in this
case, when we increase the maximum tolerable height, this increases the
search space too. In contrast, when relaxations are sought, the higher
the constraint, the faster a solution is found.
The constraint on the maximum tolerable suppression (Fig. 14, MaxSupp)
is similar: the higher the constraint is set, the faster an approximate so-
lution is found (except for low QI sizes where exact answers are possible
and the behavior is inverse due to the exploration of L(vmax)).
In all experiments, it is clear that the costs are dominated by the QI
size. Finally, in all experiments, the times ranged between 1 and 8 msec,
thus facilitating the online negotiation of privacy with the user, in user



Fig. 4. Number of visited nodes for different QI, k, h, MaxSupp. All times range between
1 and 8 msec. Light coloring is for exact matches and dark coloring is for approximate
matches

time. The experiments with l-diversity demonstrate a similar behavior
as the experiments of k-anonymity. See [7] for a detailed report of all our
experiments.

The price of histograms. The lattice of generalization schemes and
most importantly, the histograms with which the lattice is annotated
come with a price, both in terms of space and in terms of construction
time. The lattice construction is negligible in terms of time; however, this
does not hold for its histograms: observe that as the QI size increases, the
time for the histogram construction increases exponentially (Fig. 5). The
reason for this phenomenon is depicted in Fig. 5 where the number of
nodes per QI size is also depicted. Although the time spent to construct
the histograms is significant, the amount of memory that is needed to
keep the histograms in main memory is quite small (e.g., we need approx.
3 MB for the largest QI size for k-anonymity; the value drops to approx. 1
MB for l-diversity, since the number of discrete values that the histograms
take are much lower in this case).

QI size No. nodes Avg constr. time for k-anon (min) Avg constr. time for l-div (min)

QI=3 60 0,141 0,1858
QI=4 180 0,602 0,702
QI=5 900 3,7 4,53
QI=6 3600 19,02 21,12

Fig. 5. Lattice size in no. nodes (left); average construction time (min.) for the full
lattice and the respective histograms for k-anonymity (middle) and l-diversity (right)
over the Adult data set



4 Summary and Pointers for Further Probing

In this paper, we report on our method that allows a data curator trade
information loss (expressed as tuple suppression and increase in general-
ization levels) for privacy (expressed as the value of a privacy criterion
like k-anonymity or naive l-diversity). The full version of this paper [7]
includes material that is omitted here for lack of space. Specifically:

– We theoretically prove that our method is guaranteed to provide the
best possible answers for the given user requests.

– We provide an extensive discussion on the validity of the problem.
To the best of our knowledge, [7] is the first to perform a systematic
study and report on the interdependency of suppression, generaliza-
tion and privacy in a quantitative fashion.

– We provide extensive experimental results, in full detail for all the
different combinations of QI size, k or l. Moreover, all the experi-
ments have also been performed on the IPUMS data set, and the
reported results demonstrate a similar behavior with the Adult data
set.

– To handle the issue of scale (as the off-line lattice-and-histogram
construction is dominated by both the QI size and the data size) we
provide a method for the selection of a small subset of characteristic
nodes of the lattice to be annotated with histograms, based on a
small number of tests that rank QI levels for the grouping power.
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