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Abstract The Extract-Transform-Load (ETL) flows are
essential for the success of a data warehouse and the busi-
ness intelligence and decision support mechanisms that are
attached to it. During both the ETL design phase and the
entire ETL lifecycle, the ETL architect needs to design and
improve an ETL design in a way that satisfies both per-
formance and correctness guarantees and often, she has to
choose among various alternative designs. In this paper, we
focus on ways to predict the maintenance effort of ETL work-
flows and we explore techniques for assessing the quality of
ETL designs under the prism of evolution. We focus on a
set of graph-theoretic metrics for the prediction of evolution
impact and we investigate their fit into real-world ETL sce-
narios. We present our experimental findings and describe
the lessons we learned working on real-world cases.
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1 Introduction

Having accurate and up-to-date data warehouses is essential
for Business Intelligence and Decision Support. A data ware-
houses design, apart from performance guarantees, should
also provide correctness guarantees. Every time an evolu-
tion event occurs anywhere in the warehouse environment
(e.g., a design change at the operational sources) it should
be smoothly absorbed without causing any further inconve-
nience. For achieving this, the warehouse and its counterparts
should be easily maintainable and the process of populating
it should not be destructed by evolution events.

The Extract-Transform-Load (ETL) flows constitute the
backbone of a typical data warehouse architecture. Most of
the research for improving ETL designs has focused solely on
improving performance. However, based on practical experi-
ence, maintenance makes up for up to 60 % of the resources
spent in a warehouse project [34], and therefore, maintain-
ability is an important factor for the determination of the
quality of a design [19,36]. Although practitioners are well
aware of this problem, still, we miss a formal and concrete
answer to fundamental questions like “How good is an ETL
design?” and “What makes an ETL design good or bad?”.
Typically, such questions are answered by a set of empirical
rules based on practical observations of the past, as well as
rules of thumb that have been established by expert practitio-
ners and despite their value, they simply transfer the lessons
learned the hard way in the “craft” of ETL design. Most of
these rules consider only structural properties of the ETL flow
or constructs internal to the underlying databases and do not
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take into account neither the incorporation of constructs sur-
rounding the databases, nor the fact that a software construct,
and especially an information system, evolves over time.

In practice, the problem is hard since changes in the
schema of database-centric systems affect not only both
its internals but also the surrounding deployed applications.
Hence, the minimal interdependence of these software mod-
ules results in higher tolerance to subsequent changes and
should be measured with a principled theory. Related work
for evolution data-intensive applications [9], view redefini-
tion [10,17,26], and data warehouse evolution [3,5,11,14]
has provided rewriting techniques and theoretical cost mod-
els. Yet, a well-founded model, specifically tailored for the
graph-based nature of ETL flows that assesses their vulner-
abilities to changes is missing.

Related work also includes an approach to impact analysis
and management of schema evolution, which represents the
structural properties of the data warehouse schema, along
with any views and queries defined over this schema, as a
graph [30]. Our graph-based model captures all the parts (or,
modules) of an environment, i.e., relations, views, and que-
ries (which are practically the parts of ETL scripts that work
the underlying data, or the elementary activities of a GUI-
based scenario that are involved in the ETL process). Then,
edges correspond to part-of or provider–consumer relation-
ships. Given a database configuration, the impact of a schema
change on the rest of the system is determined by exploiting
the structure of the graph (i.e., by propagating the impact of
the change via the involved edges). This clearly relates the
structure of the graph, and its edges in particular, with the
possibility that a component of the environment (a node in
the graph) is affected by a certain evolution event. Further-
more, the evolution of the entire environment is regulated
with the use of certain policies applied to the graph con-
structs. Example policies include either propagate/block a
change or prompt the user for action. This way, adminis-
trators can regulate the evolution management, in a semi-
automatic way, when changes on the database schema occur.
Another research work employs a set of graph-theoretic met-
rics to measure evolution impact in data warehouse environ-
ments [29]. Although informally and briefly introduced in
that work, these metrics are either degree-related or entropy-
based metrics and compute the degree of dependence of
nodes based on the structural properties of the system design
from both a graph theoretic and an information theoretic per-
spective. However, these two works have not been adequately
tested in real-world, large-scale applications.

In this paper, we built upon the aforementioned approaches
with the goal of validating and experimentally assessing the
proposed methods and metrics in real-world settings. We
formally present these metrics and show that such metrics
typically act as predictors for the vulnerability of a software
module (either internal like a relation or external like a query)

in a database-centric environment to future changes to the
structure of the environment. Thus, we answer the aforemen-
tioned questions on the design quality of an ETL scenario
from the perspective of maintenance.

Our experimental evaluation has been performed with
a home-grown, publicly available, software tool, namely
Hecataeus, which allows us to monitor evolution and per-
form evolution scenarios in database-centric environments.
(For implementation details, the interested reader could read
our ICDE’10 demo paper, Papastefanatos et al. [31].) The
experimental analysis is based on a 6-month monitoring of
seven real-world ETL scenarios processing data from statisti-
cal surveys. Our main goal was to examine different metrics
over various ETL configurations and evolution events for
assessing the usefulness and applicability of the proposed
metrics (e.g., how well do they actually predict the impact of
evolution events on a design construct). An additional desired
objective was to identify which metric works best in differ-
ent ETL configurations. Based on our findings, observations,
and analysis, we disclose a list of lessons learned through this
multi-month work.

In a nutshell, we have identified the schema size and mod-
ule complexity as two important factors for the vulnerability
of a system.

Schema sizes. The size of the schemas involved in an
ETL design significantly affects the design vulnerability
to evolution events. For example, source or intermediate
tables with many attributes are more vulnerable to changes
at the attribute level. Thus, a good design may involve tables
with smaller schemas (e.g., we should maintain intermediate
tables with a small number of attributes).

Functionality of ETL activity. The internal structure of an
activity plays a significant role for the impact of evolution
events on it. For example, activities with high out-degree
and out-strengths tend to be more vulnerable to evolution
and activities performing an attribute reduction (e.g., through
either a group-by or a projection operation) are in general,
less vulnerable to evolution events.

Module-level design. The module-level design of an ETL
flow also affects the overall evolution impact on the flow.
For example, it might be worthy to place schema reduction
activities early in an ETL flow to restrain the flooding of evo-
lution events. However, as we discuss in Sect. 5, such heuris-
tics that significantly improve maintainability of ETL flows
might contradict the normal practice for improving ETL per-
formance.

In addition, we tested our metric suite against various
ETL designs and have identified what metric provides better
evolution prediction for specific ETL constructs. For mod-
ules with a single provider, the out-degree and out strength
metrics (described in Sect. 3), which capture the dependen-
cies with an adjacent module, provide better results. How-
ever, transitive degree metrics may act as predictors for the
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evolution of a module when it has many different providers
and paths to evolving sources (e.g., queries).

Retrospectively, we can report that experimenting with
real-world evolution scenarios in data-centric environments—
and especially in ETL and data warehousing—is a difficult,
long-termed, and time-consuming process. Such a process
comprises a series of tasks, responsible for (a) recording all
metadata information and workload definitions; (b) modeling
and analyzing the dependencies between them; (c) collect-
ing and categorizing all different types of evolution changes
that occurred at different time periods and on different parts
of the environment, and (d) recording how often each part
of the environment (e.g., a query, a view) is affected by
each change. Besides the non-trivial technical difficulties and
effort needed for completing these tasks, in some cases, like
for tasks (a) and (c), we had to deal with political and organi-
zational issues as well. That is because more than one team
of an organization is typically involved in these tasks and get-
ting permissions, engaging people in exchanging and sharing
information, and depending on other people’s availability are
not easy to carry tasks. This is an additional reason in favor
of having a system toward the automatic or semi-automatic
handling of evolution events in ETL and in general, in infor-
mation management environments.

Outline The rest of this paper is structured as follows.
Section 2 describes a graph-theoretic model for representing
the constructs of a data warehouse environment. Section 3
presents the set of metrics. Section 4 presents our experi-
mental findings. Section 5 provides a list of lessons learned.
Finally, Sects. 6 and 7 discuss related work and conclude the
paper, respectively.

2 Modeling ETL Designs

In this section, we describe a graph-based model for ETL
design. ETL designs are typically represented as graphs con-
necting activities and data stores. There are different styles
for populating a data warehouse, like ETL, ELT, ETLT, and
so on. Although these techniques have different performance
characteristics, they do not differ in terms of modeling and
thus, hereafter, we use the term ETL to capture all flavors of
data warehouse population.

Our model uniformly covers relational tables, views, ETL
activities, database constraints, and SQL queries as first class
citizens. This model represents all such database constructs
as a directed graph, named evolution graph, G = (V, E). The
nodes represent the entities of our model and the edges repre-
sent the relationships among these entities (mainly referring
to part-of or provider-consumer relationships). The rationale
for this modeling is to be able to represent data-centric eco-
systems in a uniform way. In other words, we aim at a single,
uniform way to model both database internals (like relations,

views and constraints) and software modules external to the
database (reports, forms, application programs, and so on).
ETL flows offer a tight coupling of the database internal and
external parts, along with the tight control of the application
code by a small group of developers. Here, we present a brief
description of our model. The interested reader may find a
detailed model definition in another research paper [30].

A relation R (�1, �2, . . ., �n) in the database schema
is represented as a directed graph, which comprises (a) a
relation node, R, representing the relation schema; (b) n
attribute nodes, �1, . . . , �n, one for each of the attributes;
and (c) n schema relationships, directing from the relation
node towards the attribute nodes, indicating that the attribute
belongs to the relation.

The graph representation of a Select-Project-Join-Group
By (SPJG) query involves a new node representing the query,
named query node, and attribute nodes corresponding to the
schema of the query. The query graph is a directed graph
connecting the query node with all its schema attributes, via
schema relationships. In order to represent the relationship
between the query graph and the underlying relations, we
resolve the query into its essential parts: SELECT, FROM,
WHERE, GROUP BY, HAVING, and ORDER BY, each
of which is eventually mapped to a subgraph. The edges
connected the involved attribute and operand nodes are anno-
tated as map-select, from, and where relationships. Ali-
ases in the FROM clause (mostly needed in self-joins for
our modeling) are annotated with alias edges. The direc-
tion of the edges is from the query node to the attribute
nodes. WHERE and HAVING clauses are modeled via a left-
deep tree of logical operands to represent the selection for-
mulae; all the involved edges are annotated as where and
having relationships, respectively. Nested queries are part
of this modeling, too. For the representation of aggregate
queries, we employ two special purpose nodes: (a) a new
node denoted as GB, to capture the set of attributes acting
as the aggregators; and (b) one node per aggregate func-
tion labeled with the name of the employed aggregate func-
tion, e.g.,COUNT, SUM, MIN. For the aggregators, we use
edges directing from the query node towards the GB node
that are labeled <group-by>, indicating group-by rela-
tionships. Then, the GB node is connected with each of the
aggregators through an edge tagged also as <group-by>,

directing from the GB node towards the respective attributes.
These edges are additionally tagged according to the order
of the aggregators; we use an identifier i to represent the
i th aggregator. Moreover, for every aggregated attribute in
the query schema, there exists an edge directing from this
attribute towards the aggregate function node as well as an
edge from the function node towards the respective relation
attribute. Both edges are labeled <map-select> indicat-
ing the mapping of the query attribute to the corresponding
relation attribute through the aggregate function node. The
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Fig. 1 a Graph and b abstract representation of an aggregate query on top of a view defined over two relations

representation of the ORDER BY clause of the query is per-
formed similarly.

Functions used in queries are denoted as a special pur-
pose node F having the name of the function. Each function
has an input parameter list comprising attributes, constants,
expressions, and nested functions, and one (or more) output
parameter(s). SQL Views are considered either as queries
or relations (materialized views). Finally, DML and loading
statements are modeled as simple SQL queries.

Figure 1a depicts the proposed graph representation for
two relations, EMP and WORKS. EMP has three attributes,
Emp#, which is the primary key, Name and Sal. WORKS
relation comprises Emp# (foreign key to EMP primary key),
Proj# and Hours attributes. On top of these relations,
there is a view performing a join operation and filtering
the employees having SAL more than 50 K. Finally, the
graph depicts an aggregate query defined on top of this
view.

Moreover, an ETL activity (e.g., a loading, cleansing, fil-
tering operation, etc.) is modeled as an SQL view defined
over the sources of the activity; furthermore, an ETL work-
flow is modeled as a sequence of views corresponding to the
activities of the flow.

A module is a sub-graph of the overall graph in one of
the following patterns: (a) a relation with its attributes and
all its constraints, (b) a view with its attributes, functions
and operands, and (c) a query with all its attributes, func-
tions and operands. Modules are disjoint with each other
and connected through edges concerning foreign keys, map-
select and so on. Within a module, we distinguish top-level
and low-level nodes. Top level nodes are used to signify the
identity of the module; for that purpose, query, relation and
view nodes are used as top-level nodes. Low-level nodes
comprise the rest of the module. Edges are classified into
provider and part-of relationships. Provider edges are inter-
module relationships, whereas part-of edges are intramodule
relationships In Fig. 1, the graph comprises four modules
corresponding to the query, view and the relation subgraphs.

Zoomed out graph The graph that we have presented
so far has the benefit of accurately representing the interre-
lationships of the involved constructs at the finest level of
detail (practically the attribute level when data-centric eco-
systems are involved). As usually happens, this comes at a
price: the graph soon becomes large and crowded with all
the details of internal representation of the modules. In order
to (a) concisely represent the overall graph in main memory
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and (b) visually depict it, whenever the scale becomes too
large, it is useful to zoom out the graph into a summary of
appropriate structure and size. The zoomed out graph is an
abstraction of the detailed evolution graph which comprises
only top level nodes and edges between them. Abstracting the
graph into a modular representation at a coarser level of detail
involves the following steps: (a) for each query, view or rela-
tion module, all low-level nodes and intramodule edges are
suppressed and only the respective top-level node is retained,
and, (b) all inter-module edges apart from from and foreign
key edges are dropped. A surviving edge between two mod-
ules is annotated with a weight corresponding to the number
of the edges that originally connected the two modules. We
call this weight the strength of the edge as it assesses how
tightly the involved modules are coupled. Figure 1b depicts
the abstract modular representation of Fig. 1a.

Events The space of potential events comprises the Carte-
sian product of two subspaces; specifically, (a) the space
of hypothetical actions (addition/deletion/modification), and
(b) the space of the graph constructs sustaining evolution
changes. We consider and collect several cases of data ware-
house evolution events, such as a dimension is removed, or
renamed, the structure of a dimension table is updated, (e.g.,
addition, removal or modification of a dimension attribute),
a fact table is completely decoupled from a dimension (dele-
tion of a FK) or decoupled from one dimension and coupled
to another (update of a FK), the measures of a fact table
change, or the source table of an ETL is altered. To avoid
overloading the text, we refer the interested reader to ([30],
section 3.1) for a detailed description of events.

An update can signify a change of data types or a renam-
ing of a construct; our practical experience indicates that it
mostly refers to the latter. We do not check for additions
of fact, dimension, or source tables, because such events do
not result in a direct impact on any other logical warehouse
construct per se. Given these changes that can occur to a
data warehouse, their basic impact is that all software mod-
ules that use these database structures must be rewritten. The
impact can be both syntactic (in the sense that all views and
queries using a deleted attribute will crash) and semantic (in
the sense that a new attribute in a relation or a modified con-
dition in a view might require a rewriting of all the queries
that use it). Assume for example that an attribute FullName
is split to attributes FirstName and LastName or a view con-
dition ‘Year = 2007’ is altered to ‘Year > 2006’. The former
change has syntactic impacts on all the queries using the
attribute and the latter has semantic impact, since some of
the queries using the view require exactly values of 2007,
whereas some others will serve the purpose with any value
greater than 2006.

Handling of events Given an event posed to one of the
warehouse constructs (or, equivalently, to one of the nodes
of the graph of the warehouse that we have introduced), the

impact involves the possible rewriting of the constructs that
depend upon the affected construct either directly, or transi-
tively. In a non-automated way, the administrator has to check
all of these constructs and restructure the ones he finds appro-
priate. This process can be semi-automated using our graph-
based modeling and annotating the nodes and the edges of
the graph appropriately with policies in the event of change.
Assume for example, that the administrator guarantees to an
application developer that a view with the sum of sales for
the last year will always be given. Even if the structure of the
view changes, the queries over this view should remain unaf-
fected to the extent that its SELECT clause does not change.
On the contrary, if a query depends upon a view with seman-
tics ‘Year = 2007’ and the view is altered to ‘Year > 2006’,
then the query must be rewritten.

The main idea in our approach involves annotating the
graph constructs (relations, attributes, and conditions) sus-
taining evolution changes (addition, deletion, and modifica-
tion) with policies that dictate the way they will regulate the
change. Three kinds of policies are defined: (a) propagate the
change, meaning that the graph must be reshaped to adjust
to the new semantics incurred by the event; (b) block the
change, meaning that we want to retain the old semantics
of the graph and the hypothetical event must be vetoed or,
at least, constrained, through some rewriting that preserves
the old semantics; and (c) prompt the administrator to inter-
actively decide what will eventually happen. Papastefanatos
et al. [28] have proposed a language that greatly alleviates the
designer from annotating each node separately and allows the
specification of default behaviors at different levels of gran-
ularity with overriding priorities.

Given the annotation of the graph, there is also a
simple mechanism that (a) determines the status of a
potentially affected node on the basis of its policy, (b) depend-
ing on the node’s status, the node’s neighbors are appropri-
ately notified for the event. Thus, the event is propagated
throughout the entire graph and affected nodes are notified
appropriately. The STATUS values characterize whether (a)
a node or one of its children (for the case of top-level nodes)
is going to be deleted or added (e.g., TO-BE-DELETED,
CHILD-TO-BE-ADDED) or (b) the semantics of a view
have changed, or (c) whether a node blocks the further prop-
agation of the event (e.g., ADDITION-BLOCKED).

3 Metric Suite

This section presents a set of metrics based on graph the-
oretic properties of the evolution graph for measuring and
evaluating the design quality of a database centric environ-
ment with respect to its ability to sustain changes. For our
analysis, we examine the graph (a) at its most detailed level
(node level) that involves all the attributes of relations, views
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Table 1 Degree related metrics

Notation Metrics for any node

DI (v) In-degree of a node v

DO (v) Out-degree of a node v

D(v) Degree of a node v

TDI (v) In-transitive degree of a node v

TDO (v) Out-transitive degree of a node v

TD(v) Transitive degree of a node v

DI s(v) In-degree of a module v

DOs(v) Out-degree of a module v

Ds(v) Degree of a module v

TDI s(v) In-transitive degree of a module v

TDOs(v) Out-transitive degree of a module v

TDs(v) Transitive degree of a module v

Table 2 Entropy-based metrics

Notation Metric

H(v) Entropy of a node v

Hs(v) Entropy of a module v

and queries, along with the internals of the queries, and, (b)
at a coarse level of abstraction (module level), where only
relations, views and queries are present. An earlier work,
has briefly introduced these metrics [28]. Here, we formally
define them and provide the intuition and a detailed defini-
tion for each metric. The whole set of proposed metrics is
presented in Tables 1 and 2.

3.1 Degree-Related Metrics

The first family of metrics concerns simple properties of each
node or module in the graph and specifically the degree of
nodes. The main idea lies in the understanding that the in-
degree, out-degree and total degree of a nodev demonstrate in
absolute numbers the extent to which (a) other nodes depend
upon v, (b) v depends on other nodes, and (c) v is interacting
with other nodes in the graph, respectively.

Specifically, let G(V, E) be the evolution graph of a data-
base centric environment and v ∈ V a node of the graph;
then

Definition 1 Degree of Node: The In-degree, DI (v), Out-
degree, DO (v) and Degree, D(v) of the node v are the total
number of incoming, outgoing and adjacent edges to v. That
is

DI (v) = |ein|, for all edges ein ∈ E of the form

(yi , v), yi , v ∈ V

DO(v) = |eout|, for all edges eout ∈ E of the form

(v, yi ), yi , v ∈ V

D(v) = DI (v) + DO(v)

Transitive Degrees. The simple degree metrics of a node v are
good measures for finding the number of nodes that directly
depend on v, or on which v directly depends on, but they can-
not detect the transitive dependencies between nodes. This
typically occurs whenever a query accesses a view, which
is of course defined over one or more views and relations.
The metrics related to simple degrees cannot capture the fact
that a change in a relation can eventually propagate to a large
number of dependent modules transitively. Take, for exam-
ple, the case of an ETL flow where a source relation may
feed only a single activity; however, a change in this relation
can transitively propagate and affect the entire workflow. In
the context of our graph model, we say that a node v1 is tran-
sitive dependent on another node v2 if there is a path from v1

towards v2. Therefore, we employ the following definition
for the transitive degrees of a node v with respect to the rest
of the graph:

Definition 2 Transitive Degree of Node: The In-Transi-
tive, TDI(v), Out-Transitive, TDO(v), and Transitive degree,
TD(v) of a node v ∈ V with respect to all nodes yi ∈ V are
given by the following formulae:

T DI (v) =
∑

yi ∈V

|paths(yi , v)|, yi ∈ V

T DO(v) =
∑

yi ∈V

|paths(v, yi )|, yi ∈ V

T D(v) = T DI (v) + T DO(v)

Module degree. The aforementioned metrics are able to cap-
ture the significance of individual nodes of the graph at a
fine-grained level. However, it is quite possible that adminis-
trators and designers are interested to see the graph properties
at the module level. A first possible reason for this require-
ment is the graph’s size: the administrators/designers might
be willing to pay a small price in accuracy in favor of faster
computation. Also, the metric properties of the modules (seen
as black boxes) per se could be of interest to the administra-
tors and the developers. To address this requirement, one can
measure the degrees of the zoomed-out graph. As already
mentioned in chapter 2, zooming-out operation on the graph
provides an abstract view of the modules of the graph, which
comprises only top-level nodes, i.e., relations R, views VS
and queries Q and edges between them. All edges are anno-
tated with a strength corresponding to the number of edges
previously connecting these modules. Thus, we define the
module degree for a node of the zoomed out graph as

Definition 3 Degree of Module (Strength): The In-Module,
DI s(v), Out-Module, DOs(v) and Module Degree, Ds(v)of
a node v are given by the following formulae:

DI s(v) =
∑

yi ∈V

strength(yi , v), yi , v ∈ {R, Q, V S}
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DOs(v) =
∑

yi ∈V

strength(v, yi ), yi , v ∈ {R, Q, V S}

Ds(v) = DI s(v) + DOs(v)

Module transitive degree. Similarly to above, we may extend
the transitive degrees to the zoomed-out graph according to
the following definition:

Definition 4 Transitive Degree of Module (Strength): The
In-Module, TDI s(v), Out- Module, TDOs(v), and Module
Transitive degree, TDs(v) of a node v ∈{R,Q,VS} with
respect to all nodes yi ∈{R,Q,VS} are given by the following
formulae:

TDI s(v)=
∑

yi ∈V

∑

ep ∈ paths(yi ,v)

strength(ep), yi , v∈{R, Q, VS}

TDOs(v)=
∑

yi ∈V

∑

ep ∈ paths(v,yi )

strength(ep), yi , v∈{R, Q, VS}

TDs(v) = TDIs(v) + TDOs(v)

3.2 Entropy-Based Metrics

The last family of metrics presented is related to the infor-
mation theoretic notion of entropy. Entropy is viewed as an
arcane subject related somehow to uncertainty and informa-
tion [32]. Given a set of events A = [A1, . . ., An] with prob-
ability distribution P = {p1, . . ., pq}, respectively, entropy
is defined as the average information obtained from a single
sample from A:

H(A) = −
n∑

i=1

pi log2 pi .

Entropy is strongly related to the information that is “hid-
den” in a probabilistic model. For instance, in a uniform prob-
abilistic model, all events are equally likely to occur and
therefore the entropy of the model is maximum.

In our evolution context, the notion of entropy is used to
evaluate the extent to which a node is likely to be affected
by a random evolution event on the graph. Intuitively, this
likelihood is strongly related to the number of other nodes
in the graph on which this node depends (i.e., connected to)
either directly or transitively. Nodes connected via multiple
paths to many parts are more likely to be affected if a random
event occurs on the graph. Thus, entropy measures either the
a priori uncertainty of the impact of an event on a part of the
graph or equivalently the a posteriori amount of information
we get from the knowledge that a part of the graph has been
affected by an event. The more unpredictable the impact of a

Fig. 2 A graph with a query, three views, and two relations

schema change on a part (either a module or a specific node)
of the graph is, the higher the entropy is that characterizes
this impact. For example, consider the graph of Fig. 2, where
a query Q1 is defined on top of two views, V1 and V2, which
both access a single relation R1; a third view, V3, is defined
on top of a second relation, R2. Q1 depends on three out of
five modules in the graph, i.e., V1, V2 and R1, and thus, it
has a high potential that it will be affected by a random event
on the graph, in contrast with V3, which is connected only to
R2 and affected by changes occurring only to this relation.

The following definitions introduce the metrics of the
entropy of a node at the detailed and the zoomed out graph:

Definition 5 Entropy of Node: Assume a node v in our graph
G(V, E). We define the probability that v ∈ V is affected
by an arbitrary evolution event e over a node yk ∈ V as the
number of paths from v towards yk divided by the total paths
from v towards all nodes in the graph, i.e.,

P(v|yk) = |paths(v, yk)|∑
yi ∈V

|paths(v, yi )| , for all nodes yi ∈ V .

Then, the information we gain when a node v is affected
by an event that occurred on node yk is I (P(v|yk)) =
log2

1
P(v|yk)

and the entropy of node v with respect to the
rest of the graph is then

H(v) = −
∑

yi ∈V

P(v|yi ) log2 P(v|yi ), for all nodes yi ∈ V .

Observe that high entropy values correspond to these parts
of the graph, that are dependent on many providers either
directly or transitively, capturing in a “smoother” way than
the local or the transitive degrees the dependencies in the
graph.

Definition 6 Entropy of Module: Moreover, we can apply
the previously used technique to the zoomed out-graph
Gs(V s, Es), by defining the probability of a node v ∈V s

to be affected by an evolution event over a node yk ∈V s as

Ps(v|yk) =
∑

ep ∈ paths(v,yk)
strength(ep)

∑
yi ∈V s

∑
ep ∈ paths(v,yi )

strength(ep)
,

for all nodes yi ∈ V s .
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with ep ∈ Es being the edges of all the paths of the zoomed
out graph stemming from v towards yk . Similarly, the entropy
of node v ∈ V s is

Hs(v) = −
∑

yi ∈V s

Ps(v|yi ) log2 Ps(v|yi )

for all nodes yi ∈ V s .

A summary of the proposed set of metrics is provided
in Tables 1 and 2.

3.3 Rationale for Our Approach and Broader Perspective

Before describing how the aforementioned metrics have been
applied to a real case study, we discuss the rationale for the
choice of this metric suite.

We base our approach on the modeling power of the graph
proposed. Our graph-based model is simple, comprehen-
sive, rigorously defined, and it has a uniform treatment of
all involved constructs. Nodes correspond to both detailed
entities like attributes or values and to higher level entities
like relations or queries (this can further be abstracted to dat-
abases, scripts, libraries, and so on). Edges denote any form
of relationship, with two kinds of relationship being the most
prominent ones: (a) part-of (between high-level modules and
their constituents) and (b) provider-consumer in terms of data
provision. Both kinds of edges capture the notion of depen-
dency: an edge e(v, u) from node v to node u, signifies that
node v is potentially affected whenever u is affected too.

We believe that dependency is the cornerstone of mainte-
nance in data-centric ecosystems. To this end, we devised two
families of metrics based on mathematical fundamentals to
quantify the dependency of a node. The first family of metrics
has to do with graph-theoretic properties. In the context of
our studies, we focused on the properties of individual nodes,
and, in fact, we opted to constrain ourselves to simple met-
rics like degrees and we explore the main kinds of degrees.
At the same time, we also explore two different modes of
locality. First, we are interested in the local degree, as a sim-
ple measure of direct dependence between nodes. Second, we
operate in a workflow-like environment where data are “cop-
ied” from one module to another for further processing and
thus, we explore the idea of assessing transitive degrees as
measures of the overall dependency of a node to other nodes.
The second family of metrics serves an information-theo-
retic rationale: what if a random evolution event appears in
the graph? How likely is a node v to be affected by it due to its
dependency to other affected nodes? Thus, we follow a math-
ematically founded, information theoretic approach to cap-
ture the vulnerability of a node to a random evolution event.

In both families, we do distinguish between coarse-
grained metrics at the module level versus detailed metrics at
the full extent of the graph. As already mentioned, the coarse-
grained summary of the graph was intended to alleviate the

user from the information overload of all the miniscule details
of module internals at the full extent of the graph. However,
due to the size of the graph, it is possible that large ecosys-
tems will have to be assessed at a coarser detail level for
performance reasons; then, the open question is how well do
coarse-level metrics approximate the detailed ones.

From a subjective viewpoint, without excluding the pos-
sibility of more sophisticated metrics, we support the idea of
simple metrics. In this paper, we are exploring the problem
from an empirical perspective and are primarily interested
to see what simple metrics appear to work well in the case
study we have encountered. We deem simplicity as an inher-
ent good quality that makes concepts easily understandable
and explainable to the involved stakeholders (let alone effi-
ciently computed). But even under the prism of simplicity,
we do not claim that our metric suite exhausts all possibili-
ties, either with respect to their mathematical foundation or
with respect to practical intuition (or any other rationale that
can be used to build a set of metrics); on the contrary, we
do anticipate that other metrics can possibly be devised to
assess the vulnerability of a node to change.

4 A Real-World Case Study and Experimental
Validation

The metrics presented in Sect. 3 express the degree of depen-
dence or importance of a node in an objective and quantifiable
way. Yet, this is a characterization of the structural properties
of a node within the graph. How accurately can we use the
metrics to predict the vulnerability of a node to change? Is
it fair to say that the more dependent a node is, the higher
the probability that it is affected by evolution changes? To
address this issue, we have evaluated the proposed metrics
with real-world ETL scenarios. The goal of our analysis is to
evaluate the extent to which our metrics are good indicators
for the prediction of the effect that evolution events have.
A clear desideratum in this context is the determination of
the most suitable metric for this prediction according to the
different types of evolved constructs.

4.1 Experimental Setting

In our experiments, we have studied a data warehouse sce-
nario, which involves real-world evolution scenarios of ETL
workflows that were monitored for a period of six months.
The environment involves a set of seven real ETL work-
flows extracted from a Greek public sector’s data warehouse
maintaining information for farming and agricultural statis-
tics. The ETL flows extract information out of a set of seven
source tables, namely S1 to S7 and 3 lookup tables, namely
L1 to L3, and load it to seven target tables, namely T1 to T7,
stored in the data warehouse. The seven scenarios comprise
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Table 3 ETL scenarios
configuratrion ETL # Activities Sources Tmp Tables Targets

ETL 1 16 L1,L2,L3,S1,S4 T1_Tmp, T2_Tmp, T3_Tmp T1, T2, T3
ETL 2 6 L1,S2 T1_Tmp, T3_Tmp T3
ETL 3 6 L1,S3 T1_Tmp, T3_Tmp T3
ETL 4 15 L1,S4 T1_Tmp, T3_Tmp, T4_Tmp T3, T4
ETL 5 5 S5 T1_Tmp, T5_Tmp T5
ETL 6 5 S6 T1_Tmp, T6_Tmp T6
ETL 7 5 S7 T1_Tmp, T7_Tmp T7
Total 58

Table 4 Number of attributes in
ETL source tables

Table S1 S2 S3 S4 S5 S6 S7 L1 L2 L3

# Attributes 59 160 82 111 13 7 5 7 19 7

Table 5 Distribution of events at the ETL tables

Source Change type Occurrence Affected ETL

L1 Add Attribute 1 ETL 1, 2, 3, 4
L1 Add Constraint 1 ETL 1, 2, 3, 4
L2 Add Attribute 3 ETL 1
L3 Add Attribute 1 ETL 1
S1 Add Attribute 14 ETL 1
S1 Drop Attribute 2 ETL 1
S1 Modify Attribute 3 ETL 1
S1 Rename Attribute 3 ETL 1
S1 Rename Table 1 ETL 1
S2 Add Attribute 15 ETL 2
S2 Drop Attribute 4 ETL 2
S2 Rename Attribute 121 ETL 2
S2 Rename Table 1 ETL 2
S3 Rename Attribute 80 ETL 3
S3 Rename Table 1 ETL 3
S4 Add Attribute 58 ETL 1, 4
S4 Drop Attribute 26 ETL 1, 4
S4 Modify Attribute 1 ETL 1, 4
S4 Rename Attribute 27 ETL 1, 4
S4 Rename Table 1 ETL 1, 4
S5 Modify Attribute 2 ETL 5
S5 Rename Table 1 ETL 6
S6 Rename Table 1 ETL 6
S7 Rename Attribute 5 ETL 7
S7 Rename Table 1 ETL 7
T1 Drop Attribute 1 ETL 1
T1 Modify Attribute 1 ETL 1
T1_tmp Drop Attribute 1 ETL 1-7
T1_tmp Modify Attribute 1 ETL 1-7
T2 Add Attribute 15 ETL 1
T2 Modify Attribute 2 ETL 1
T2_tmp Add Attribute 15 ETL 1
T2_tmp Modify Attribute 2 ETL 1
T5 Modify Attribute 2 ETL 5
T5_tmp Modify Attribute 2 ETL 5
Total 416

a total number of 58 activities extracting, filtering and load-
ing data into the target tables. They, also, make use of seven
temporary tables (each target table has a temporary replica)

for keeping data in the data staging area, as shown in Table
3. The warehouse maintains statistical information collected
from surveys, held once per year via questionnaires. The sur-
vey data are primarily stored in the S1–S7 source tables and
are subsequently processed so that they can be integrated in
the organization’s warehouse and queried. Each survey var-
ies its schema according to the different number and types
of questions comprising the survey’s questionnaire; however,
there are several common elements in all surveys. Table S1
holds information about the metadata of the survey (e.g., the
year held, the sample size, etc.), which are rarely altered
or renamed and mostly complemented or specialized yearly
by adding new attributes in the survey’s metadata. All other
source tables (S2–S7) retain the answers to the question-
naires, where most alterations occur every year. The size of
the schema of each table, in terms of number of attributes, is
shown in Table 4.

Our choice for experimenting with these scenarios was
based on their evolution behavior that satisfied the following
criteria: The first criterion was the ease of collecting real evo-
lution events. As statistical surveys are held once a year, most
source tables are suffering the majority of evolution events
during a short peak period when surveys are designed and
modeled in the database. This fact enabled us to collect and
analyze most evolution events at once. The second criterion
was the number and diversity of events. The scenarios exam-
ined exhibit a large number of evolution events covering a
broad variety of alterations on the source tables (see Table 5).
Finally, the third criterion was the diversity in the designs of
the ETL flows. The chosen ETL scenarios enabled us to eval-
uate our metrics in simple (e.g., ETL5, ETL6, ETL7) as well
as more complex (e.g., ETL1) flows.

All ETL scenarios were source coded as PL\SQL stored
procedures in the data warehouse. First, we extracted embed-
ded SQL code (e.g., cursor definitions, DML statements,
SQL queries) from activity stored procedures. Table defini-
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tions (i.e., DDL statements) were extracted from the source
and data warehouse dictionaries. Each activity was repre-
sented in our graph model as a view defined over the previous
activities, and table definitions were represented as relation
graphs.

We have used a homegrown software artifact, called
Hecataeus1 for the graph representation, the application of
changes on the source tables, the evaluation of the metrics
on the graph, and the identification of the impact of evolu-
tion events. Hecataeus is an open-source software tool for
enabling impact prediction, what-if analysis, and regulation
of relational database schema evolution. Under the hood, it
supports the proposed graph-based modeling technique and
represents database schemas and database constructs, like
queries and views, as graphs. Our tool enables the user to cre-
ate hypothetical evolution events and examine their impact
over the overall graph before these are actually enforced on it.
It also allows the definition of rules (i.e., policies) on nodes
of the graph (in the form of annotations) that regulate the
propagation of the evolution impact on specific parts. Most
importantly, Hecataeus includes a metric suite for evaluat-
ing the impact of evolution events and detecting crucial and
vulnerable parts of the system.

Our study is based on the evolution of the source tables
and their accompanying ETL flows, which has happened in
the context of maintenance due to the change of require-
ments at the real world. As already mentioned, source S1
stores the constant data of the surveys and did not change
a lot. The rest of the source tables (S2–S7), on the other
hand, sustained maintenance. The recorded changes in these
tables mainly involve restructuring, additions, and renaming
of the questions comprising each survey, which are further-
more captured as changes in the source attributes names and
types. The set of evolution events includes renaming of rela-
tions and attributes, deletion of attributes, modification of
their domain, and last, addition of primary key constraints.
We have recorded a total number of 416 evolution events
and the number of events per table is shown in Table 5.
Observe that the majority of evolution changes concerns
attribute renaming and attribute additions. These findings
were due to the evolution context of the examined warehouse
sources.

The last column in Table 4 shows the flows as affected by
each change. L1 table is used in 4 ETL flows (1–4), S4 in
2 flows, namely ETL1 and ETL4, whereas all other source
tables are used only to one flow. The most evolved table is S2
with a total of 141 changes and S4 follows with 113 changes.
S2, however, supplies only one flow (ETL 2), whereas S4
supplies both ETL1 and ETL4. In addition, schema changes

1 For more details about Hecataeus, we refer the interested reader to
our ICDE’10 demonstration paper [31] and the project website: www.
cs.uoi.gr/~pvassil/projects/hecataeus.

were applied in T1, T2, and T5 target tables and their respec-
tive temporary tables as a result of the changes in the ETL
sources. All evolution changes were applied in the form of
annotations on the nodes of the graph.

Summarizing, the configuration of our experiments
involved representing the ETL workflows in our graph model
as well as the recorded evolution events on the nodes of the
source, lookup and temporary tables. We then applied each
event sequentially on the graph assuming that no rules con-
strain the propagation of the change towards the nodes of
the graph. We, finally, monitored the impact of the change
towards the rest of the graph by recording the times that a
node has been affected by each change.

4.2 Experimental Validation

We have first evaluated the graph metrics on the seven ETL
graphs and then applied the evolution events of Table 4
sequentially on these ETL graphs. We monitored each node
of the graphs on how many times it was affected by an event.
This measurement constitutes the baseline measurement that
simulates what would actually happen in practice. This base-
line measurement is compared with all measured metrics. In
the rest, we discuss our findings organized according to each
ETL flow.

ETL1. The first workflow (Fig. 3) comprises two source
tables (S1, S4), three lookup tables (L1–L3), three target
tables (T1–T3) along with their temporary tables and 16
activities. Both source tables contain a large number of attri-
butes, namely 59 for S1 and 111 for S4 (there are no foreign
keys defined), lookup tables are small in size, target tables T1
and T2 are two dimension tables with 74 and 38 attributes,
respectively, whereas T3 is a fact table with 16 attributes.
S1 data are extracted and loaded in the two dimension tables
through the upper branch of the flow and to the fact table via
the lower branch. S4 contains measure data that are loaded in
the fact table. Regarding the functionality of the activities, the
activities 1–5 perform extraction and filtering of data from
the two source tables. Then, activity 9 joins the two sources
and projects all attributes of S1 but only a small number of
attributes of S4 (most data coming from S4 table are loaded
via the ETL4 scenario). Activities 10–12 of the upper branch
update the data with lookup values and activities Q2 and Q3
project and load data to T1, T2 temporary tables. In the lower
branch, Q4 activity updates the data with values from L3 and
loads it to T3 temporary table. Finally, activities 6–8 perform
the final loading to the target tables of the data warehouse.
Based on the functionality of each activity, we distinguish
the filtering activities performing a select or a transforming
operation on their source, (e.g., ETL1_ACT1, ETL1_ACT2,
ETL1_ACT5, etc.), joining activities combining data from
more than one sources (e.g., ETL1_ACT9, ETL1_ACT11,
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Fig. 3 Workflow of the first ETL scenario, ETL1

Fig. 4 Results for degree metrics for ETL1

ETL1_Q4, etc.) and finally activities that project a subset
of the available attributes of their sources (e.g., ETL1_Q4,
ETL1_ACT10, ETL1_ACT12, ETL1_Q2, ETL1_Q3, etc.).

In Figs. 4, 5, 6 and 7, we present the results for the first of
the 7 ETL scenarios, grouped by the different types of met-
rics. In Fig. 4, we present the simple degree metrics, in Fig. 5
the transitive degree along with the entropy metrics (entropy
and transitive metrics have been scaled up and down, respec-
tively, for comparison reasons), and in Fig. 6 the strength
metrics and last in Fig. 7 the transitive strength metrics. The
goal is to show the overall trend of the examined metrics (i.e.,
we are not interested in the absolute numbers) with respect
to the type of module and the times it is affected by all events
that occurred at its source. In all figures, the tables are posi-
tioned on the left side followed by the activities. In Figs. 4
and 5 activities are first arranged by their type and then by

Fig. 5 Results for strength metrics for ETL1

the affected series, whereas in Figs. 6 and 7 by their type and
then by their topological order in the workflow.

The affected series for the tables (in all figures) cor-
responds to the number of changes that occurred at their
schemas as presented in Table 4. The most “evolved” table
in ETL1 is S4, followed by S1, whereas T2 dimension table
(along with the relevant temporary table) exhibits the high-
est number of changes among the data warehouse tables.
This is due to the fact that most source schema changes,
occurred at S1, have been exclusively propagated to the T2
dimension table, without altering T1 dimension table. Filter-
ing activities are affected by all changes occurring at their
source table. For example, ETL1_ACT1, ETL1_ACT2, and
ETL1_ACT3 activities exhibit the same affected number
with S1; ETL1_ACT4, ETL1_ACT5 with S4, etc. As we
mentioned earlier, ETL_ACT9 projects all S1 attributes, but
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Fig. 6 Results for transitive degrees and entropy metrics for ETL1

Fig. 7 Results for transitive strength metrics for ETL1

only a small number of S4 attributes. Thus, all other project
and join activities, positioned after ETL_ACT9, are mostly
affected by S1 evolution changes and S4 attribute additions.
Next, we discuss our findings for each family of metrics.

The in-degree metric is significantly low and invariant to
the number of events affected all modules. The out-degree,
and consequently the total degree, follows proportionally the
number of events that occurred on the source and lookup
tables of the workflow, as well as on the T2 target table
(the table that “absorbed” most source schema changes).
The out-degree metric captures the size of the table schema,
which seems to be a crucial factor for the evolution of the
tables. The out-degree for all types of activities follows a
similar trend. The out-degree for activities mostly captures
the number of attributes that are projected by each activ-
ity and as a result, project activities exhibit low out-degree
values. However, most activities have been affected by evo-
lution proportionally to their out-degrees, except for some
peaks such as ETL1_ACT6. ETL1_ACT6 activity depends

on the T1_Temp table, which, however, has not sustained any
schema changes.

The strength metrics for the tables (shown in Fig. 5)
follows an opposite trend from the simple degrees. The
strength-out is invariant to the affected series, whereas the
strength-in and total strength follows the affected series for
each table (with the exception of T1 and T1_temp). This
can be explained by the fact that the strength-in metric for a
table captures attribute dependencies between a module and
this table. Figure 5 shows that the more “used” is a table,
the higher the probability is to evolve. Filtering activities
show a similar trend for both in and out strengths, except for
ETL1_ACT5. The latter with all other activities show that
the out-strength values follow more smoothly the affected
series. Again, the peak for ETL1_ACT6 is due to its depen-
dence from T1_Temp table.

The transitive degrees and entropy metrics, shown in
Fig. 6, do not provide useful results for tables, because all
values are insignificant to the affected series. This is not sur-
prising as the entropy metric and transitive out-degree for
a module captures the number of other modules on which
this module depends transitively and tables have few or no
dependencies on other modules. Regarding the activities,
transitive out degree metrics and entropy follow smoothly
the trend of the affected series, except for ETL1_ACT4 dive.
ETL1_ACT4 exhibits a low value for the transitive degree
metric, as it depends exclusively on S4, which, however, is
affected by a large number of evolution events.

Similar to the simple strengths, the transitive in and total
strengths follows the trend of affected series for tables. On the
other hand, transitive out and total strengths seem to be more
precise for activities, especially for join and filtering ones.

ETL2 and ETL3. The next two flows, ETL2 and ETL3,
are shown in Figs. 8 and 10, respectively. Both flows behave
similarly and load data from S2 and S3 to the T3 fact table;
L1 and T1_temp tables are used as lookup tables. S2 con-
tains 160 attributes and S3, 83 attributes. Both flows have
no branches, whereas the activities mainly filter data from
their sources and update lookup values. We observed that
the number of events on these tables follows proportionally
the tables’ size and out-degree metric is again validated as a
candidate predictor for the behavior of the evolution of the
tables. The examined metrics on the activities of these two
flows show similar results with ETL1. Out-Degree and out-
strength are the most accurate predictors, but also transitive
degree metrics (entropy and total transitive strength) follow
the “affected” series. In Fig. 9a–d, we present the results for
all the examined metrics for ETL2, and in Fig. 11a–d, the
corresponding results for ETL3.

ETL4. Figure 12 shows the configuration of ETL4 and the
respective results are shown in Fig. 13a–d. The ETL4 flow
has one source, namely S4, comprising a fairly large number
of attributes, 111. The two data warehouse tables, T3 and
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Fig. 8 ETL2 workflow

(a) (b) 

(c) (d) 

Fig. 9 Results for examined metrics for ETL2

T4, are both fact tables and are populated by a series of 9
activities, i.e., ETL4_Q2-ETL4_Q10. Each activity projects
a different subset of source attributes and maps them to mea-
sure attributes in the data warehouse. Finally, L1 and T1 are
used as lookup tables and ETL4_ACT3 and ETL4_ACT4 are
used for transferring data from the temporary tables to the
data warehouse tables.

The results for ETL4 are illustrated in Fig. 13a–d. Again,
the out degree can be used as a predictor for the events that

affect a table. Out-degree, total strength, and transitive total
strength metrics are quite precise for the activities of this sce-
nario. In contrast with the previous scenarios, scaled entropy
and transitive out-degree are also proven to be good esti-
mators for this setting. This can be explained by the fact
that ETL4 is a short workflow, with only a few steps of pro-
cessing and few transitive dependencies. Therefore, transitive
degree metrics exhibit the same trend with the simple degree
or strength metrics for all activities.
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Fig. 10 ETL3 workflow

Fig. 11 Results for examined metrics for ETL3

ETL5, ETL6, and ETL7. The final three flows, ETL5,
ETL6, and ETL7, are depicted in Fig. 14a, b, c, respectively.
These three are similar to each other, loading data from three
different source tables, namely S5 (with 13 attributes in its
schema), S6 (with 7 attributes in its schema), S7 (with 4 attri-
butes in its schema) to three target tables, T5, T6, and T7.
T1_TMP table is used as a lookup table.

The results for these ETL flows are shown in Figs. 15, 16
and 17. The out-degree of relations follows proportionally
the number of occurred events on them, except for S7, which
unusually exhibits a high number of events with respect to

its size. Activities in all three flows show similar behavior,
where out degrees and strengths seem to provide more accu-
rate results for the possible events on them (even though the
sample of occurred events is low for these flows and affected
series has very low values).

5 Lessons Learned

For several months, we have observed and experimented with
genuine evolution events in real-world, ETL workflows. Our
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Fig. 12 ETL4 workflow

experimental findings are reported in Sect. 4. In the past, we
did a similar exercise for a set of artificially created evolu-
tion scenarios [29]. Based on both activities, we assessed the
metrics for predicting the behavior of a software system to
evolution operations described in Sect. 3 and came up with
some interesting insights regarding the value of our metrics.
Next, we discuss our observations and suggest design strate-
gies based on the results obtained by the use of these metrics.

Observations Our first observation, which is in accor-
dance with intuition too, is that an important factor for the
potential evolution of the whole or a part of a system is even-
tually its schema size. Especially in a workflow setting like
the ETL environment, source or intermediate tables com-
prising many attributes in their schema are more likely to be
altered and hence, more likely to affect the workflow they
feed. Therefore, a particularly handy metric for the evalua-
tion of the evolution potential of a workflow source table is
practically the number of attributes it has (expressed by the
out-degree metric in our setting). In terms of design, although
it is often hard to change a source table, at least, the designer

may choose to use intermediate tables with smaller schema
sizes. For example, instead of just saving a snapshot of a
table, she should try storing only its most valuable projec-
tion or instead of using a combination of production keys
along with their origins, she should replace keys-origin pairs
with surrogate keys.

Of course, in practice, looking just at a module size is not
a panacea. There are counterexamples too, like in the case of
the source table S7 in ETL7, where the number of evolution
events is disproportional to the table size. Due to these cases,
common practices like simple examination, through a set of
standard queries, of the DB catalog tables do not suffice to
get the most interesting metrics. Such cases are only iden-
tified with rigorous experimentation and for that, we need a
well-structured set of metrics (like the ones presented in Sect.
3) to avoid dealing with exponentially perplexing situations
as the project complexity increases.

Based on the results reported in Sect. 4, we observed that
the most accurate and suitable metrics for all module types
are the out-degree and out-strength metrics. On the one hand,
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Fig. 13 Results for examined metrics for ETL4

when a module has only one provider, then it is safer to take
into account the out-degree/out strength metrics, which cap-
ture the dependencies with an adjacent module. On the other
hand, transitive degree metrics may act as predictors for the
evolution of a module when it has many different provid-
ers and paths to evolving sources like for example Q2 and
Q3 queries in ETL4 (see Fig. 12c, d) or ETL1_ACT10 -
ETL1_ACT12 in ETL1 (see Figs. 6, 7).

Therefore, another observation is that the internal struc-
ture of each activity plays a significant role for the impact
of evolution events on it. Activities with high out-degree
and out-strengths tend to be more vulnerable to evolution.
For example, such activities may project or use in condi-
tions, a large number of attributes from their sources (either
previous activities or tables). The out-degree captures the
projected attributes by an activity, whereas the out-strength
captures the total number of dependencies between an activ-
ity and its sources. Activities with joins between many
sources tend to be more affected than activities sourced by
only one provider, but still, the most decisive factor seems
to be the activity size. Thus, activities that perform an attri-
bute reduction on the workflow through either a group-by

operation or a projection of a small number of attributes are
in general, less vulnerable to evolution events and propa-
gate the impact of evolution further away on the workflow
(e.g., Q4 in ETL1 or Q2–Q10 in ETL4). In contrast, activ-
ities that perform join and selection operations on many
sources and result in attribute preservation or generation
on the workflow have a higher potential to be affected by
evolution events (e.g., observe the activities ETL1_ACT10–
ETL1_ACT12 in Fig. 4 or the activity ETL4_ACT5 in
Fig. 13a).

Out transitive degree metrics capture the dependencies of
a module with its various non-adjacent sources. These met-
rics exhibit more valuable results for activities, which act as
“hubs” of various different paths from sources in complex
workflows. For cases where the out-degree metrics do not
provide a clear view of the evolution potential of two or more
modules, the out-transitive degree and entropy metrics may
offer a more adequate prediction (as for example ETL4_Q3
and ETL4_Q2 in Fig. 7a, d).

Hence, the module-level design of an ETL workflow is
another crucial factor for the overall impact of evolution on
the whole workflow. Thus, in terms of design, since attri-
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(a) 

(b) 

(c) 

Fig. 14 a ETL5, b ETL6, c ETL7 workflows

bute reduction activities (e.g., projections, group by queries)
are less likely to be affected by evolution actions than other
activities that retain or increase the number of attributes in
the workflow (many projections with joins), the ETL designer
should attempt placing the attribute reduction activities in the
early stages of the workflow in order to restrain the flood-
ing of evolution events. In a way, that is in accordance with
typical performance optimization strategies, where the most
selective operations should be pushed toward the start of the
flow.

Heuristics Based on these observations, we identify the
most suitable metrics for each type of construct and pro-
vide possible optimization heuristics for reducing the main-
tenance effort. Table 6 reflects our observations. When
persistent data stores are involved, the generic guideline
is to retain their schema as small as possible. Since the
schema size affects a lot the propagation of evolution
events, it is advisable to reduce schema sizes across the
ETL flow, so activities that help in that direction should
be considered first. In addition, based on our discoveries
related to what metric is suitable for each construct, e.g.,
transitive degree metrics are good predictors for modules
with many providers and the out-degree and out strength
metrics could be used for modules with a single pro-
vider.

Discussion Finally, we discuss how our methods and
results may be used elsewhere and how such design choices
may affect other ETL optimization objectives.

Generalization of results. Our analysis is based on a
specific case study and the extent of how much this is rep-
resentative is hard to show. However, in a previous work,
we had presented a benchmark for ETL designs, where we
presented a set of frequently used ETL template designs
like butterfly, tree, fork, primary flow, and so on [35,36].
Interestingly, the designs in our case study resemble either
those template designs or a combination of those. In par-
ticular, ETL1 is a complex butterfly-like design, ETL2 and
ETL3 are tree designs, ETL4 is a combination of fork and
tree designs, and ETL5, ETL6, and ETL7 are primary flow
designs. Hence, we believe that the results obtained in this
study may serve as general hints in other ETL projects as
well.

Optimization trade-offs. In general, the aforementioned
guidelines that favor maintainability of ETL flows contra-
dict the normal practice for improving ETL performance. For
example, when we have source data stores with large schema
sizes, from an evolution handling perspective, it makes sense
to split the schema into smaller chunks. How to efficiently
do this for not hurting performance much (e.g., for avoiding
join operations later on) is an open and challenging research
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Fig. 15 Results for examined metrics for ETL5

question. As another example trade-off, although an attri-
bute reduction operation like aggregation seems to better
be placed at the beginning of a flow in terms of maintain-
ability, in general, it should not be placed early in the flow
when performance is considered. For performance, it makes
sense to have early in the flow tuple reduction operators
and heavier operations like aggregations should be placed
next. Clearly, the ETL architect has to deal with an interest-
ing trade-off between maintainability and performance, two
very important quality factors for the design of an ETL sys-
tem. However, this topic is out of the scope of this paper.
Preliminary efforts towards such a multi-objective optimiza-
tion of ETL flows has been presented elsewhere (e.g., [35–
37]).

Usage in ETL engines Ideally, database administrators
and ETL designers can employ these metrics for detecting,
evaluating, and most importantly, experimenting with the
design properties of ETL flows with respect to evolution.
Based on such an analysis, the designer may decide to mod-
ify an ETL design or choose among more than one design
for improving the maintainability of her system. In addi-
tion, the metric suite that we propose may be incorporated to
an existing ETL tool for facilitating the ETL design. Since
the most popular ETL tools already represent an ETL flow

as a graph, measuring and predicting the evolution impact
with metrics as those proposed in this work, is a realistic
goal. Alternatively, the metric suite may be used as a basis
of an external module—like our home-grown tool, Hecata-
eus—that could connect to an ETL tool. Then, based on such
measures, the ETL designer could be notified about possible
actions.

6 Related Work

Various approaches exist in the area of database metrics. Most
of them attempt to define a set of database metrics and map
them to abstract quality factors, such as maintainability, good
database design, and so on. According to the model in which
they are applied, we can categorize these efforts into concep-
tual metrics referring to the conceptual design of the database
(i.e. ER diagram), relational metrics referring to the logical
design of the database (i.e. relational data diagram), multidi-
mensional metrics evaluating the design of data warehouses,
information-theoretic approaches, etc.

Conceptual metrics are useful for evaluating quality issues
for a database in the early stage of the design. To summarize
the motivation for conceptual-level metrics, a “good” design
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Fig. 16 Results for examined metrics for ETL6

Table 6 Metrics and heuristics for different types of ETL construct

ETL construct Most suitable metric Heuristic

Source tables DO (v) Retain small schema size
Intermediate & target tables DO (v) Retain small schema size in intermediate tables
Filtering activities DO (v), DOs(v) Retain small number of conditions
Join activities DO (v), DOs(v), T DO (v), T DOs(v), Hs(v) Move to early stages of the workflow
Project activities DO (v), DOs(v), T DO (v), T DOs(v), Hs(v) Move attribute reduction activities to early stages of the workflow

and attribute increase activities to later stages

at the conceptual level of a database may assure that fewer
inconsistencies will emerge (mainly in terms of fundamental
violations, e.g., primary and foreign keys) and furthermore
fewer changes are needed during the lifetime of the infor-
mation system, in general. In one of the early works, Gray
et al. [16] propose two objective and open-ended metrics,
namely ER metric and Area metric, to evaluate the quality
of an ER diagram. ER Metric is a measure of the complexity
of an ERD, based on the number of relationships between
entities and Area metric is a measure of the compliance of
an ERD with the corresponding ERD in 3rd Normal Form.
Kesh [21] develops a method for assessing the quality of an
ERD, based on both ontological and behavioral components.
Ontological components are distinguished into structure and

content metrics. Structure metrics are suitability, soundness,
consistency, and conciseness, whereas content metrics are
completeness, cohesiveness, and validity. Behavioral com-
ponents are considered to be usability (from the user’s point
of view), usability (from the designer’s point of view), main-
tainability, accuracy, and performance. Moreover, Moody
[25] proposes a data model quality evaluation framework,
which can be applied to a wide range of organizations. The
proposed framework comprises a set of eight quality fac-
tors (completeness, integrity, flexibility, understandability,
correctness, simplicity, integration, and implementability)
which can be considered as properties of a data model with
positive and negative interactions with each other. They are,
in turn, evaluated by a set of 25 quality metrics. The quality
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Fig. 17 Results for examined metrics for ETL7

factors may contribute to the overall quality of the system
according to weights, which determine the importance of
each factor in a problem situation. Genero et al. [13] focus on
measuring the maintainability of ER diagrams through eval-
uating their structural complexity. They introduce a set of
open-ended metrics and classify them into three main cate-
gories: entity metrics (i.e., number of entities within an ERD),
attribute metrics (i.e., number of attributes within an ERD,
number of composite attributes, etc.), and relationship met-
rics (i.e. number of M:N relationships, etc.). Wedemeijer [41]
proposes a metric set for evaluating the stability capabilities
of conceptual data model. The author sets up a framework
for stability of conceptual schemas and proceeds to develop
a set of metrics from it. The metrics are based on measure-
ments of conceptual features, such as the number of con-
ceptual constructs affected by a change, the complexity of a
conceptual schema, the abstraction of a conceptual schema,
etc. Last, Berenguer et al. [4] present a set of quality indica-
tors and metrics for conceptual models of data warehouses.
They employ UML diagrams for modeling multidimensional
databases and in this context they define metrics for cap-
turing diagram’s properties such as number of packages in
a diagram, number of relationships between two packages,
etc. Although they provide a methodology for theoretically

validating the proposed metric set, they do not present an
empirical validation.

Relational database metrics are used as measures for the
quality of a database at the logical level. Relational met-
rics are used to measure internal characteristics and struc-
tures of a database, such as tables, foreign keys, and so
on. Normalization theory can give the guidelines for design-
ing a database, but still cannot address other quality issues,
such as the maintainability—or evolution—of a database. In
[7,8,33], the authors propose a set of metrics for relational
databases that focuses on assessing maintainability issues
in a database, such as analyzability, testability, stability, and
changeability. These are the number of relational tables (NT)
in the database, the number of foreign keys (NFK), total
number of attributes (NA), and the depth of referential tree
(DRT), which is the maximum distance from a table towards
another table through referential integrity constraints). Ana-
lyzability is proportionally correlated to NT, NA, DRT and
NFK, changeability to NT, testability to NT, NA, and NFK,
whereas stability is correlated to NT in an inverse relation-
ship. Last, in [27], the authors propose a set of quality metrics,
defined at four granularity levels (database, relation, attri-
bute, and value) that measure referential completeness and
consistency.
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Data warehouse metrics. Quality in the context of data
warehouses (DW) has been studied in [13,38]. The authors
propose mathematical techniques for measuring or optimiz-
ing certain aspects of DW quality and adapt the Goal-Ques-
tion-Metric approach from software quality management to
a metadata management environment to link these special
techniques to a generic conceptual framework of DW quality.
Similar to aforementioned approaches DW quality is classi-
fied into several quality dimensions according to the stake-
holders (e.g., data warehouse administrator, the programmer,
and the decision maker) that are typically interested in them;
each of these dimensions is further mapped to sample types of
measurement (metrics), which help to establish the quality of
a particular DW component with respect to a particular qual-
ity dimension. Various types of measurements are introduced
to evaluate these dimensions. For example, the administrator
is interested in the completeness dimension which concerns
the preservation of all the crucial knowledge in the data ware-
house schema (model), which is further quantified by the
number of missing entities in the DW schema with respect to
the conceptual model. Another approach to DW quality met-
rics is presented in [7,8]. They elaborate three kinds of met-
rics: table metrics regarding only table characteristics of the
database (e.g. number of attributes, number of foreign keys),
star metrics regarding only multidimensional characteristics
of the database (e.g. number of dimension tables), and last,
schema metrics regarding characteristics of the whole data-
base schema (e.g. number of fact tables, number of overall
dimension tables).

Data Warehouses and their Evolution. Concerning the
evolution of data warehouses, we refer the reader to an excel-
lent survey of [42]. A distinct line of work concerns multi-
version data warehousing: see for example, Wrembel and
Morzy [43] that handle the evolution of data warehouses via
multiple versions and [2] that handles the problem via nested
transactions, or Golfarelli et al. [14] for cross-version que-
rying. Another excellent survey by [15] on temporal data
warehousing contains a summary of the related work along
these lines. A survey by [40] discusses the area of ETL and
the related work.

Various information-theoretic metrics exist in software
engineering for evaluating the quality of software design [1,
18,22]. In thedatamanagementfield, an information theoretic
approach to evaluating the design quality of data warehouses
is presented in [23], where the relation between entropy and
redundancy in the context of data warehouses is studied. They
show that the redundancy in the snowflake join of the primary
key of the fact table is zero, i.e. it is minimal. They define a
new normal form, namely SSNF—Snowflake Schema Nor-
mal Form, justifying it in terms of entropy-based equations.

Most of the aforementioned approaches consider design
metrics that correlate structural properties of the database
schema to abstract quality factors. However, they confine

themselves to constructs internal to the database without tak-
ing into account the incorporation of constructs surrounding
the database. To the best of our knowledge this is the first
set of design metrics that are explicitly targeted towards the
assessment of evolution ability of the design of a data-centric
ecosystem as a whole to evolutionary processes.

Formally specified frameworks. Several software qual-
ity metrics have been introduced in the software engineer-
ing community. Software measurement is a well-established
research area that has been explored under many different
programming paradigms (e.g., procedural, object oriented,
service oriented, etc.) and for various stages of the lifecycle
of software development (i.e., requirements analysis, design,
coding, testing and maintenance). A detailed presentation
of software metrics, software quality factors, and measure-
ment approaches is out of the scope of this paper and can be
found in [12]; still, we mention here the concepts of module
cohesion and coupling that are mostly used for assessing the
maintainability of software [24] along with complexity, as
well (referred as the 3 ‘c’-s in [34]).

Briand et al. [6] employed measurement theory to provide
a set of five generic categories of measures for software arti-
facts. In a previous work, we made a first attempt to relate
these families of measures to ETL flows [39]. In that work,
we used a different model for module representation (based
on LDL) and formally proved that the measures proposed
respect the properties of the framework by [6]. However,
representing ETL activities with LDL does not scale well in
terms of operations that can be supported. In addition, a typ-
ical, modern ETL flow involves operations implemented in
different environments and runs on different engines (e.g.,
operations in Java, PL/SQL, SQL, Perl, Awk, etc. that may
run in different engines like DBMS, ETL, Map-Reduce, and
so on). However, independently of the internal representa-
tion, our graph-based model for data-centric systems, such as
ETL flows, can be viewed as a modular system, with queries,
views and relations being its building blocks encapsulating
data and business logic. We generalize thus the discussion, to
highlight how our method fits within a more formally speci-
fied framework like the one by [6]. First, we start by referring
to the involved measures, which are

– Size, referring to the number of entities that constitute the
software artifact; we assess the size of a (sub)graph by
the number of its nodes.

– Length, referring to the longest path of relationships
among these entities, which we assessed by the maxi-
mum transitive dependency of a module’s node.

– Complexity, referring to the amount of inter-relationships
of a component, which we assessed measured by the num-
ber of internal edges plus the 50 % of the strength of the
module.
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– Coupling, capturing the amount of interrelationships
between the different modules of a system, which we
assessed by the strength of a module.

– Cohesion, measuring the extent to which each module
performs exactly one job, by evaluating how closely
related are its components, which we assessed as the frac-
tion of the input/output nodes of a module related to some
internal function of the module.

Some (but not all) of these metrics are straightforwardly
related to the metrics used in this study. The transitive degree
is an attempt to test the sensitivity of nodes depending on the
length of their provider path. The coupling of modules within
the flow is probably the most straightforward measure relat-
ing to the strength of the module.

Cohesion refers to how much interrelated are the constit-
uents of a module. If a module performs more than one “job”
and its constituents are divided in two groups of nodes doing
different things, then a module is not cohesive. Still, related to
data-centric software, cohesion is a weakly definable notion.
For example, how can one intuitively convince on a model
for the cohesion of a relation? In a more subtle line, even
if we adopt the idea that each selection and each group-by
constitutes a different “job” how convincing is it to assume
that a query combining several selections and/or a group by
is not cohesive?

A serious observation (that goes well beyond the scope of a
case study) is that the Briand et al. meta-measures were orig-
inally thought towards traditional imperative/object-oriented
software with loops and control structures rather than data-
centric software. In [39], the authors provide measures for the
Briand et al. [6] classification, but they do not fit important
measures into the framework, like the maximum path over
the graph or the degree of an individual attribute of a relation.
Complexity is a good example where the respective notion
in traditional software (McCabe’s cyclomatic complexity) is
not adequately mapped to a measure for data intensive soft-
ware.

Hence, overall, we find that our most valuable metric, out-
degree, which is going down to the details of individual attri-
butes, does not fit well with the Briand et al. framework. At
the same time, although module coupling is smoothly cov-
ered by strength, cohesion and complexity must be re-eval-
uated when we think of data-centric software.

7 Conclusions

In this paper, we have presented a real-world case study of
data warehouse evolution for exploring the behavior of a set
of metrics that (a) monitor the vulnerability of warehouse
modules to future changes and (b) assess the quality of var-

ious ETL designs with respect to their maintainability. We
have described first our graph-theoretic model for capturing
the evolution impact in the ETL ecosystem, and then, we
presented a detailed description of our metric suite. Finally,
we have reported on our exhaustive, 6-month experimenta-
tion with real-world evolution scenarios affecting seven ETL
workflows.

We have identified the schema size and module complex-
ity as two important factors for the vulnerability of a system.
We have observed that out-degrees help as predictors for the
source tables; the out-degree and out-strength are very good
predictors for the evolution of views; out transitive degree
and entropy may be applied for queries in addition to the
aforementioned metrics. Based on our experiments, we have
compiled a list of lessons learned regarding the evolution
behavior of an ETL environment with respect to the schema
of the source tables, its constituent activities, and its overall
design. We believe that these metrics and the lessons learned
in this paper can be practically useful for database adminis-
trators and designers for detecting vulnerable parts and eval-
uating the design properties of data-centric ecosystems, like
ETL workflows, with respect to evolution.

Coming back to our starting point, have we answered the
fundamental questions like How good is an ETL design?
and What makes an ETL design good or bad?. We have
demonstrated only ways to predict vulnerability to change
and discussed some interrelationship with other aspects, like
for example, performance. A complete answer to the above
questions and an attempt to combine different aspects of the
environments design (performance, vulnerability to change,
understandability, etc.) in a comprehensive framework are
prominent directions for future research. Another direction
for future work concerns models that are not founded on a
graph-based model. Although our approach is founded on
a simple and intuitive graph representation of modules and
their dependencies, it is quite possible that other approaches
that avoid the translation of code to graphs can be pursued.
How this can be done and what is the effect to the metrics
used are open problems.
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