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ABSTRACT

Karagiannis Anastasios. MSc, Computer Science Dmjgat, University of loannina,
Greece. July, 2007. Scheduling policies for theresdf management of Data

warehouses. Thesis Supervisor: Panos Vassiliadis.

Data Warehouses are collections of data coming fildfarent sources, used mostly
to support decision making and data analysis imrganization. To populate a data
warehouse with up-to-date records that are exulaitten the sources, special tools
are employed, calleBxtraction — Transform — Loa(ETL) tools, which organize the
steps of the whole process as a workflow. An ETlkffow can be considered as a
directed acyclic graph (DAG) used to capture toha/fof data from the sources to the
data warehouse. The nodes of the graph are agsiitiat apply transformations or
cleansing procedures on data or recordsets usetioi@ge purposes. The edges of the
graph are input/output relationships between thdesoThe workflow is an abstract
design at the logical level, which has to be immated physically, i.e., to be mapped
to a combination of executable programs/scriptd treaform the ETL workflow.
Each activity of the workflow can be implemented/gibally, to be mapped to a set

of software modules that can execute the ETL wowkfl

This thesis proposes the design of an ETL workfémgine, in which all logical-level
activities can be implemented with various alganith methods; every one with
different cost in terms of time or system resour@eg., main memory, disk usage).
The system is easily expanded to support any pessdivities. Another contribution
of this thesis is the systematic study of tuning élecution of a workflow concerning
its logical and physical characteristics; the stfethe input data, the workflow
complexity and selectivity, etc. Lacking of relatedsearch methodology the

workflows that are used in the experimental methmglp are grouped into fiducial
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structures. Finally, the third contribution of thisesis is the suggestion of a well

organized set of experimental scenarios is.
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HEPIAHYH

Avootdolog  Kapayigvvng, tov Tewpylov kot g Maopivag. MSc, Tunquo
[Mimpoopikng, MMavemomuio Iowavvivov, Iovitog, 2007. IToAtikég pvOuong g
dwyeipiong ™G evnuépoone amodnkdv odedopévav. EmPiénov: IMavayunng

Boaoueibone.

Otv Amobnkec Aedopévev eivalr GLAAOYEG OEOOUEVOV OV  TPOEPYOVIOL OO
SLLPOPETIKEG TNYEG KOl YPNOLULOTOIOVVTOL KUPIME Yo T ANyN OmoQPAcE®V GE £vol
opyoviopd. T'e va tpoeodotnfel pio amobnkn pe véa dedopéva, OmmG avtd
TOPAYOVTOL OTIG TNYES, XPNoLoTolovvTal epyaieio EEaymyng — Metaoynuatiopon —
doptoong dedopévov (Extract — Transform — Loadpyoieio, ETL), 1o omoia
opyOV®VOLV TO ETL UEPOLG Prinata TG OANG dadiKaciog cav pa pon epyocioc. Mo
pon epyaociag ETL pmopet va Bewpnbel og £voc katevBuvopuevog akvkAMKOc Ypagpog
OV YPNOYOTOLEITOL Y10 VO OVOTOPOGTHGEL TN pon Oedouévev omd TIG TNYES
dedopéEVmV TTpog TNV amobnkmn dedopévev. Ot kOpPotl Tov Ypaeov eival dtodtkacieg
Kaboplopod/ HeTacyNUATIGHOD dES0UEVOV 1| GOVOLN EYYPOUPDV KOl Ol OKUEC OYECELS
£16000v/e£000v petald tmv kouPwv. H pon epyaciag eivor Eva apnpnuévo oynua o
Aoywd emimedo, to omoio mpémer vo vhomombel o€ ELOIKO emimedo, ONANOYT vo
avtiotolynOel oe éva GLVOLOGUO OO EKTEAEGIUO TPOYPAULOTO TOV EKTEAOVV TNV

ETL pon gpyaciag.

2mv gpyocio avTy, KATOOKELAGTNKE £V GUOTNUO EKTEAEONG podV gpyaciag ETL,
0TO OmOoi0 Ol AOYIKOU €mMmEOOV ddkacieg NG PONG €PYACING UTOPOVLV v
viomomBovv pe mowkilec aAdyopOuikég pebooovg, kabepd pe SapopeTikd KOGTOG
660V 0Qopad amaltoelC 6€ XPOVO N TOPOLS GLGTAATOC (TT.)., LVALN, XDPO 6TO dioKO,
KAT.). To odotnua givol €OKOAN EMEKTAGIUO GE OYE0T UE TIC S1adIKOGIES TOV UmopEl

va vrootpiel. H apyttextoviky] tov cuatiuatog eivat oyedtoopévn pe tétoto 1pomo,
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®OTE VO, YIVETOL OITOJOTIKN YPNOTN TOV EVOLAUES®V OESOUEVMV, KAVOVTAS YPNOT TNG

TEXVIKNG TNG O10)ETELONG, OOV AVTO Eivo EPIKTO.

Mo tepattépm GupPoAn g epyaciog eival 1 cCLGTNUATIKY LEAETN TNG pLOLLIOTG TNG
Aettovpylog oG pong epyaciog o€ oyEoN e AOYIKE KOl PLGIKA YOPOKTNPIOTIKA TNG:
OyKo Tyoimv d€d0UEVOV, TOAVTAOKOTNTA TG OOUNG TNG PONG, EMAEKTIKOTITO GTOV
OyKko TV TEMK®OV dedopévav KA. Tpelg moATikég puOuiong mpoteivovial e AT
mv epyacio. H pio eivan moltiky Round Robin,yvoom amd to topéa tov
Aertovpyikdv cvotnuatomv. H dedtepn sivar n Minimum Cost 6mov £xel og otdyo
ueioon tov xpovov exktéheonc. Télog, M Tpitn moAtikn pvOuong, MinimumMemory
LEWOVEL TIG OMOLTOELS TOV GCLGTHIOTOG Yo VAU KT TN JldpKelo EKTEAEOTG EVOC

ETL cevapiov.

OloxkAnpmvovtag, eAlelyel oxeTikng Tepapatikng pebodoroyiog otn Pifioypaeia,
Ol POEC TTOV YPNOLUOTOLOVVTOL GTNV TEPOUUOTIKY UEAETN TNG EPYACIOG OPYOVMDVOVTOL
o€ TpoTLTTEG OOUEG, TOTOV TTeTaAovdac. H mpoTaon evoc KoAd oyedlasuévov GuvOAOL
TMEPOUATIKOV GEVOPI®OV Yoo TNV HEAETN podVv gpyaciag ETL eivon n tpitn cvopPoin

™G €pYOGiag.



CHAPTER 1. INTRODUCTION

1.1 Introduction
1.2 Thesis Structure

1.1. Introduction

A Data Warehouse (DW) is an information infrastanetthat collects, integrates and
stores an organization's data. The most importatufe of a Data Warehouse is that
it produces accurate and timely management infeomaso companies utilize data
warehouses to enable their employees (executivasagers, analysts, etc.) to make
better and faster decisions. Furthermore, data hwases can be used to support
complex data analysis. According to Inmon [Inmo0&]DW is “a collection of

subject-oriented, integrated non-volatile and time-variant data in support of

management decisions”.

W. H. Inmon [Inmo02] presents a formal definitiohaodata warehouse as a database
consisting of computerized data that is organizethtst optimally support reporting
and analysis activity. According to Inmon, a datethouse has four characteristics:

1. It is subject-orientedmeaning that the data in the DW is organizechat all
data elements relating to the same real-world ewgnbbject are linked
together.

2. Integrated meaning that the database contains data from oroatl of an
organization’s operational applications, and thas tdata is gathered in a
single location to be made consistent.

3. Non-volatile meaning that data in the database is never oxi#ew or

deleted, but retained for future reporting.



4. Time-variant meaning that the changes to the data in the asgafire tracked

and recorded so that reports can be produced spamlenges over time.

There are many advantages of using a data wareheiusieof all, a data warehouse is
able to combine a variety of data from differenurees in a single location.
Interesting information is extracted from varioustdbuted sources, which are
usuallyheterogeneousThis means that the same data is representextetiffy at the
sources, for instance through different databakersata. The data warehouse has to
identify same entities, represented in differenysvat the sources, and model it under
a unigue database schema. This means that datadataawarehouse have to go
through a series of transformations to be madeistam and up-to-date. This process
is often referred to asemantic reconciliatiomnd is an important property of the data
warehouse. Another advantage of a data warehoubatist can support changes to
data, since modifications to the data in a dateetv@use are tracked and recorded.

The data warehouse also keeps a historical reddahd doaded data.

Reporting /
LAP tools

Metadata
Eenository

Data
Sources | bablss
.
E n
ﬁﬂ End User

Administrator A gministrator Designer

Figure 1.1 Architecture of a Data Warehouse.

Finally, data qualityis an important issue, since data arriving atdag warehouse
are in most cases inconsistent. The above feaufrasdata warehouse show that a

data warehouse is always expected to contain wat®- consistent and integrated



data in order to support decision making and datdyais. Figure 1.1 presents the

architecture of a data warehouse.

1.

The primary components of a data warehouse are Sateces, Data Staging
Area, Data Marts, the Metadata Repository, ETL atiter reporting and
OLAP applications.

Data Source®r OperationalDatabasesare databases that store structured or
unstructured data as part of the operational enment of a company or an
organization. Data Sources supply the data warehauth operational data.
Data derived from various Sources are usually bgeeous.

The Data Staging AregdDSA)is a smaller database used to store intermediate
results produced by the application of cleansimfprieques or transformations
to the source data.

The Data Warehousandthe Data Martsare systems that store data provided
to the users. The data in the warehouse are oeghimifact and dimension
tables. Fact tables contain the records with theahinformation in terms of
measured values, whereas dimension tables comf@rence values for these
facts. For example, assuming that a customer psesha part for a certain
price, the reference values for the customer aagént are stored (along with
all their extra details) in the dimension tablesd ahe fact table records the
references to these records (through foreign kals)g with the price paid.
Data marts focus on a single thematic area andlyswatain only a subset of
the enterprise information. For example, a datat mary be used in a single
department of the company and may contain onlydtta that is available to
this department.

The Metadata Repositorys a subsystem that stores information concerning
the structure and the operation of the system. Tifigrmation is called
Metadata and concerns the ETL design and runtimesgses.

ETL (Extraction - Transformation - Loadinggpplications extract the data
from the sources, clean it and apply transformatiover it before the loading

of data to the data warehouse.

. Finally, reporting and OLAP toolsare reporting applications that perform

OLAP and Data Mining tasks. OLAP tools form dataoidogical multi-

dimensional structures and allow users to seledgthwHimensions to view



data by. On the other hand, Data mining tools allmers to perform detailed
mathematical and statistical calculations on datadétect trends, identify

patterns and analyze data.

The process of moving data from the sources int@i@house is performed in three
steps:
— Extraction— is the process used to determine which dataedtorthe sources
should be further processed and ultimately loaddte data warehouse.
— Transformation- is the step in which data are adapted intodhmadt required
by the warehouse.
— Loading- is the process of populating the data into theetwouse.
— This process is normally abbreviat&d'L. Figure 1.2 presents these three

steps of an ETL process.

In order to manage the data warehouse operatipesjadized tools are available in
the market, called ETL tool&TL (Extraction-Transformation-Loading) tootse a
category of software tools responsible for the awtion of data from distributed
sources, their cleansing and customization andllyirtheir loading to the data
warehouse ([VaSS02]).

i hetadata
S\ Transtmit
Fort
Cleansing .
S Tool Conversian
. Tool

e ,... D .->
Clean /'
Data

Loading Tool

Data
Warehouse

Source
Databases

Extract Cleanaing Transform Load

Figure 1.2 Extract - Transform - Load.



Their basic tasks are:

— the identification of relevant information at theusce side

the extraction of this information

— the customization and integration of the informaticoming from multiple
sources into a common format

— the cleansing of the resulting data set, on théshafsdatabase and business
rules

— the propagation and loading of the data to the dateehouse and/or data

maurts.

As we mentioned earlier, in data warehousing, degagextracted from various sources
and have to go through a set of transformationscéa®hsing procedures before they
reach their destination, usually a data warehoustoa data marts. Typical data
transformations are data conversions (e.g., comrersfrom European formats to
American and vice versa), orderings of data, geioeraf summaries of data (in other
words groupings), etc. Finally, data are loaded the data warehouse. A typical load
of data involves processingrge volumes of datge.g., several GBs of data) and
requires many complex transformations of data. Tiesins that this processtisie-
consumingoften takes many hours or even days to compétd)usually takes place
during the night, in order to avoid overloading thgstem with extra workload.
Moreover, in many systems, the warehouse load beistompleted within a certain
time window, which means that the request for perénce is pressing. Based on the
above, we can summarize the main problems of E3kstga) the enormous volumes
of data for processing, (b) performance, sincedirations must be completed within
a specific period of time, (c) quality problems)c# data usually have to be cleansed.
Furthermore, (d) failures during the transformatmrocess or the warehouse loading
process, cause significant problems to the warehoperation and finally, (e) the
evolution of the sources and the data warehouseleaoh to daily maintenance
operations. Under these conditions, we see thatameovercome the problems of
ETL tasks by designing and managing ETL tasksiefiity.

This thesis makes the following three contributionthe research area of ETL tools:



— Our first contribution concerns the design and enpéntation of an execution
engine of ETL scenarios. The elements of the ETdnado are mapped from
a logical level to a physical level. In other warladl logical-level activities
and recordsets are mapped to the appropriate @tiyysiel software modules.
The execution engine provides the software compsrteat a scenario needs.
The ETL engine guarantees that all source databwipproduced and there will
be no data loss.

— We have designed and studied three scheduling itlgm. A scheduling
mechanism is necessary to lead the execution tew@stimizing a measure
such as execution time or low memory requiremertie. measures that are of
interest in the case of ETL are execution timeogv memory requirements.
Our algorithms are the following:

o0 Round RobinA simple scheduling algorithm that assigns théveaies
to execute in FIFO order.

o Minimum Cost This algorithm improves the execution time of the
execution by assigning for execution the activitgtthas more data to
process (at the time of scheduling).

0 Minimum Memory This algorithm reduces the execution's
requirements for memory. At every time the actittgt will consume
the largest number of tuples.

— Our experiments suggest thaminimum Costperforms better thafmound
Robinin all cases; at the same timdinimum Memorythough is the most
time consuming policy of all three policies, sMinimum Memorys the most
efficient policy when it comes to average memoyureements. In most cases

Minimum Coshas less average memory requirements R@amd Robin

1.2. Thesis Structure

This thesis consists of 6 chapters. Chapter 2 ptegelated research in the area of
ETL tools. Also, we discuss the related work onesithing in data stream systems,
among with some basic principles in schedulinghengame chapter. In chapter 3, the

architecture of the ETL engine is explained in di@aong with the class diagrams of



the implementation. In chapter 4 the implementetiedaling algorithms are
explained, along with examples of how they applyaapecific scenario. In chapter 5
we experimentally assess the studied schedulingritigns. Finally in chapter 6 all

results and conclusions are summarized and therdiscussion for future work.






CHAPTER 2. RELATED WORK

2.1. Data Warehouses and ETL
2.2. General Theory on Scheduling
2.3. Scheduling in Data Stream Systems

The related work that concerns us is research stesyg that process a great amount
of data. Such systems are traditional ETL engine$ @data stream systems. It is
common to data stream system to have a schedwdemtl coordinate the query
execution. In such systems we will emphasize is thapter, since the aim for this

thesis is the design for a scheduler for the Arktagect.

2.1. Data Warehousesand ETL

Due to their importance and complexity, ETL toatmstitute a multi-million market.
There is a plethora of commercial ETL tools avddabrhe traditional database
vendors provide ETL solutions built in the DBMSIS.[SVSSO07] and [SiVSO05] there
is a list with the most popular ETL market toolse Wwriefly mention them in the
following section. Also, there have been researiforts towards the design and
optimization of ETL tasks. We mention three reskaprototypes: (a) AJAX

[GFSSO00], (b) Potter's Wheel [RaHe01], and (c) ARKS Il [VSG+05]. The first

two prototypes are based on algebras, which arelyntzslored for the case of
homogenizing web data; the latter concerns the fmadef ETL processes in a
customizable and extensible manner, without thepaetpthough, of an execution

engine.
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2.1.1.Commercial studies and tools.

In terms of technological aspects, the main charestic of the area is the
involvement of traditional database vendors witH_Eblutions built in the DBMS’s.
The three major database vendors that practichily ETL solutions “at no extra
charge” are pinpointed: Oracle with Oracle WareloBsilder [Oracle07], Microsoft
with Microsoft with SQL Server 2005 Integration @ees (SSIS) (the next version of
Data Transformation Services in MS-SQL Server 2483IS07] and IBM with the
Data Warehouse Center [IBMO7]. Still, the major ders in the area are
Informatica’s Powercenter 8 [Infrm07] and AscernsidbataStage suites [Asc03] (the
latter being part of the IBM recommendations forLE3olutions). As a general
comment, we emphasize the fact that the formerettoels have the benefit of the
minimum cost, because they are shipped with thabdae, while the latter two have
the benefit to aim at complex and deep solutions envisioned by the generic
products. The aforementioned discussion is supgdrtam a second recent study
[Gart03], where the authors note the decline ienge revenue for pure ETL tools,
mainly due to the crisis of IT spending and theegppnce of ETL solutions from
traditional database and business intelligence atsndrhe Gartner study discusses
the role of the three major database vendors (IBMrosoft, Oracle) and points that
they slowly start to take a portion of the ETL netrkhrough their DBMS-built-in

solutions.

2.1.2.Research Studies

The AJAX [GFSSO00] system deals with typical datalgy problems, such as the
object identity problem, errors due to mistypingd ashata inconsistencies between
matching records. This tool can be used eithemafsingle source or for integrating
multiple data sources. AJAX provides a frameworkergn the logic of a data

cleaning program is modeled as a directed graptatd transformations that start
from some input source data. AJAX also provides exlatative language for

specifying data cleaning programs, which consistSQ@L statements enriched with a

set of specific primitives to express mapping, riag, clustering and merging
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transformations. Finally, an interactive environmisnsupplied to the user in order to
resolve errors and inconsistencies that cannoubmratically handled and support a

stepwise refinement design of data cleaning program

The Potter's Wheel [RaHe01] system is targetedrtwide interactive data cleaning
to its users. The system offers the possibility pgfrforming several algebraic
operations over an underlying data set, includomgngt (application of a function),
drop, copy, add a column, merge delimited colunspst a column on the basis of a
regular expression or a position in a string, ddvaddcolumn on the basis of a predicate
(resulting in two columns, the first involving thews satisfying the condition of the
predicate and the second involving the rest), selemf rows on the basis of a
condition, folding columns (where a set of attrémibf a record is split into several
rows) and unfolding. Optimization algorithms arsaaprovided for the CPU usage for
certain classes of operators. The general ideabtdbotter's Wheel is that users build
data transformations in an iterative and intera&ctiay; thereby, users can gradually
build transformations as discrepancies are found, @ean the data without writing

complex programs or enduring long delays.

Arktos Il [VSG+05] is a coherent framework for tbenceptual, logical, and physical
design of ETL processes. The uttermost goal of lthes of research is to facilitate,
manage and optimize the design and implementatfothe ETL processes both
during the initial design and deployment stage,sash during the continuous
evolution of the data warehouse. To this end, ia3802] and [SVSSO03] a conceptual
model is proposed. Further, in [SVSS03] a logicaldel is presented. The proposed
models, conceptual and logical, are constructe@ ioustomizable and extensible
manner, so that the designer can enrich them vigtlown re-occurring patterns for
ETL processes. Therefore, Arktos Il offers a paleftseveral templates, representing
frequently used ETL transformations along with theiemantics and their
interconnection (Figure 2.1). In this way, the damsion of ETL scenarios, as a flow

of these transformations, is facilitated.
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Filters Unary transfor mations Binary transfor mations
Selection ¢) Push Union (U)
Not null (NN) Aggregation 1) Join (<)
Primary key violation (PK) Projection f) Diff (A)
Foreign key violation (FK) Function application (f) Update DetectionAypp)
Unique value (UN) Surrogate key assignment (SK)
Domain mismatch (DM) Tuple normalization (N) Composite transfor mations
Tuple denormalization (DN)  sjowly changing dimension (Type
Transfer operations 1,2,3)(SDC-1/2/3)
Ftp (FTP) File operations Format mismatch (FM)
Compress/Decompress (Z/dZ) EBCDIC to ASCII conversionbata type conversion (DTC)
Encrypt/Decrypt (Cr/dCr) (EB2AS) Switch ©*)
Sort file (Sort) Extended union (U)

Figure 2.1 Typical template transformations proditdy ARKTOSII.

2.2. General Theory on Scheduling

This section contains some general theory abowdsdimg, which derives from the
operating system research. Also the terminologyithased is very close to operating
system theory; in operating systems schedulingnisng processes and not activities.
We discuss the basic types of processor schedulinmgiamental principles and
criteria that characterize these algorithms. Moeeave mention a few well known
simple algorithms such as FIFO, Round Robin eter&his a brief description of
these algorithms in Table 2.1 [Sched06], at thedadridis section.

2.2.1.Types of processor scheduling

There are three different types of scheduling [Uh&8l©7], identified by the size of
the time fragment that the scheduler provides th gaocess.
— Long-term scheduling is performed to decide if a new process is to be
created and be added to the pool of processes.-teormgscheduling controls
the degree of multiprogramming. The more proceskas are created, the

smaller is the percentage of time that each procasse executed. Thus, the
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long term scheduler may limit the degree of muttggemming to provide
satisfactory service to the current set of proces$®henever a process
terminates, or the fraction of time that the preoegs idle exceeds a certain
threshold, the long-term scheduler may be invoKée. decision may be made
on a first-come-first-served basis or it can beoal tto manage system
performance. For example, if the suitable inforowatiis available, the
scheduler may attempt to keep a mix of processantboand 1/O-bound
processes. A processor-bound process is one thahlym@erforms
computational work and occasionally uses /0O deyisehile an I/O-bound
process is one that uses I/O devices more thamitreprocessor.
Medium-term scheduling is a part of the swapping function of the opemgtin
system. In operating systems, in order to incrélasemount of total memory
the idea of virtual memory is used. This technimeoeeases the resources of a
computer in main memory by using some disk spase. &/hen a process is
idle there is no use to keep it loaded in the nrmémory. So, the process is
copied to a file (swap file) and the freed spacenamory is then available to
the system. The way virtual memory is handled décathe performance of
a system. The scheduler can decide if a processckhe loaded into the main
memory either completely or partially so as to keilable for execution and
improve the system'’s performance.
Short-term scheduling is the most common use of the term scheduling, i.e
deciding which ready process to execute next. Hoetgerm scheduler, also
known as the dispatcher, is invoked whenever anteneurs that may lead to
the suspension of the current process or that mayide an opportunity to
preempt a currently running process in favor ofthen Examples of such
events include

o Clock interrupts

o /O interrupts

o Operating system calls

0

Signals
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2.2.2.Criteria

There are various algorithms available for the stesm scheduling work. Each
scheduling algorithm is built in such a way thae @r more fundamental criteria are
best served by it. The major criteria relating togessor scheduling are as follows:

— Turnaround time is the interval of time between the submissioma process
and its completion. This is an appropriate measoirea process in a batch
operating system.

— Response time is the elapsed time between the submission ofjaest and
the moment the response appears.

— Throughput is the rate at which processes are completed. stheduling
policy should attempt to maximize the throughputret more tasks could be
performed.

— Processor utilization is the percentage time that the processor is busya
shared system, this is a significant criterion, levim single-user systems and
real-time systems, this criterion is less importhan some of others.

— Fairness addresses whether some processes suffer starvaioness should

be enforced in most systems.

These criteria may be categorized into two groupsr-oriented and system-oriented.
The former group focuses on the properties thaviaiele and of interest to the users.
For example, in an interactive system, a user awéghes to get response as soon as
possible. This may be measured by response tinree Sateria are system oriented,
focusing on effective and efficient utilization tfe processor, such as throughout.
System-oriented criteria are usually important anthruser operating systems, while
on the single-user system, it is probably not ingdr to achieve high processor
utilization or high throughput as long as the stngker’'s need is fully met. It is
obvious that the above criteria are interdependamti cannot be optimized
simultaneously. For example, providing good respditee may require a scheduling
algorithm that switches between processes frequentlich increases the overhead

of the system, reducing throughput. In a particaperating system, some criteria
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may be of more importance than others, thus thigesof the operating system may

simply focus on improving those concerned aspects.

Table 2.1 Summary table of scheduling algorithmisvi@croprocessors [Sched06]

FCES (First Come
First Served, also
known as FIFO)

The first ready task is executed first until idisne. The next one is

the second ready task and so on

RR (Round Robin)

Every ready task is kept in a queue and they také&a of the CPU
for a while. Another version is VRR (Virtual RouRbbin), where
blocked tasks from 1/O are put in another queuethasystem gives

them the remaining time of their time slice.

SPN (Shortest Proce
Next)

In this algorithm every task has a priority. Thedhat is expected t
need the least CPU time to finish has the biggeripyr. It is not easy

to tell the remaining time of a task. There aretimoé slices here

SRT (Shortest

Remaining Time)

This algorithm is similar to SPN but the runningkanight be
interrupted when a new task is ready for execuiuoth the new task

will finish sooner than the running task.

HRRN (Highest

Response Ratio Tim

This algorithm has a simple formula calculating pnerities of all
dasks, favoring those that have the smallest rangaexecution time
It seems better that the two above because irotheufa there is
estimated the time a tasks waits to get the CPli. Why starvation i
avoided. There are no time slices, a task get€Rig only when the

active has finished or blocked (due to I/O).

Feedback (with g as
the number of priority

gueues)

This algorithm keeps a number of priority queues places tasks tg
one of these queues. The new tasks are put irgfieste, which is th
one with the higher priority. This algorithm is preptive and uses
time slices. When the time slice is finished, tbleesluler picks one
task from the first queue (biggest priority), ahid is empty it goes t
the next queue. The task that has been interrgeatsda lower priorit
and is put to the appropriate queue. For exampknatask is put at
first to the first queue, and the second time (witetime slice was
finished) will be put to the second queue and sdrbis algorithm

could possibly lead some tasks to starvation

O
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2.2.3.Preemption

Another issue relating to scheduling is whetheuraning process could be preempted
or not. There are two categories:

— Non-preemptive: In this case, a running process continues towggamtil (a)
it terminates or (b) blocks itself to wait for 1/@ to request some operating
system service.

— Preemptive: The currently running process may be interrugted moved to
the "ready" state by the operating system. Thenppéien may possibly be
made due to the arrival of a new process, or tleeroence of an interrupt that
places a blocked process in the "ready" state.

Preemptive policies incur greater overhead thanpreemptive ones but may be

preferred since they prevent some processes fronopatizing the processor for a

long time.

output box (roof)
r

Jé_ L]

[

to] e
(uery tree

Figure 2.2 An example of a data flow diagram [CCB+0

2.3. Scheduling in data stream systems

Data stream systems process great amounts of nonsrdata that derive from sensor
networks, position tracking, fabrication line maeagent, network management, and
financial portfolio management, where data comeontinuous and asynchronous

fashion, in volumes and rates so high that it i$ possible to store them in a
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traditional DBMS. Because of their idiomorphic natudata stream systems must
perform basic operations such as selections @ilier ETL and data streaming

terminology) and joins without the service of a DBMystem.

The sequence of the applied operators in one oe nmput streams defines a data
flow diagram (Figure 2.2). One issue that riseshasv these operators will be

executed. Two basic patterns can be proposed éodelsign of an execution engine
for data stream systems. One is to have one threadperator, and all operations are
executed simultaneously. The second pattern ixéocute one operator at a time, so
using one single thread is sufficient. In eithesecdhaving a scheduler that will

coordinate the execution of the query, even a nsobeeduler that will apply a FIFO

or a Round Robin scheduling policy, is necessamyrevidvanced scheduling policies
are essential because in most cases some extraeragats must be met. These
requirements typically involve the (a) minimizatioh memory usage, (b) response
time and (c) execution time. The related work thairesented throughout this chapter
concerns of scheduling the execution of streansome well known stream systems.
We specifically focus on the design of their scHeduand how the requirements

mentioned above are accomplished.

2.3.1.Aurora Data Stream Manager

The Aurora stream manager [CCR+03] has three tquaksifor scheduling operators
in streams, for minimizing execution time (MC),daty time (ML) and memory
(MM). The Aurora system can execute more than arexyg(continuous queries) for
the same input stream(s). Every stream is modeted agraph with operators.
Scheduling each operator separately is not vergieft, so the notion of a superbox
is introduced. A superbox is a sequence of boxatsishscheduled and executed as an

atomic group. A superbox is not necessarily a whalery.

There is a two-level scheduling algorithm for tharédra stream manager. The first
level is to decide which superbox to execute, wtiikesecond level is to schedule the

operators inside the selected superbox. Therenarevays to deal with this problem.
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Specifically, at the first level, the scheduler abes dynamically or statically the next
superbox. The static approach is rather simplenglessuperbox is pre-defined for
every query, and a scheduling policy can be apgkegl, round robin) for selecting
every time which superbox to execute. The dynarpigr@ach defines at run time
which will be the next superbox to execute. In [GOR] the static approach is used.
Three strategies are proposed for the second lavehinimize the execution time

(MC), the latency time (ML) and the memory consump{MM).

The minimum cost (MC) strategy serves the basia imfeminimizing the number of
box calls per output tuple. This means that evemsrator will be executed only if the

preceded operators are already scheduled. Evergtopé scheduled only once.

The minimum latency (ML) strategy uses a metridechbutput cost whose value is
an estimate of the latency incurred in produciniemutput data and processing
them to all following operators of the stream, Litftey reach the streams final output.
Each time, the operator with the smallest outpst oselected.

The minimum memory (MM) strategy tries to maximitee data consumption per
time unit. In other words it yields the maximum rease of the available memory.
The formula that is used estimates the memory temucate per operator. The

operator with the largest value is selected.

2.3.2.Chain Scheduling Policy

The Chain [BBDMO03] scheduler reduces the requiregmory when executing a
guery in a data stream system. [BBDMO3] focusetheraspect of real-time resource
allocation. The basic idea for this scheduler isétect an operator path which will
have the greatest data consumption than the ofhikesscheduler selects a group of
operators instead of one. The authors use a pdgoesxplain the functionality of
their scheduler. The horizontal axis of the progrebart represents time and the
vertical axis represents tuple size. The chartainatoperator points. The operators

that participate in the execution create an opernaaédh, which is the flow of data
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during the execution of the query. Every time tlobesluler runs, a part of the
operator path is selected dynamically. To accorhpigs, the scheduler must get a
snapshot of the system. The progress chart isstefttand demonstrates the current
state of the system; the selectivity of every ogrand its input. Based on a
mathematical formula some adjacent points are grdvuphe first and the last point of
the group are connected with a dashed line. Evech group is called as a lower
envelope. The steepness of every line indicatesdftective each group would be if

it is set for execution.

The scheduling strategy is rather simple, everyetimey select the steepest lower
envelope. The system makes sure that there araipiestin the middle of any

operator group. This makes possible to treat aleloenvelops (operator groups) as
single units of processing. In other systems th&cb@lea to decrease the required
memory is to select one operator that has the bigigta consumption. In this work

this idea is expanded a little by selecting a groupperators instead.

2.3.3.Pipeline Scheduling

[UrFrO1] presents two scheduling algorithms whepepning is employed in query
execution. Both algorithms aim to improve the sysseresponse time; therefore it is
necessary that all operators are non-blocking. Jdteeduler needs to compute the

output rate of every operator in the stream anecséhe one with the highest rate.

At first three non-blocking join operators SHJ, DP&hd XJOIN are discussed. These
operators have one, two and three stages of erecunh every stage, the XJOIN
operator has a different behavior, and this is sbimeg that affects the scheduler. In
every stage, the scheduler must use different fasnto estimate correctly the

operators output rates.

The authors propose a rate based algorithm, whibledalles streams, rather than
operators. A stream is considered as an executitnwinich consumes tuples and

produces output data. In every execution of thedgler the stream with the biggest
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output rate is selected. The scheduler runs evieeysecond. If the selected stream
finishes in less than one second, the next stréaing selected is based the previous

estimates of the scheduler.

A second approach on this problem is also discyudse@ the authors consider that
some data are more important than other, basedhempreference of the user (an
ORDER BY clause in the query). The second algorigwasented can schedule
streams in a way that important data will be precdetthan others in the execution, and
reach the final output first. Every tuple is assigra rank which shows how important
this tuple is. The important data are favored atjtin operators, will others are put
aside for some time. There are two formulas tavede the importance of data, CM
and AM. Two variants of the algorithm are presentadled SIP and SJP. The above
formulas can be applied in both cases. In SIP vehtrple arrives there is a check on
its rank and it is compared with a random valugh# tuple's value is greater it is
processed. SJP works in a similar manner with ifierence that it decides to process
the tuple, not when the tuple arrives but whes @bout to be joined.

2.3.4.Summaries of the studied algorithms

In this summary we present all the scheduling @goms we studied in related work
papers. All algorithms have some common properiidsch are presented in Table
2.2. Our classification is performed through thiéofwing axes:

— Who is next: This dimension presents the parameter or parasetach
scheduler uses to select the next operator.

— For how long: This dimension tells us whether each algorithndependent
on the use of time slot or not. In the latter casepperator typically becomes
idle if all its input is consumed or its output gees full. Some algorithms can
incorporate both criteria in the calculation of theration of the execution of
an operator. Concerning the preemptiveness prgperig could possibly
argue that time-slot based algorithms are preemptiva sense, since their
execution is stalled whenever they reach theirgheged deadline. Still, since

the most clear case of non- preemptiveness is dee where each operator
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consumes all its input, possibly stores it, andhthasses the execution to the
next operator, it is clear that several degreespreemptiveness can be
considered.

— Criterion: In this dimension we can see the criterion edgbrdhm tries to
favor.

— Decision: Some algorithms base their decision on each tpéyacondition
only, while others need to consider more than qrexaior to make a decision.
For exampleM C checks the input size of every operator, wMle for every
operator needs to know the output rates of itsessmrs in the stream.

— Parameters: This dimension presents the parameters that eakygrithm

requires for its decision.

For an ETL engine the criterfairness execution timendmemory consumptioare
important and we provide a scheduling algorithmdach criterion. Our scheduling
policies are explained in detail in chapter 4. Tdrgerion response times not
appropriate for an ETL engine because response itiogtly concerns interactive
query processes where an end user is involved,ewthé ETL setting we are
interested in, involves off-line refreshment of tharehouse. Moreover, the presence
of blocking activities, such as aggregator and,jeirminates any chances to improve

the system's response time.
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Table 2.2 Summary table of all stream scheduliggrithms

Name Sour ce Who I's Next FcIJ_rol;:gw Criterion Decision Parameters
until idle / .
FIFO [BBDMO3], [UrFrO1] next token . Fairness Local operator ID
time slot
: until idle / .
Round Robin [BBDMO3], [UrFr01]| next ready token time slot Fairness Local operator ID
Equal Time [UrFrO1] Ieast_executed “T‘“' idle / Fairness Global execution time
time time slot
Cheapest First [UrFrO1] least E(r)(;fessmg until idle response time Local processing ca
Greedy Scheduling [BBDMO3] least selectivity timets memory Local selectivity
consumption
Min Latency [CCR+03] largest output size until idle| response time Global selectivity, cost
Rate Based [UrFrO1] largest output size until idlg response time| Global selectivity, cost
Min Cost [CCR+03] largest input size until idle exéon time Local input size
Min Memory [CCR+03] largest data until idle memory Local nput size,
consumption consumption selectivity, cost
Chain Scheduling [BBDMO3] largest da_tta time slot memory Global Input size,
consumption consumption selectivity, cost

st
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CHAPTER 3. SYSTEM ARCHITECTURE

3.1. General Idea

3.2. Description and logical representation of ah. Scenario
3.3. Logical and physical perspective of an ETLnsc®

3.4. Execution model and requirements for the Endire
3.5. Scheduler

3.6. Implementation of the logical level

3.7. Implementation of the physical level

This thesis focuses on the design and the impleatientof a parametric ETL system,
in which simple and complex ETL scenarios can dendéd and executed. The user of
this ETL execution engine is able to define thenaces easily. In this thesis we
centre our efforts to implement the execution maafethis system. Another basic
goal is to design a scheduler for this system, &bleine the execution of the data
cleaning and transformations, based on an operptihgy the user has selected.

3.1. General Idea

When starting the design of an ETL engine, we nocossider a few basic issues. At
first, we should provide some functionality to thser, so that he will be able to
define a scenario, and all of the components tbatpose a complete ETL scenario.
The definition of the scenario will keep a level afstraction, so that some of the
implementation details will not be a part of it.efh we need to design the logical
representation of these components. We also neddsign a model for the physical
representation of the same objects, in which implaation and execution details will
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be important, and an execution engine which will responsible for the correct

execution the ETL scenario.

3.2. Description and logical representation of an ETL Scenario

As mentioned before, the definition of an ETL scemas a composition of the
definitions of the elements that form a scenarsoyall with its respective parameters.
At this point we will describe its basic componerdad also the logical model on
which our definition is based.

The execution of a scenario can be divided intedhrasic steps. At first, data are
extracted from several data sources (text filestaleses, etc), then certain
transformation, cleaning or integration operatians applied on the input data, and

finally the processed data are put into a data naree.

Data Tyvpes Black ellipsoid @ RecordSets Cylinders @
Function
Black rectangles $2€ Functions Gray rectangles myS2€
Types
Constants Black circles ° Parameters White rectangles Eats
Attributes Unshaded ellipsoid Activities Triangles
P o S = Provider Bold solid arrows
art- Simple lines wit . . " .
< Relationships (from provider to
Relationships diamond edges™ ——— i P N —_—
consumer)
i Eold dotted
X of Dotted armrows Derived .
tance- arrows (fr
s ‘”.]te . (from instance [ 77777 > Provider 1rr01.\s S -_———-—
Relationships N . . provider to
towards the type) Relationships N
consumer)
Regulator
e Dotted lines | ---------
Relationships

Figure 3.1 Notation of the architecture graph [VS6}+
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The basic structure of an ETL scenario consistdatd sources and targets, which we
will refer to them as recordsets, and a set of atpmrs that are performed on the data
which we will refer to them as activities. The aites are the transformation,
cleaning or integration operations, while the resets are the places where data is
either extracted or loaded by the system. An dgtigan be a filter, a join or an
aggregation operator. In an ETL scenario the aw#vithat are applied on some data
have a specific execution order. Therefore it ipomant to define the order the
activities are executed and we can treat an EThagoe as a composite workflow.
The full layout of an ETL scenario, involving adtigs and recordsets can be modeled
by a graph, which we call the architecture grap®®#05], in which all the details
relating to the ETL scenario are enclosed.

The architecture graph is directed and acyclic. dinection of the graph represents
the flow that the input data will follow inside tHeTL scenario. The nodes of the
architecture graph will be the activities and teardsets, while the edges will
provide information for the flow of the processeataj and which node (activity or
recordset) will work as a data provider for anothede (the data consumer). For
every activity or recordset, we need to set soropgaties. An activity can be defined
as an entity with possibly more than one input s@ta, an output schema and a list
of parameters that specify the current activityedordset, can be defined as an entity
with one input (or output) schema, and a paranistethat identify the data source or
target. The edges of the graph describe the raktips between the nodes. There is
more than one type of edges in the architecturpihgr&he basic relationship is the
provider relationship, which illustrates the praaigonsumer relationships between
the activities and recordsets of the scenario. sidiremata of the data are also shown
in the architecture graph. The part-of relationshgsociates each schema with one
activity or recordset. The regulator relationshnows the relation between attributes
of the input and output schemata of an activitye Tdomplete notation for the
architecture graph is shown with detail in Figured JVSG+05]. A complete
definition of a complex scenario might give us awheand overloaded representation
of the graph. It is not expected for the user ity fdesign the graph, but the graph is
used mainly to give the user a graphic perspedibke scenario.
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In Figure 3.2, a simple ETL scenario is shown wfite use of the notation described.
In this figure some details are omitted, so that thader can understand the actual

scenario, as well as the basic structure of thieitaxture graph.
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Figure 3.2 Representation of an ETL scenario wigharchitecture graph.

The scenario that is presented in Figure 3.2 isitpaomposed by four activities. We
will now briefly describe this scenario. The bigctangle on the figure is the data

staging area (DSA).

The first thing to do is to start extracting datanfi out data source. Depending on the
scenario, it is not necessary to always wait fomglut data to be loaded. Since input
data are loaded, or have started loading in the ,RIBAfirst activity will separate the
new tuples from the old ones. It is supposed thathave extracted data from the
same source at some point in the past, and nowamé tew process only the tuples that
have been created since. So, the first activity mgject all the tuples that have been
already loaded in the system. The remaining tupkes(a) persistently stored for
checkpointing reasons and (b) passed to the néxitador further processing.

The next activity will perform a null-check on thew tuples, on the attribute "cost".
All tuples that have the NULL value at this fieldbe rejected.

When extracting data from more than one souras,viery useful to add an attribute
to each tuple indicating the data source. The thativity does that operation, adding
one attribute to each tuple, in this case the eteglue 1.
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The last activity of the scenario adds a surro@ieto each tuple. The need for a
global key for all the tuples is pretty much cleall. tuples have a primary key from
their source. Usually each source has a differata tiype for a primary key, or if it is
of the same type, it is most likely that the sarakie (e.g. id = 5) is already assigned
to more than one tuple. Since all tuples will bacpd into the same table their
existing primary key can not be used. The actitidyg a lookup table, and also uses
the attribute added from the previous activity toyide each tuple with a unique

value, which usually is an integer for performaisseies.

We have now defined the logical model to represantETL scenario. We must
provide the user with some functionality so thatdam be able to easily create his
own scenarios. We could use a graphic environmenivhich the user actually
sketches the architecture graph [VSG+05]. Anothery io do so is to use a
declarative language for the definition of the ESdenario. In [VVS+01] the SADL
language is proposed. A variant of this languagelmused, in which the user will
specifically define the nodes and the edges of graph, in terms of activities,

recordsets, schemata etc.

3.3. Logical and physical perspective of an ETL scenario

The model we just described briefly has a certawell of abstraction for all the
elements of the ETL scenario. As mentioned befaeefollow a traditional approach
and group the design elements into logical and iphlswith each category
comprising its own perspective. At the logical perdive, we classify the design
elements that provide an abstract description @fwhbrkflow environment, where as
in the physical perspective all the design elementdose the details and parameters
required for their execution. In other words, tluéaties defined at the logical layer
(in an abstract way) are materialized and exectibedugh the specific software
modules of the physical perspective.
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Since we have decided that the logical and phytweal to be independent, we need
a mechanism that given as input the logical repitesien of an ETL scenario, it will
provide us the respective physical representalibis mechanism is responsible for
the correct and efficient mapping of logical obgetd the respective physical objects,
which are the appropriate software modules thatt éxside the system. For example,
this mechanism is in charge of to decide which gperator should be selected
(Nested Loops Join, Merge Join, etc) when an dgtimithe logical level is defined as
join. Also, inside this mechanism we could integrah optimizer in order to achieve
a different representation of the objects at thesyal level, which will possibly lead
to a faster execution of the scenario. Designing@mnizer for this system is not a
part of this thesis. In Figure 3.3 there is a sargketch illustrating this general
mechanism and how it interacts will other partshef system.

7 Logical level ) ! Physical level

All elements are All elements here

kepf mainly in this exist only during the

perspective i execufion
Parsing an .| Transition .| Scenario
ETL 7| to the 7| execution
SCenario physical

level

Figure 3.3 Logical and physical level for the scemalements.

In order to correctly depict the design elementtheophysical level, a set of template
classes can be used [VSG+05]. The objects that exihe physical perspective of
the ETL scenario are instances of these templatses$. In Figure 3.4 the mapping
between the logical level and the physical levelesrs through the template classes.
When the mapping process is completed, the execufidhe ETL scenario can be

initiated.
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Figure 3.4 Association of the logical and physleakl [VSG+05].

3.4. Execution model and requirementsfor the ETL engine

Having defined the logical and the physical leweé need to design an execution
model for the activities of the physical level. @ealy, each activity receives tuples
and processes them, and puts the result tuplesthetanput of another activity,
according to the edge in the architecture graphti@nother hand recordsets do not
always have both producers and consumers. Recsrdset entitled to feed the
workflow with source data from an external souregy( text file, database) or write
output data to an external target (e.g., a dataharse).
There are three fundamental issues that we neeestdve in the design of an ETL
execution engine, and a scheduler for it:

— The management of intermediate data.

— The strict requirement for zero data losses.

— The avoidance of deadlocks.
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Management of intermediate data: One basic issue that rises is how to manage the
intermediate data that are produced. One idea exégute each activity separately,
and store its output to a file. When this activgydone, its consumer activity can be
started by reading the providers output file. Téypproach is simple, but it has two
main disadvantages: (a) the need for disk spacehwhight not always be available
and (b) the overhead of temporarily staging intefiae results and subsequently
retrieving them again for the next activity. Aneaitative solution is to keep input and
intermediate tuples into main memory and the aetiwiwill process them without the
need to store intermediate data. Parts of the wawkthat do not contain blocking
operators can take advantage of the pipelining oaetiwith this approach all
activities need to be executed simultaneously,esme can not load all the input data
into main memory. Every activity will read and writuples from the appropriate
shared data structures, such as queues (Figurel3the case of blocking operators

(e.g., aggregator, sort-merge join) the intermedi#ta need to be stored temporarily.

Mo nitor

Queuel :;E. Quene 2 ::=E Quene 3

Activityl Activity 2 Activity3 Activity 4

Figure 3.5 Pipelined execution of an ETL scenario.

This approach has a few more benefits. In the wésge the input data are not stored
locally, but the system receives them from a renummmputer there is an extra
communication cost for receiving the data from temote computer. During this
time, we can start processing the tuples that haweed. The method of pipelining is

also efficient in the case where the produced oatst be sent to a remote computer.
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The output data which are already produced carebetse the remote target without
having to wait for the execution of the scenaridingsh. In both cases we can reduce

the execution time since it overlaps with the tspent for communications.

Zero data losses: An essential principle for this system is thagréhis no data loss.
All the tuples that are present in the input must dppropriately processed and
propagated as the scenario dictates. The exeautialel must guarantee that no tuple
will be lost during execution, due to the fact teame output buffer has been filled
and its producer continues to output data to thi$eb. Moreover, we need to come
up with an implementation in the absence of theutyof load shedding. When a
DSMS (Data Stream Management System) experiences algerload, the load
shedding technique is applied and some of the idata are ignored; then, each query
is executed with the remaining data. Load shed@ngseful in such cases, so that
possible time constraints are satisfied. On thetraoyy in our setting, all data are

important, so we must ensure that we have zerolosgas.

Deadlocks: One vital issue in the case of pipelined execuitothat it is possible to
have deadlocks during execution. The method oflipipg is commonly used when
an SQL query is executed by a DBMS. There are aabese in a pipelined execution
a deadlock might appear [DSRSO01]. In a similar neanwe may experience
deadlocks when executing an ETL scenario. Our systeould avoid the appearance

of deadlocks.

Empty  Empty

eue ueue Empty
eue
NLJ
A b4
ull
Full
queue X queue

Figure 3.6 Deadline example (preliminary implemgatg.
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In our preliminary implementations, when the schieduwas left to the operating
system, the following kind of deadlock was obsenaad original produceA would
feed two parallel "lines" of activities, that wouldtimately converge to a binary
activity Z. Assuming that a blocking operatdrparticipates in one of the two "lines",
then Z's input queues could possibly come to the staterevione was completely
empty and the other full. At the same time, all loeues betweeX andZ are empty
and the queues in the other "line" of activitiesweenA andZ were full. ThenZ
cannot execute since one of its input queues idyeamu A cannot execute since one

of its output queues is full.

3.5. Scheduler

Designing the engine's scheduler is one of the ks for the construction of an
ETL engine. There are many possibilities for tunangcheduling protocol. A first,
simple to implement opportunity (without the existe of a scheduler) involves
having the activities of the scenario running corently in random (as threads). The
lack of a user-level scheduler means that we ralyhe scheduling provided by the
underlying operating system; we cannot get anyaniee that this is the best way
(e.g., fastest, memory efficient) to execute thenaco. Designing a user-level
scheduler gives us the ability to schedule the ingractivities with our own
standards; therefore we can achieve a more eftieeecution of the ETL scenario.
Based on a user selected policy, the scheduleturenthe execution of the running
activities. The user can pick from a palette ofdamental goals, e.g., (a) select to
tune the scenario so that the total execution tsmainimized or (b) to minimize the

memory requirements, average and maximum.

3.6. Implementation of thelogical level

As mentioned before, the definition of an ETL seemas a composition of the
definitions of the elements that form a scenarsoyall with its respective parameters.

A scenario is a graph, so is composed of nodesédgds. A node could be either an
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activity or a recordset. Every node has some ispbémata, and one output schema.

Every schema is a finite list of attributes. Figakttributes are characterized by their

name and data type.

1 1

: -

Scenario -AllActivities
1 _AllEdges * -AllRecordeSets
~AllActivitites -ﬁ::gdges
-AllSchemas -Allschemas
———<-AllTables +AddAcrivity()
+ReportToFile() 1 +ﬁgggcég?(())
+ e
1 < +AddSchema()
+AddScenario()
[Edge b +ReportToFile()
-Name — Q Q
-Name : String 1 1
-EndNode
-StartOutputName : String Node
-EndinputName : String HInDegres - Integer
. +QOutDegree : Integer
Schema #Name : String
-Name : String | | -Ancestor
+AttributeList -Successor
+AddAttribute() +GetName() : String
1 Zﬁ
1
Attribute
-Name : String
-Type : String - * .
+SetName()
+SetType()
+GetName() : String Activity RecordSet | |
+GetType() : String Type : String -Schema : Schema
-Semantics : String +ReportToFile()
-RejectAction : String
* -RejectSemantics : String

+ReportToFile()

Figure 3.7 The class diagram of the logical level.

Therefore a scenario is a set of activities, reseis] edges and schemata. In Figure
3.7 a class diagram of the logical level is depict®ince every scenario is a graph,
node and edge classes are defined in the classadiag node can be an activity or a
recordset, so thodeclass is extended to @ctivity class and &ecordsetlass. The
Node class is abstract, since it does not represereaif&c element of an ETL
scenario. TheSchemaclass and théAttribute class represent the schemata and
attributes of a scenario. There is als&@narioclass which holds all the elements
that define it in collections. A simple declaratiamguage is used, in which scenarios

and all of its elements can be declared. Givendad#ively specified scenario the
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engine's parser transforms it into objects of ttoeementioned classes. We used the
AntLR [AntLRO7] parser, a simple and efficient talat generates the code for a
parser. With the parser leoader class was created that reads the information the
parser provides and creates the instances of éissed in Figure 3.7, and ensures that

all elements are created and loaded correctlyGora object.

3.7. Implementation of the physical level

Considering the above requirements for the ETL mmgiits implementation
necessitates the use of threads. Every activityraodrdset will be executed from a
single thread. A monitor thread is also essential the control of the scenario
execution, and will have a supervising role ovee thxecuting activities and
recordsets. In order for the threads to communi@taeessaging system must be put

into operation. This architecture is easy and stmplunderstand.

Status
Executionitem +Finished : Boolean
" @® — |+Stalled:Boolean
- Inte_ger_ +LastMessage : Boolean
-myBox : MailBox 1 4 ,
- +Counter : Integer
Monitor +Execute() 1
-Scenario #Inboxh 0
-MonOptimizer : Optimizer | 1 #DataProcess() 1
-MonScheduler
-Monitoring() 4 DataQueue
1 [*Rise( -Size
+GetData()
1 +PutData()
1 +Limit() : Boolean
Optimizer .
ExecutionRSet MailBox
e _ 5 -ConstructRecordSet : RecordSet R Queue
+LogicalToPhysical( #InboxManagement() +Send()
+Receive() : Message
Message
- -1d : String
Reader Writer . Type : String
-MyProxy : ProxyReader -MyProxy : ProxyWriter -Info : String
+DataProcess() +DataProcess() +GetSenderld() : String
+GetType() : String
" — +GetlInfo() : String
Scheduler 1 1 E; Activity
-ltemList 1 1 -ConstructActivity : Activity
+NextActivity()() : Integer #InboxManagement()
+Remove()() ProxyReader ProxyWriter %
+ReadTuple() +Write Tuple()
+Destroy() +Destroy()
Filter NLJ GenericActivity
#DataProcess() | [#DataProcess() | [#DataProcess()

FilerReader FileWriter
-Path : String -Path : String

Figure 3.8 The class diagram of the physical level.



35

The design of the physical level requires dealinitlp & TL scenarios from a different
perspective. Every node of a scenario is a unitglegforms a portion of processing,
even if that is simply reading or writing data. Téfere we consider every node
(activity or recordset) as an execution item orrafm. All intermediate data that
execution items process must be stored in queoethas the pipelined execution is
accomplishable. These queues are calbtd queuesind they contain tuples. As seen
in the Aurora Stream Manager [CCR+03] processingryevtuple separately is not
efficient, so we useow packs a structure which holds a number of tuples. Data

gueues keep row packs instead of tuples.

Since the graph is directed and acyclic every reastebe characterize its neighbors as
producers or consumers. Every execution item mase la mailbox, in order to
support the messaging system that is required.yEssercution item should know the
mailbox of its producers and consumers, as welkh&s monitor's mailbox. The
monitor is a component of the system that supervises aedtsl the execution. In
Figure 3.8 there is the class diagram of the plays&vel. The two basic components
of the physical level are thdonitor and theExecution Itentlasses. Th&xecution
Item class is extended to thHexecution Recordseatlass and thé&xecution Activity
class. These two classes are also abstract. Thefbastionality though exists in the
Execution Itemclass. The other classes simply provide functipndbr assigning
producers and consumers to the nodes. A recordseeither only one consumer or
only one producer, while an activity can have batAny producers and many

consumers.

3.7.1.Execution Item functionality

When a scenario starts to execute,Eecute()function is called for every operator.
The execution of the operator is complete whenftimetion returns. At each time
point, it is possible that some of the operator$ mat have any data to process. For
performance reasons we need to stall them for dl goion of time (every thread

sleeps for a small time fragment).
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The Execute()function is constructed as a loop (Table 3.1) hicl (a) the operator
checks its inbox regularly and (b) decides whetbgorocesses some data or to stall
for a small time fragment. Every operator hastatusflag that indicates whether it
must process data or not antirshedflag that indicates whether the operator should
exit the Execute()function. Thus, it is necessary for the operatocheck its inbox
frequently, since the monitor or some other operatight have sent an appropriate
message. The operator will exit the while loop wiileafinishedflag will turn its
value form false to true. ThBataProcess()function is not implemented in the

Executionltentlass, but by a concrete sub-class that overridedinction.

Table 3.1 Thd&xecute(¥unction of theExecution Itentlass

Sub Execute()
InitExecute()
While ( Not OperatorStatus.Finished)
InboxManagement()
If (OperatorStatus.Stalled) Then
Thread.Sleep(EngineStallTime)
Else
DataProcess()
End If
End While
EndExecute()
End Sub

In any case, though, a critical point in our degigs to do with the implementation of
the DataProcess()function. As we shall see later in this sectiore thbox of an
operator receives messages from a monitor of thmenwith directives on when the
current round of its execution completes and anatperator must be activated. If we
want an operator to relate to these notificatidhe DataProcess(function must be
constructed in such a way that it processes a smaiber of data -- small enough, so
that their processing will have been completed teefioe designated deadline arrives.
Moreover, the implementation of thBataProcess()function must respect the
constraint that whenever the output queue is tiudl,operator must be stalled.
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As seen in Figure 3.8 the recordsets of the soeran be instantiated &eadersor
Writers. These classes are responsible to feed the warkflth input data or store
the output data, correspondingly. EveRgaderor Writer uses a proxy inside the
DataProcess(Junction. The proxy is simply a wrapper for objetitat read from (or
write to) text files, databases etc. Depending dretiver the recordset is used for
reading, writing or both, we define the correctyyr¢o instantiate, e.g., BileReader

or FileWriter class. In Table 3.2 we see the implementationhefCiataProcess()
function of aReaderclass. TheStatusvariable keeps the status of the consumer's data

gueues. If the queues are full the operator mosgt gtocessing data.

Table 3.2 ThdataProcess(junction of aReader

Protected Overrides Sub DataProcess()
Dim Status  As Boolean

For I As Integer =1 To EnginePackSize
MyProxy.ReadTuple(CurrentTuple)

If (CurrentTuple Is Nothing) Then 'Reached End Of Input
OperatorStatus.Finished = True

Exit For
Else

Status = ForwardToConsumers(CurrentTuple)
If ( Not Status) Then
StallThread()
Exit For
End If
End If

Next
End Sub

The activities of the scenario will be instantiattieda sub-class of thExecution
Activity class. TheDataProcess(¥unction will contain the code that reads from its
data queues, process the tuples and then forwlaeds to its producers. In Table 3.3
we see the implementation of tbataProcess(function of aFilter class. Again the
operator must check the status of the consumeesegjland if they are full the data
processing must temporarily stop. In other aceeitisuch as joins tH2ataProcess()
function is more complex; yet the logic is the saineevery case thBataProcess()
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function must process only a small amount of ingata, so that the operator can

check its inbox frequently.

Every Execution Itenhas aStatusobject. TheStatusclass simply holds some flags
and values for the status of the operator. Thisscits as a grouper of these values,
simply to keep the code organized and nice. Theeglhat &tatusclass gathers are:
— Stalled (boolean): This value, if true, allows the operato call the
DataProcess(junction
— LastMessagéboolean): This value is set true only when therafor will not
receive any more messages from its producers.Wilisappen only if all of
its producers are finished.
— Finished(boolean): This value is set true if the executdrihe operation is
complete.

Table 3.3 ThéataProcess(junction of aFilter

Protected Overrides Sub DataProcess()
Dim Status As Boolean = True

Producer.Queue.GetData(InPack)

If (InPack Is Nothing) Then
If (OperatorStatus.LastMessage) Then
OperatorStatus.Finished = True
Else
StallThread()
End If
Else
While (InPack.GetRow(CurrentTuple))
If (FilterCalculator.Evaluate(CurrentTuple)) Then
Status = Status And ForwardToConsumers(CurrentTuple)
End If
End While

If ( Not Status) Then
StallThread()
End If
End If
End Sub
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3.7.2.Monitor functionality and messages

The Monitor thread is responsible for the correct initialieatiand execution of the
scenario. The execution of this thread has threelsteps. The first step is to create
the physical object with respect to the logicaleats thelLoader created. In our
system this mapping process is done byQpémizerclass. For all source recordsets
the Optimizerreturns aReaderobject, and for target recordsets it returng/ater
object. For activities theOptimizer returns an object that inherits the
ExecutionActivity()class. Since designing &ptimizeris not part of this thesis, the
user defines explicitly e.g., which join activitygbers. Also during this process the
Optimizerassigns a unique id to every operator. This igsed as an identifier so that
threads can communicate to each other. MoreoverQftimizerperforms a simple
check on the graph. Some errors, such as the eutatefinition of an edge, that were
not detected from the parsing process will be fohare. TheOptimizeralso makes

sure that every thread knows its producers andurness data queues and mailboxes.

After creating the physical objects, the monitasea the threads of every operator by
calling theExecute(function and then the monitoring process starss s the basic
functionality of the monitor. When the executiomrss all threads begin in stalled
mode and simply wait for a message from the momdatdregin the execution process.
The monitor uses afirktosScheduleobject, which selects the next thread to activate.
Its interface is simple; on creation it createssawith all threads. ThélextActivity()
function returns the id of the selected thread @w@cRemove(ld As Integefiinction
removes a thread from the list. This function igedisvhen a thread is finished, to
remove it from the list of the scheduler. Everyditihe monitor wants to activate a
thread and allow it to execute, it must useNestActivity()function to select the best

operator according to the scheduler.

The monitoring process is a loop in which the mamihread checks its mailbox and
gathers some statistics. The statistics it gatbensern the required memory during
the scenario execution. The monitor checks its agessto see when an operator has
stalled or finished its execution. Depending on thessage the monitor acts

accordingly. Every operator has a mailbox and knthvesmailbox of the monitor, as
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well as its neighbors. All these objects commumdat sending messages. There are
a few message types that the threads use. In Babige see a brief description of the

message types.

Table 3.4 The message types of the ETL engine

M essage type Description

This message is sent among operators so that an
MsgEndOfData operator will notify its consumers that it has
finished producing data.

This message forces the thread t terminate even if
MsgTerminate the data process is not complete. If it sent to the
monitor it notifies that the sender has terminated.

When an operator receives this message it resymes
MsgResume the data processing by switching the fitglledto
false.

When an operator receives this message it stops
MsgStall temporarily processing data by switching the flag
Stalledto true.

This message type is used to force all operators to
execute once thBataProcess(junction. This is
MsgDummyResume| used only when the scheduler could not select the

next thread. This will give the chance to the
operators to update some flags used internally.

3.7.3.Unary activities

These activities are filters and function actigti@hey have only one input edge and
they are rather simple to implement. The functiotivéties simply change a field of
the tuple and forward the result tuple to its conets. The filter activities are also
simple and check the tuples they process based oonstrained defined at the

semantics of every activity. This could be a donfdi@r or a null check.
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Our implementation supports filters that compaeddB with constant values that are
of typeinteger, doubleandstring. Also the filters can perform a null check forea of
fields. Every filter uses an instance ofSmgleTupleEvaluatoclass. This class is
abstract and it is instantiated to a specific cetecobject when the filter is initialized.
For example, if the filter performs the check "a&g@" the evaluator object will be an
instance of theéntegerBiggerclass, because the field "age" is of type integet the
comparison is of type "bigger". If the filter penfos a null check the instance will be
the NotNullCheckclass, which also inherits tlf&ngleTupleEvaluatoclass. Selecting
the correct evaluator is simple and should be dandhe initialization of the
execution. Using the evaluator is straightforwasidce all that is necessary is to call
the Evaluate(Tuple As Stringyhich will return a Boolean value, indicating whet
the tuple is to be kept or rejected.

3.7.4.Binary activities

The binary activities our system supports adoan, Surrogate KeyDiff (with sort-
merge and nested-loops variants) #&wufjregator These activities are blocking (or
semi-blocking in the case of nested-loops) siney thave to gather all input data to
text files and sort them. Every operator handleseHfiles. These operators have two
stages of execution.

The first stage simply collects all input data gaces them at a file. When all input
is put into the file, it is sorted on the join fie{except from the case of nested-loops
activities, where only one input is blocking angtimput is stored to a file).

The second stage is the joining process, wheradhted inputs are read and joined.
In the case of the aggregator in this stage thepgng process occurs.

The SMJoinclass performs a join, based on the join condifimvided. If there is no

match, no tuple will be produced. TBMSkeylass adds a surrogate key to the tuple
based on a lookup table. TBMDiff class implements the diff operation on the two
input datasets. ThAggregatorclass groups the tuples based on one or moresfield

and calculates all aggregate functiomaximumminimum sum averageandcoun).
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3.7.5.Sorter

The sorter is a useful tool that allowed us to enpént the binary operators
mentioned above. The file that is used to storaribeming tuples is handled by the
VBSorterclass. When a tuple is stored to the unsorteddile extra field is put on the
start of the tuple. This field is the sorting field some cases we need to sort with
more than one field. In this case we sort with ¢bacatenation of the sorting fields.
In order for this technique to work, each sortirgdf must be of equal size, so we use
padding to achieve equality in the length of theisg fields. For padding, we use the
space character. When a sorting field is a strindate we add padding from the left
and when the sorting field is an integer or dowtdeadd padding from the right. This
trick allows us to treat the sorting field as angjr The concatenation of the fields is

done after the padding is added.

When the operator calls tl&ort() function the sorter runs a batch file in which the
input data are sorted. We use an external progoasort our files, borrowed from the
cygwin UNIX emulator [CygwinQ7]. Before using thsorter, we tried to find the
source code of a file sorter, but we didn't finanething that would suite us. In all
cases the sorting process was very slow. For iostame of the sorters we found
required two or three hours to sort a few hundrgues, while the cygwin sorter

managed to finish sorting in a few seconds.

The unsorted data are put in text files. Puttingngiut in one file creates one big file
that the sorter cannot sort; there was no CPUzatibn and the function never
returned. To override this difficulty we adoptee ttollowing approach. The input is
spitted into many text files. Every such file hasnaximum capacity of 1,000,000
rows. If the unsorted input is more than 1,000,000s, it is divided to many such
files. Then, every file is sorted separately arehtmerged, again with the help of the
Sort() function. When the sorting is complete, t8ert() function returns and when
the operator asks for a tuple the sorter removesitimecessary sorting field from the

tuple and returns it to the caller.
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CHAPTER 4. SCHEDULING ALGORITHMS

4.1. Problem formulation
4.2. Categories of algorithms
4.3. Round Robin

4.4. Minimum Cost

4.5 Minimum Memory

In this section we formalize our problem suggestangathematical definition. Then
will describe the algorithms we implemented, andalfy discuss a few simple

examples of how these algorithms work.

4.1. Problem formulation

Consider a graph‘a(V,E), andV = Va UVR =V, U{VSOURCEUVTARGETUVINTERI\/}-
Va denotes the activities of the graph afdthe recordsetd/r can be further divided

into three disjoin sets; for the source, intermedand target recordsets.

Also the set of all the nodes of the graph can dresidered a&/ = {VrnisHep U
VCAND|DATE§! WhereVCAND|DATEsiS the set of operators that are active and maalle

in the execution andgnisHep IS the set of nodes that have finished their Bsicg.

For each activity nodec Va we define:
— u(v), as the consumption rate of node v.
— qgueue(v)as the sum of all input queue sizes (not capeaeftpode v
— oy, as the selectivity of node v.

For each recordset notdle Vg we define:
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— u(v), also as the consumption rate of node v.
Furthermore, for each source recordset nod®s we define:

— volume(v)as the size of the recordsets input of node v.

We consideiT as an infinite countable set of timestamps anchaduler with policy
P. The scheduler divideB into disjoint and adjacent intervals= T, o T, v ... with:
— T =[Ti.first, T,.last]
— Tilast =T .first- 1

Whenever a new interval begins, (at timestamp.first) the scheduler decides one or
some of the following actions; Option (1) is marwatgit
1. active(T), the next activity to run.
2. Tilast This value is the timestamp that the operaotive(T) will stop
executing. In other words it I§.length() the schedulers time slot.

3. Status of all queues &tlast

The operatoactive(T) will stop its processing if one of the followingaurs:
1. clock = Ti.last That means that the time slot has exhausted.
2. queue(active()) = 0. This means that the active operator has no nmret i
data to process.
3. Fv, ve consumer(active()) such thaiqueue(v) = M(Wax This means that

one of the consumers of the active actiatyive(T) has a full input queue.

At this point we must check #ctive(T) should be moved t@rnispep In order for an
operator v to be moved ¥y shep, both of the following must be valid.
— V ve producer(active(il), ve VenisHep and

— queue(active()) = 0 orvolume(v)= 0, if ve Vsource

A workflow G(V, E)ends wherV = Vgnisuep The interval during which this event
takes place is denoted &dast
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Based on the previous we can implement a schedpbhgy P for a scenari@(V, E)

such that:
— P creates an appropriate divisionTointo intervalsTy U T, U ... Tast
— V't €T, veV queue(vk Max(queue(v)ji.e., all data are properly processed).
— One of the following holds:
—  TiastiS minimized,T a5 IS the interval wher& stops

— maxX queugi(Vv) is minimized, €T, veV.

Table 4.1 Categories of scheduling algorithms

Category Description

Every operator has a token, and based on that the

Token Based scheduler assigns the CPU

This category contains scheduling policies thajetr

Execution Time 7 , . i
to optimize the system's execution time.

Such scheduling policies try to improve the systems

Response Time .
response time

In this category the scheduling policies aim to

Memory minimize the required memory during the executipn

4.2. Categoriesof algorithms

While studying the related work we discerned foasib categories of algorithms. The
first category includes the token based algorithewg;h as Round Robin. These
algorithms are used mostly as a baseline to compidwer algorithms. The second
category includes the algorithms that aim to redineetotal execution time. In the
third category reside the algorithms that aim tprove the response time and the last
category includes the algorithms that target taicedthe required memory during the
execution. In Table 4.1 we see these categoridsanlirief description. As mentioned
in chapter 2, the improvement of response timeptsanrequirement, thus we choose
to design one algorithm from every category apantnfthe third one. Therefore, we
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concentrate on the three other categories, andopeopne policy for each of them

(Table 4.2).

Table 4.2 Scheduling steps of the studied scheglplaticies

RR MC MM
. Max Input Max tuple
Pick Next Operator ID b P
Queue Sizel consumption
Input queue| Input queue .
Reschedulewhen| . putq ‘nputq Time slot
is exhausted is exhausted
Max (S. C.),
Not Null Min (S. C.) Ma}x (S.C.),
(Part Key, Derive Fnc (Nci:?:nplzy hg?o(usp l():y)
Supp Key) (Total Cost) Part Key) ’ (Part Key)
Part
Supp >
1 3
(NGroup'?y Sum (T.C.)
ation Key, Group by
Not Null  Phone Format
(Natci’on ;ey) (Phone) Supp Key) (Supp Key)
-

15 17

13

Figure 4.1 An example butterfly scenario.

4.3. Round Robin

The Round Robin(RR) scheduling algorithm is very simple to impkarh since its
only requirement is to assign a unique identifteevery operator and order them with
this identifier. Then, based on this order the daler sets the operators to run. This

simple algorithm has some very good properties;ryewaperator gets the same
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chances to run (fairness) and it will not lead $lgstem to starvation. In Figure 4.1
there is an example scenario with their operatacs\ities and recordsets) numbered.
The numbering is random. This scenario will be ugedn example so that we can
demonstrate how the scheduling algorithm works.

The Round Robiralgorithm selects the operators based on themtifter. At start up
only operatorsl and 2 can do some data process. The algorithm selectssat
operatorl. The scheduling th&ound Robinwill apply is presented in Table 4.3. In
step 10 the operatdf is set to run, but at this poib® has no data to process, siffce

is blocking.

Table 4.3 Scheduling stepsi®bund Robin

Step Can Select Selects
1 1 1
2 Next(l) =2 2
3 Next(2) =3 3
4 Next(3) = 4 4
5 Next@) =5 5
6 Next®) =6 6
7 Next©) =7 7
8 Next(7) =8 8
9 Next@8) =9 9
10 Next(©) =10 10

4.4. Minimum Cost

The Minimum Cost(MC) scheduling algorithm minimizes the scenariexcution
time. This is achieved by minimizing any overhelaak toccurs from the scheduler and
mainly from the communications between the threddi® operator that is selected
must have data to process, and preferably, thido@ithe operator with the most input
data. In addition, no time slots are used, so tthatselected operator can process all
its input data with no interrupts from the monitbhread. We consider that all
operators that read data from an external sousalaays available for execution. In
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order to demonstrate the scheduling of Kieimum Costalgorithm we will use the

example in Figure 4.1.

Table 4.4 Scheduling stepsMfnimum Cost

Can Select Selects
1(R), 2(R)

1(R), 2 (R), 3(100)
1(R), 2 (R), 5(90)
1(R), 2 (R), 6 (80),8(80)
1(R), 2 (R), 8(80)
1(R). 2(R)

1(R), 2 (R), 4 (100)
1(R), 2 (R),7 (50)
1(R), 2 (R), 8 (30),9 (30)
1(R), 2 (R), 9 (30)

%)
8
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In Table 4.4 we see how thdinimum Costalgorithm works. The second column
shows the id's of the operators that are candidatesxecution accompanied with the
size of their input queue. Since some operatordRaaers(i.e., proxies for source
recordsets and as such they continuously retriegenéxt available tuple from their
recordset, which they add to their input queue),uae the symbolism (R). The third
column has the choice of the scheduler. In eveep,sthe scheduler selects the
operator with the biggest input size. Between dpesavith equal input size, we can
select either, without affecting the performancéhef execution.

4.5. Minimum Memory

The Minimum MemoryMM) scheduling algorithm tries to schedule thewgors in a

way that the maximum and average memory that tls¢esy requires during the
execution of a scenario is minimized. The schedulast select the operator that will
consumehe biggest amount of data. The amount of datapanator consumes is the
data that the operator removes from memory, eligeejecting the tuples or writing

them into a file, for a specific portion of time érder to achieve this scheduling we
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need small selectivity as well as large processamg and input size from the
preferred operator. The input size should be laaythat the operator can process and
possibly reduce many data. The selectivity needbetcsmall enough so that the
operator can actually consume its input tuplesaliirthe processing rate should be

large in order for the data consumption to occuiaasas possible.

Alternatively we could compute the consumption ralieectly, considering the
number of tuples consumed (input data - output)diitaded by the processing time
of the input data. The overall memory benefit ig timput size of an operator

multiplied by its input size, as seen in equatibn ).

MemB(p) = ((In(p) — Out(p)) / ExecTime(p)) * Quep( Eqg. 4.1

In this equatiorp is the operatoin(p) andOut(p) denote the number of tuples tipat
has as input and as output respectivEkecTime(p)s the time the operatgrneeded
to process thén(p) tuples.Queue(p)is the number of tuples that are pis input
gueues. The MM scheduler selects the operator thithbiggestMemB() value at

every scheduling step.

Table 4.5 Scheduling stepsMfnimum Memory

Step Can Select Input Size Selects
1 1(R), 2 (R) 1
2 1(-0.16) 3(11) 3
3 1(-0.16) 5(11) 5
4 1(-0.16) 8(11) 8
5 1(-0.16) 8(0.27) 8(6),6 (5) 8
6 1(-0.16) 6(11) 6
7 1(-0.16) 1(R),2(R) 1
8 1(-0.26),3(5.75) 3(23) 3
9 1(-0.26),5(1.3) 5(23) 5
10 1(-0.26) ,6 (1.03) ,8(1.13) 6 (23),8(23) 8
11 1(-0.26) 6 (23) 6

When the scenario starts to execute, no operatoptmessed any data, so the above

formula cannot apply. In this case we use the lo§gMinimum Costlgorithm, so the
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operator with the biggest input size is selectedTable 4.5 we see how the MM
algorithm behaves. The second column contains #heulations ofMemB(p) for
every scheduling step. In every step, some operat@ omitted because thkeemB()
value is equal to 0. In such a case, or when afaiprs have a negatinemB()
value, we select an operator based on its inpet Sihe third column contains the

input size for every operator in every scheduliteps
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CHAPTER 5. EXPERIMENTS

5.1. Measures and Parameters
5.2. Datasets

5.3. Scenarios and data sources
5.4. Tuning scheduling policies
5.5. Line workflow

5.6. Wishbone workflow

5.7. Primary flow workflow

5.8. Butterfly workflow

5.9. Tree workflow

5.10. Fork workflow

5.11. Observations deduced from experiments

This section provides the details for the experitmgrerformed in order to test the
efficiency of the Arktos scheduler. The first sentiof this chapter describes the
metrics and the measures that are of interesgdbend section has a brief description
of the datasets used during the experiments andethaining sections present and
comment the experimental results. In Table 5.1 e the hardware and software

specifications of the computer we conducted thiefohg experiments.
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Table 5.1 Development environment

Hardware
CPU Dual Core 2 @ 2.13 Ghz
M/M 1GB
Hard Disk 230 GB
Software
Windows XP

Operating System o, \essional SP2

Visual Studio 2005, SP1

Development

Software
Programming VB 2005, C# 2005
Language NET 2.0 framework.

5.1. Measures and Parameters

The measures that concern us in this thesis dovioly:
— Execution Time
0 Execution time is a basic measure to quantify eatieduling policy's
efficiency.
— Memory consumption
0 Memory consumption measures the memory requiremehtsvery
scheduling policy during execution. We are concerfog average, as
well as, maximum memory requirements. In regulaetintervals we
get a snapshot of the system, keeping informatowrtiHe size of all
gueues. We keep the maximum value and a sum, wbices

eventually the average memory.

The input parameters that will be used to quanikigyabove measures will be:

— Workflow size
— The number of activities in an ETL scenario willveaan effect on the
above measures. The kind of activities (blockingan-blocking) is also a
considerable parameter.
— Workflow selectivity
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— If in an existing scenario most of the input data dirty, the execution
time and the memory requirements can be affectesl. workflow
selectivity we consider the selectivity a workfldwas from its sources to
its body (Figure 5.1).

— TimeSlot

— This parameter defines the time interval that egmdrator runs. At the end

of each time interval the scheduler selects thé¢ oparator.
— Row Pack Size

— The selected size of the row pack defines the dmaty of the

DataProcess(junction.
— Queuesize

— Using various queue sizes we can see whether teeugan time will
increase linearly with the input size, and if thare any changes in the
memory minimization algorithm.

— Workflow Structure

— We handle the complexity of workflow characteristizvith a set of
characteristic scenarios instead of employing lamed randomly
generated workflows. To this end, a broad categbmyorkflows is used,
calledButterflies[Tzio06]. A butterflyis an ETL workflow that consists of
threedistinct components: (a) theft wing (b) thebodyand (c) theight
wing of the butterfly. The left and right wings are twon-overlapping
groups of nodes which are attached to the bodhebutterfly. In Figure
5.1 there is the basic structure of a butterflykflow. Different variations
of this structure are used in the experiments, whie discussed in section
5.3.2.

We tune row pack, time slot size and queue sizampater for every scheduling
policy. We determine best possible values with oileenchmarks so that we can
proceed to the experiments. In section 5.4 we ptabe experiments we conducted

to determine these values.
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Figure 5.1 The basic structure of a butterfly whof

5.2. Datasets

One popular benchmark for evaluating database ragste the TPC-H benchmark.
Recently the TPC-DS benchmark was released, abosvén of the TPC-H. A draft

version of the TPC-DS benchmark is also available.

5.2.1.TPC-H

The TPC Benchmark™ H (TPC-H) [TPCHO07] is descrilzeda decision support
benchmark. It consists of a suite of business tetead-hoc queries and concurrent
data modifications. The queries and the data ptipglahe database have been
chosen to have broad industry-wide relevance. Atbtgs benchmark illustrates
decision support systems that examine large volurhelata, execute queries with a

high degree of complexity, and give answers tocalibbusiness questions.

TPC-H evaluates the performance of various decisapport systems by the
execution of sets of queries against a standam@bdaé under controlled conditions.
The queries that this benchmark provides give arswe real-world business

guestions and simulate generated ad-hoc queriesy @ke far more complex than
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most OLTP transactions and they include a rich direaf operators and selectivity

constraints. Also, they generate intensive actioitythe part of the database server
component of the system under test. The relatiedaéma of the data that TPC-H

provides consists of eight separate tables, astritited here in Figure 5.2. It describes
a sales system, keeping information for the pamts the suppliers, and data about
orders and the supplier's customers. The datasebeaenerated in variety of sizes
up to 100 TB. Update datasets are also providedrbtitis benchmark there are no

update functions.

LINEITEM
PART
PARTSUPP ORDERKEY
PARTKEY
L» PARTKEY r» PARTKEY
NAME ]
- SUPPKEY | L» SUPPKEY
MFGR
AVAILQTY LINENUMBER
BRAND ORDERS
SUPPLYCOST QUANTITY
TYPE ORDERKEY
COMMENT EXTENDEDPRICE
SIZE CUSTKEY
TOTALCOST DISCOUNT
CONTAINER ORDERSTATUS
TAX
REGION CUSTOMER
RETURNFLAG
] REGIONKEY ORDERDATE CUSTKEY
LINESTATUS
SUPPLIER NEUE ORDERPRIORITY NAME
SHIPDATE
SUPPKEY COMMENT CLERK ADDRESS
COMMITDATE
NAME SHIPPRIORITY — NATIONKEY
RECEIPTDATE
ADDRESS NATION COMMENT PHONE
SHIPINSTRUCT
TSI | NATIONKEY B o
BUCONE NAME e MKTSEGMENT
R (. REGIONKEY COMMENT -
PROFIT
ST COMMENT

Figure 5.2 The TPC-H relational schema.

5.2.2.TPC-DS

The TPC Benchmark™ DS (TPC-DS) [TPCDS07], [OtPo36]a new Decision
Support (DS) workload being developed by the TP@is benchmark models the
decision support system of a retail product suppliecluding queries and data
maintenance. Although the underlying business motl@PC-DS is a retail product

supplier, the database schema, data populatiomiegueata maintenance model and
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implementation rules have been designed to be byraagpresentative of modern

decision support systems.

The relational schema of this benchmark is moreptexthan the schema presented
in TPC-H. There are three sales channels, stotalogaand the web. There are two
fact tables in each channel, sales and returnsaanthl of seven fact tables. In this
dataset the row counts for tables scale realisfic8pecifically in fact tables the row
count grow linearly, while in dimension tables greub-linearly.

This benchmark also provides update data. MoreibVvexrs a set for update functions.
All these functions are primary flows, in which sagate and global keys are assigned
to all tuples.

5.3. Scenarios and data sour ces

This section contains all the experimental scesane have designed in order to test
our system. As a source for the experiments thasdatfrom the TPC-H benchmark
was used, in various sizes. The dataset is absaiea system. The information kept is
for the parts and its suppliers. Also detailed iinfation is kept about the orders that
the suppliers have, and some demographic datdaéocustomers. The scenarios that
are used in the experiments clean and transformstliece data into the desired
warehouse schema. The schema of the data warebouossts of the tablPART
(s_partkey name, mfgr, brand, type, size, container, comjném tableSUPPLIER
(s_suppkeyname, address, nationkey, phone, acctbal, comrutalcost), the table
PARTSUPP (s _partkey s suppkey availqty, supplycost, comment), the table

CUSTOMER (s_custkey name, address, nationkey, phone, acctball, mkiset
comment), the tabl®RDER (s_orderkeycustkey, orderstatus, totalprice, orderdate,
orderpriority, clerk, shippriority, comment) andblka LINEITEM (s_orderkey

partkey, suppkey, linenumbequantity, extendedprice, discount, tax, retugfla

linestatus, shipdate, commitdate, receiptdate, irstijpict, shipmode, comment,
profit). The relational schema of each source milar to the TPC-H schema in

Figure 5.2.



57

5.3.1.Data Sources

The sources for our experiments are of two grothps,storage houses and the sales
points. Every storage house keeps the data fosuppliers and the parts, while every

sale point keeps the data for the customers andrtlegs. The storage house schema
consists of the tabld?’ART (partkey name, mfgr, brand, type, size, container,

comment), the tablSUPPLIER (suppkey name, address, nationkey, phone, acctbal,
comment) and the tabl®ARTSUPP (partkey suppkey availqty, supplycost,

comment) who relates the previous two. The stohagese is in Figure 5.3.

PART
SUPPLIER

PARTKEY

SUPPKEY

NAME

PARTSUPP

NAME

ADDRESS

PARTKEY

MFGR

NATIONKEY

SUPPKEY

BRAND

PHONE

AVAILQTY

TYPE

ACCTBAL

SUPPLYCOST

SIZE

COMMENT

COMMENT

CONTAINER

COMMENT

Figure 5.3 The storage house relational schema.

The sales point schema consists of the tahJSTOMER (custkey name, address,
nationkey, phone, acctball, mktsegment, commehg, table ORDER (orderkey
custkey, orderstatus, totalprice, orderdate, ordanty, clerk, shippriority, comment)
and table LINEITEM (orderkey partkey, suppkey,_ linenumherquantity,
extendedprice, discount, tax, returnflag, linestaghipdate, commitdate, receiptdate,

shipinstruct, shipmode, comment), The schema o$aes points is in Figure 5.4



58
LINEITEM

ORDERKEY
ORDERS
PARTKEY
ORDERKEY

SUPPKEY

— CUSTKEY
LINENUMBER

ORDERSTATUS
QUANTITY

TOTALPRICE
EXTENDEDPRICE

ORDERDATE

CUSTOMER DISCOUNT

ORDERPRIORITY

TAX
CUSTKEY .

CLERK

RETURNFLAG

NAME

SHIPPRIORITY

LINESTATUS

ADDRESS COMMENT

SHIPDATE
NATIONKEY

COMMITDATE
PHONE

RECEIPTDATE
ACCTBAL

SHIPINSTRUCT
MKTSEGMENT

SHIPMODE

COMMENT

COMMENT

Figure 5.4 The sales point relational schema.

5.3.2.ETL Scenarios

The experiments for the cleaning of the data s@umelude many workflow types,
which are explained in detail in [Tzio06]. Theserkitow types are: (a)ine, (b)
wishbone, (c) primary flow, (d) butterfly, (e)tree and (f)fork. The scenarios that

appear in this section will be used to evaluatesystem.

An example of dine workflow is in Figure 5.5. This scenario type sed to filter a
source table and make sure that the data meetotheal constraints of the data
warehouse. In the example in Figure 5.5 the applptations are:

1. Checking the fields "partkey”, "orderkey" and "skep' if they have NULL

values.
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2. Converting the dates in the "shipdate" and "redaifgt’ fields into a date id, a
unique identifier for every date.

3. This activity is a calculation of a value "profifThis value derives from other
fields in every tuple; is the amount of "extendecigl subtracted by the values
of the "tax" and "discount" fields.

4. This activity changes the fields "extendedpricédx”, "discount” and "profit"
to a different currency. The results of this operatare loaded into the data
warehouse.

5. The workflow is not is not stopped since we woukk |to create some
materialized views. This operation keeps only thtadhat its return status is
"False".

6. This is an aggregation, calculating the sum of fifr@and "extendedprice"
fields grouped by "partkey" and "linestatus".

7. This activity keeps the tuples that the "linestatfield has the value
"delivered".

8. This final aggregation calculates the sum of "gfoéind "extendedprice"

fields grouped by "partkey".

Sum (Profit),

Not Null Date Key Currency Sum (Ext. Price) S Profit
(PartKey,  (Ship Date, (Ext. Price, Return Group b)'/ (Part  Line Status s umE( tr‘;',)’
Order Key, Receipt ~ Derive Fnc  Discount, Status = Kev. Line - um (Ext. Price)
Supp Key) Date) (Profit) Tax, Profit) False Y, Group by (Part

Delivered

:>

I Key)

Figure 5.5 A Line Scenario

A wishbone workflow joins two tables into one, as appearsFigure 5.6. This
scenario is preferred when two tables in the sodatebase must be joined in order to
be loaded to the data warehouse. The example szemdiigure 5.6 has as input data
the tables "customer" and "orders".

1. This activity checks for NULL values in the "natlay" field.
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2. This activity converts the phone numbers in a nignésrmat, removing
dashes and replacing the '+' character with thé égQivalent.

This is activity checks the "custkey" fields for NUvalues.

The Date-Key activity is applied on the "orderddteld.

This activity applies the currency operation on'tie¢alprice” field.

S

On this activity the source tables are joined. Toet-Merge Join activity will

be used at the experiments.

7. On the joined result an aggregation is appliedutatmg the sum and the
maximum of the "totalprice" field, grouped by th&tionkey" and "orderdate"
field.

8. This aggregator calculates the sum and the maxiwfutime "totalprice" field,

as in the previous activity, but grouped only bg thationkey".

Not Null Phone Format
(Nation Key) (Phone)

Sum (T. P.),
Max (T. P.) Sum (T. P.),
Group by Max (T. P.)
C_CustKey = (Nation Key, Group by

O_CustKey Order Date) (Nation Key)

Not Null Date Key ~ Currency
(Cust Key) (Order Date) (Total Price)

Figure 5.6 A Wishbone Scenario

The primary flow scenario is a common scenario in cases wheredinees table
must be enriched with surrogate and global keys. itiot a line scenario because the
operator that adds surrogate keys to every tuggosm variant. In general, a primary
flow could easily have a join operator. An exampiea primary flow scenario is in

Figure 5.7. This primary flow scenario has as irthet"lineitem" table
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(1-4).The first four activities are the same fotitle line scenario.
(5-7).The other three activities assign to eacHetwpsurrogate key for the

"partkey", "suppkey" and "orderkey" fields whichledrusiness keys.

Not Null Date Key ~ Currency
(Part Key (Ship Date,  (Ext. Price,
Supp Key. Receipt Discount, ~ Derive Fnc

Date) Tax) (Profit)

Order Key)

SK (Part

SK (Order
Key)

Figure 5.7 A Primary Flow Scenario

The most common scenario type idaanced butterfly scenario. It joins two or
more source tables into one, then a set of aggomgaare performed on the result of
the join. The left wing of the butterfly joins tleurce tables, while the right wing
performs the desired aggregations producing méathviews. An example of a
butterfly scenario is in Figure 5.8. For this sagemdhe "partsupp” and "supplier”
tables are used as input.

1. Checking for NULL values on the "partkey" and "skey' fields.
Calculating and adding to each tuple the "totalcfisid.
Checking the "nationkey" field for NULL values.
This activity transforms the "phone" field.

a kb 0N

This activity joins results from activities 2 andof the "ps_suppkey" and

"s_suppkey" fields.

6. This aggregation calculates the maximum and theinmim value of the
"supplycost" field grouped by the "nationkey" amaftkey" fields.

7. This aggregation calculates the maximum and theinmum of the

"supplycost"” field grouped by the "partkey" fields.



62

8. This activity calculates the sum of the "totalco$gld grouped by the
"nationkey" and "suppkey" fields.
9. This activity calculates the sum of the "totalco$Eld grouped by the

"suppkey" field.

Max (S. C.),
Min (S. C) Max (8. C.),
Not Null Group by Min (S.C.)
(Part Key, Derive Fnc (Nation Key, Group by
Supp Key) (Total Cost) Part Key) (Part Key)

SP_Supp Key 5

Sum (T. C.)
Group by Sum(T.C.)

(Nation Key, Group by

Supp Key) (Supp Key)

Not Null  Phone Format
(Nation Key)  (Phone)

Figure 5.8 A Balanced Butterfly Scenario

The tree scenario in Figure 5.9 joins two or more sourcbles and applies
aggregations on the result recordset. This trepasteuses as input the "partsupp”,
"part” and "supp" tables.
1. This activity checks for NULL values the "suppkeafid "partkey"” fields of
the "partsupp” table.
2. This activity calculates the "totalcost” field ftine tuples of the "partsupp”
table.
3. This activity checks for NULL values the "partkefi¢ld of the "part" table.
4. This activity joins the transformed "part" and 'fapp” tables on the
"partkey" field of every table.
5. This activity checks for NULL values the "suppkeiglds of the "supplier”
table.

6. This activity transforms the "phone" field.



63

7. This activity joins the "supplier" table with thesult of the activity (4) on the
"suppkey" field of every input.

8. The last activity aggregates the result of thevagti(8), calculating the
maximum and the minimum value of the "totalcos€ldj groupd by the

"suppkey" and "partkey" fields.

Not Null )
(Supp Key’ Derive
Part Key) (Total Cost)

Join
(PS_PartKey =
P_Partkey)

Not Null
(Part Key)
Max (TC), Min(TC)
Join (SuppKey  Group by (SuppKey,
=S_Suppkey) PartKey)

Not Null
(Supp Key)

Phone Format
(Phone)

Figure 5.9 A tree scenario

Finally thefork scenario applies a set of aggregations on a sswlece table. First
the source table is cleaned, just like in a linenscio and the result table is used to
create a set of materialized views. The tree saemar-igure 5.10 uses as input the
"lineitem" table.
1. Checking the fields "partkey", "orderkey" and "skep' if they have NULL
values.
2. Converting the dates in the "shipdate" and "redaifgt’ fields into a date id, a
unique identifier for every date.
3. This activity is a calculation of a value "profifThis value derives from other
fields in every tuple; is the amount of "extendeckst subtracted by the values

of the "tax" and "discount" fields.
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4. This activity changes the fields "extendedpricédx”, "discount” and "profit"
to a different currency. The result of this scemavill be forwarded so that a
number of aggregations can be performed.

5. This filter activity keeps the tuples where thetUrastatus” field has the value
"true".

6. This aggregator calculates the sum of the "praiittl "extendedprice" fields
grouped by the "partkey" and "linestatus” fields.

7. This aggregator calculates the sum of the "praiittl "extendedprice" fields
grouped by the "linestatus" fields.

8. This aggregator calculates the sum of the "prdigfti and the average of the
"discount” field grouped by the "partkey" and "skeyp" fields.

9. This filter activity keeps the tuples where thestunt” field has the value
"0".

10.This aggregator calculates the average of the itprahd "extendedprice”

fields grouped by the "partkey" and "linestatuglds.

Sum (Profit),
Sum (Ext. Price)

Retun Group by (Part

Status =

Key, Line
True Status)
b—» Viewl
Sum (Profit),
Sum (Ext. Price)
Not Null Date Key Currency Group by (Part

(Part Key, (Ship Date,  (Ext. Price, Key, Line
Order Key, Receipt Discount, Derive Fnc
Supp Key) Date) Tax) (Profit) View2

Line
Item
Sum (Profit),
Avg (Discount)
Group by (Part

Key, Supp Key)

Avg (Profit),
Avg (Ext. Price)
Group by (Part
Discount = 0 Key, Line

I Status)

Figure 5.10 A fork scenario
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5.4. Tuning scheduling policies

Our ETL engine has a few parameters that can athecexecution. These parameters
are:
— Time Slot: This value determines the size of the time diet scheduler will
use. The time slot is determined in milliseconds.
— Stall Time: This value sets the duration each thread willaenstalled; is
measured in milliseconds.
— Data Queue Size (DQS): This value sets the maximum size of the systems
data queues. In data queues row packs are inserted.
— Row Pack Size (RPS): This value sets the size (number of tuples) @rgv

row pack.

The Stall Time value is used as parameter for the system command
Thread.Sleep(EngineStallTim&8)his command is not very reliable, since therads
guarantee that the thread will continue its executiafter sleeping for
EngineStallTimanilliseconds. So we need to keep it very small; \atpes lead the
system to an idle state for some time. This ocbarsause the use of big values would
make the operators to be idle for a long periotdmé and also they would read their

messages long after it was sent. In all algorithimsised the value of 4 milliseconds.

We need to determine which set of values optimizesexecution of every scheduler.
For the RR and MC algorithms we will try to optiraithe execution time, while in
the MM we will try to find a set of values that gissmaller memory demands and
relatively good execution time. Using time slotsthis RR and MC scheduling
policies would lead to more communication and sahed overhead and finally to a
bigger execution time. In MC for example, consider operatop than needs 150
msec to empty its data queue. If the time sloDisnsec, the scheduler will interrypt
two times before its queue is empty. The two ingets are unnecessary and add
additional cost to the execution. Since our condeme minimize execution time we
avoid such unnecessary scheduling interrupts bysiog time slots. So in these two
policies we will conduct experiments to find anaaé good values for thBQS and
RPSparameters. For the MM algorithm we will use tlaues for thddQSandRPS
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parameters from the previous experiments and tfintba good value for th&émsSi

parameter.

To conduct our experiments after tuning our schiagypolicies we created variations
at the input size and the selectivity of the warkis.

— Concerning the input size, we used the data gemettae¢ TPC-H [TPCHO7]
provided. The data generator has a scale factgrtffaEdefines the size of the
data to be generated. When SF is set to 1, thegeatrator produces one GB
of data. For our experiments we created three eéstagith scale factors 0.1,
0.5and 1.0.

— Concerning the selectivity of the workflows, we ngad the semantics of one
or more filter activities so that the desired selgy occurred. The selectivity
values we used are 0.5, 0.8 and 1.0. This broageravill give us a good

perspective of how selectivity affects the exeautvd every scenario.

5.4.1.Tuning Round Robin

To determine the values @QS and RPSfor this scheduling algorithm we have
conducted two set of experiments. The first setsaionfind a good area of values for
the DQS parameter, while the second set aims to find algoea of values for the
RPSparameter. For each set we have used two diffaegrarios, the butterfly in
Figure 5.8 and a small line scenario, (a variatbrthe line scenario in Figure 5.5,

keeping only the first four activities).

For the first set we have used four different val{fe00, 150, 200, 250} for thBRPS
parameter. In Figure 5.11 we can see how RR beliavtb® line scenario. For any
value ofRPS we observe that any value BDRQS above 30 performs equally for any
value of RPS For this range of values the execution time ig/\vadose to the best
execution time on this chart. Wh&QShas small values (< 30) the execution time is
bigger since smalDQS values require much more scheduling steps; thisngi¢hat

we have more scheduling and communication overh&dlden there are many
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unnecessary communications the system stays idlehame is not a good utilization
of the CPU.

RR Small Line
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Figure 5.11 Tuning DQS in the small line scenéA&)

In Figure 5.12 there we can see the results ofRRealgorithm with the butterfly
scenario. In this chart, the RR scheduler optimiiegxecution time when thHeQS
parameter has values bigger than 45. Greater valtid3QS do not affect the

execution time of the scenatrio.
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Figure 5.12 Tuning DQS in the butterfly scenaR&]

In Figure 5.13 and in Figure 5.14 we can obsereer#sults for the second set of
experiments. We used for tl2QS parameter the values {80, 100, 120}. TRES
parameter has a range from 100 to 550 tuples. tim teses (small line and butterfly
scenarios) the execution time remains at the saswelsl with slightly a better

performance between 200 and 500.

Table 5.2 Configuration of RR

Good Areas Configuration
TmSl 0 0
DQS 30-150 100
RPS 200-500 400

Based on the above observations we end up withod gonfiguration for RR, which

is presented in Table 5.2. This configuration isdus the subsequent experiments.
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Figure 5.14 Tuning RPS in the butterfly scenari®)R

5.4.2.Tuning Minimum Cost

We conduct the same set of experiments with RRHemMC scheduling policy. The
scheduling of RR and MC in the small line scengimentical. We present results of
the MC scheduler only for the butterfly scenarioFigure 5.15 the schedule behaves

in a similar manner with RR. While the value DS increases the execution time

decreases and wh&®Sis over 80 the execution time remains steady.
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In Figure 5.16 we can observe the behavior of M@atsecond set of experiments
that tuneRPS The execution time is not affected at all frore thfferent values of

RPSwe see on the chart. In Table 5.3 we can seedhfigaration we used for the

subsequent experiments.

Table 5.3 Configuration of MC

Good Areas Configuration
TmSl 0 0
DQS 80-150 100
RPS 200-450 400
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Figure 5.16 Tuning RPS in the butterfly scenali]

5.4.3.Tuning Minimum Memory

For the MM scheduling policy we will use the sanadues forDQSandRPSthat we
selected for RR and MC. Using the same values wegea an objective perspective
of how good MM is. In Figure 5.17 and in Figure&ue can see the execution time
for MM at the small line and butterfly scenario fdifferent values in the time slot
parameter. As th&mSlincreases the execution time decreases. The réastmat is
that a communication overhead occurs since moredsdimg steps are required. For
the small line scenario MM seems to remain unag@ctor TmSI| values. The

workflow size is a parameter for that behavior.
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Figure 5.19 Max and avg memory anehSlin the small line scenario (MM)

In Figure 5.19 and in Figure 5.20 we observe hosvrttemory requirements change
for different values ofTmS| Using smaller values imfmSI| we achieve smaller
requirements in maximum and average memory. Cornsglethe increase of
execution time for this range dimS] we choose to use farmSlthe value 70. In
Table 5.4 we see the configuration of MM.
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Figure 5.20 Max and avg memory ahehSlin the butterfly scenario (MM)
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Table 5.4 Configuration of MM

Good Areas Configuration
TmSl 60-70 70
DQS - 100
RPS - 400

5.5. Lineworkflow

The experiments we present in this section showbglgavior of a line scenario

(Figure 5.5) with various input sizes as well wiitle workflow's total selectivity.

5.5.1.Effect of input size

The chart in Figure 5.21 shows how execution tilhanges in various input sizes.
MC performs better than RR especially in the cdsBEGB of data input, while MC is
more time consuming than MC and RR. In all thrdeedaling policies the increment

in the y-axis is practically linear, as one woulgpitally expect from a linear

workflow.
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Figure 5.21 Execution time for a line scenario (S6l5)

In Figure 5.22 and Figure 5.23 we can see how veeage and maximum memory
requirements of the three scheduling policies. RR the greatest requirements in
average memory. MC is a bit better than RR, whil®l Mchieves a 50% smaller
memory consumption compared to MC and RR. All pesichave the similar

maximum requirements in memory. Since MM has mushkel average values, we

come to the conclusion that the result are not fsengoeaks during the scenario

execution.
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Figure 5.22 Average memory for a line scenario (S@l5)
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Figure 5.23 Maximum memory for a line scenario (S6L5)

5.5.2.Effect of workflow selectivity

In Figure 5.24 we see how our execution time chalgedifferent selectivity values,
from 0.5 to 1.0. RR and MC are close but MC perforanlittle better. MM needs

more time to complete the execution.
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Figure 5.24 Execution time for a line scenario €SF.5)
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In Figure 5.25 and in Figure 5.26 we depict the mmgnrequirements of each
scheduling policy. RR has the biggest requiremantsaverage and maximum
memory. MC performs better and MM has smaller mgmeguirements than MC

and has similar maximum requirements.
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Figure 5.25 Average memory for a line scenario £3F5)
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Figure 5.26 Maximum memory for a line scenario £SF.5)

5.6. Wishbone wor kflow
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The experiments presented in this section shovb#mavior of a wishbone scenario

(Figure 5.6) with various input sizes as well wiitle workflow's total selectivity.

5.6.1.Effect of input size

The chart in Figure 5.27 shows how execution tirnanges in various input sizes.
MC performs better than RR when the input size.% ®B or more, while MC is
more time consuming than MC and RR. In all thrdeedaling policies the increment

in the y-axis is practically linear.
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Figure 5.27 Execution time for a wishbone scengil = 0.5)

In Figure 5.28 and in Figure 5.29 we can see haatlerage and maximum memory
requirements of the three scheduling policies. RRl MC have the greatest
requirements in average memory. MM achieves a 60%mnany consumption
compared to MC and RR. RR and MM have the similaximum requirements in
memory. MC performs better for big input sizes. #gasince MM has much lower
average values, it is safe to come to the conalugiat there are not so often peaks

during the scenario execution.
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Figure 5.29 Maximum memory for a wishbone scengel = 0.5)

5.6.2.Effect of workflow selectivity

In Figure 5.30 we see the performance of our engiree wishbone scenario. MC is
clearly better than RR, but again MC is more tinmastming than the others. It is
interesting though that all algorithms behave thme when the selectivity is above
0.8 the execution time does not increment as eggeltit practically remains the

same. This workflow has only one join operations thperation is costly, mainly
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because of the sorting actions this operator pagoi he filter we used to achieve the
different selectivity values is applied on the dmatordset. So the big recordset in all

cases is the same and its sorting process is théhahdefines the sorting cost.
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Figure 5.30 Execution time for a wishbone scengdie = 0.5)

In Figure 5.31 and in Figure 5.32 we see our sdineglupolicies memory
requirements. For average memory, RR AND MC perfaonse than MM who has a
very low average here. For maximum memory MC idguering better than RR and

MM, which have similar values.
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Figure 5.31 Average memory for a wishbone scern(&fto= 0.5)
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Figure 5.32 Maximum memory for a wishbone scengdio = 0.5)

5.7. Primary flow workflow

The experiments we present in this section showbttgavior of a primary flow
scenario (Figure 5.7) with various input sizes asl wvith the workflow's total

selectivity.



82

5.7.1.Effect of input size

The chart in Figure 5.33 shows how execution tilhanges in various input sizes.
MC performs slightly better than RR. Again MM is radime consuming than MC
and RR. In all three scheduling policies the inaatnin the y-axis is practically
linear. MC and RR are very close because all opexdiave data to process. There is
no operator that all its producers are blockingvaets. Even so, MC is slightly
better.
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Figure 5.33 Execution time for a primary flow scendSel = 0.5)

In Figure 5.34 and in Figure 5.35 we can obsereeatferage and maximum memory
requirements of our scheduling policies for theecalthe primary flow scenario. RR
performs much worse that the other two. The redsothis is that RR will schedule
many recordsets before it schedules an activity riight consume data. Remember
that in a primary flowthere are many input source recordsets becauseuy ook
up tables. Concerning average memory MC has lesgairements than RR and MM
is better than MC and RR. Concerning maximum men®R has the biggest
maximum requirements in memory. MM is better thaR But MC is doing much
better.
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Figure 5.35 Maximum memory for a primary flow scengSel = 0.5)

5.7.2.Effect of workflow selectivity

In Figure 5.36 we see the execution time of ouredaling policies for different
workflow selectivity values. RR and MC are closethwMC having slightly better
times. MM consumes more time to complete the executf the scenario.
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Figure 5.36 Execution for a primary flow scena®s-(= 0.5)

In Figure 5.37 and in Figure 5.38 we see the aweragd maximum memory
requirements of our scheduling policies for themany flow scenario. RR performs
much worse that the other two. The reason for ithithat RR will schedule many
recordsets before it schedules an activity thathin@pnsume data, because of the
presence of many input source recordsets (manydpdibles). MC has less average
memory requirements than RR and MM is better th&dvid RR. RR has the biggest

maximum requirements in memory. MM is better thah Bt MC is doing better.
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Figure 5.37 Average memory for a primary flow sceméSF = 0.5)
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5.8. Balanced butterfly wor kflow

The experiments we present in this section shovbéhavior of a balanced butterfly

scenario (Figure 5.8) with various input sizes aal with the workflow's total

selectivity.

5.8.1.Effect of input size

The chart in Figure 5.39 shows how execution tilmenges in various input sizes in a
balanced butterfly scenario. MC performs bettentR&R. MM performs worse than

the other two. In all three scheduling policies ith@ement in the y-axis is practically

linear.
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Figure 5.39 Execution time for a balanced buttestignario (Sel = 0.5)

In Figure 5.40 and in Figure 5.41 we see the mengamyands of our scheduling
policies for a balanced butterfly scenario. RR thesgreatest values in average and
maximum memory requirements, except when the isfgt is 1 GB, where RR and
MC have very close values. MM is doing very welicg it manages to achieve very
low average memory requirements, about 15% and @0D#%e demands of RR and
MC. For this scenario MM has the lowest value inffiaximum memory, especially
when the input size is 0.1 GB; the maximum valueety small comparing to RR and
MC. In a balanced butterfly scenario we have smaii-blocking parts (sequence of
non-blocking operators) and many blocking operatditsis forces the system to
gather all its input data temporarily many timehisTstate helps MM to avoid high

memory peaks.
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Figure 5.40 Average memory for a balanced buttexégnario (Sel = 0.5)
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Figure 5.41 Maximum memory for a balanced buttestignario (Sel = 0.5)

5.8.2.Effect of workflow selectivity

In the case of the balanced butterfly workflow é&xecution time all of our scheduling
policies' increases linearly (Figure 5.42) as tloekffow selectivity increases. Again

MC is a little better than RR, while MM is much radime consuming.
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Figure 5.42 Execution time for a balanced buttestignario (SF = 0.5)

In Figure 5.43 and in Figure 5.44 we depict therage and maximum memory
requirements for our scheduling policies. RR and M€ close, but MC outperforms
RR when the selectivity is below 1.0. MM behavesyweell since it requires only the
20% of average memory of MC and RR. Also, for tlaabced butterfly workflow

MM has the best maximum memory requirements.
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Figure 5.43 Average memory for a balanced buttexdgnario (SF = 0.5)
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5.9. Treeworkflow

The experiments we present in this section showbtigavior of a tree scenario

(Figure 5.9) with various input sizes as well wiitle workflow's total selectivity.

5.9.1.Effect of input size

In Figure 5.45 we see the time performance of bneet scheduling policies as we
vary the input size. Again RR and MC are very cldag MC is slightly better. MM

needs more time to complete the execution of tbaas.
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In Figure 5.46 and in Figure 5.47 we see the menmmeguirements for the tree
scenario. RR and MC are close, but MC is perfornsiinghtly better. MM has about
the 20-25% of RR's and MC's average memory reqentsn In the case of the
maximum memory metric all policies are close exdeptMC, where in the case of

0.1GB has a small maximum value, since the inpsimall (therefore the execution

Figure 5.45 Execution time for a tree scenario £€S@l5)

time was also small), there were no peaks duriagiecution.
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Figure 5.46 Average memory for a tree scenario £3eb)
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Figure 5.47 Maximum memory for a tree scenario (S@l5)

5.9.2.Effect of workflow selectivity

In Figure 5.48 we can observe the time each schngdpblicy needs to complete the
execution of a tree scenario. All three schedupogcies behave as expected. The
execution time increases slowly and RR is slighttyse than MC. Finally MM needs

more time to finish.
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Figure 5.48 Execution time for a tree scenario £3F5)
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In Figure 5.49 and in Figure 5.50 we can obsereentlemory requirements of each
scheduling policy. RR and MC have the biggest meguoéents in average memory.
MM has smaller average memory requirements. Aledaling policies have similar
maximum memory requirements except for the caséseiF1.0) where MM has a

distinguishably bigger maximum value.
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Figure 5.49 Average memory for a tree scenarioX9b)
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Figure 5.50 Maximum memory for a tree scenario £3F5)
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5.10. Fork workflow

The experiments we present in this section showb#tgavior of afork scenario
(Figure 5.10) with various input sizes as well viltle workflow's total selectivity.

5.10.1.Effect of input size

In Figure 5.51 we see the time performance of bneet scheduling policies as we
vary the input size. Again RR and MC are very cldsg MC is a little better. MM

needs much more time to complete the executioheo$tenario.
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Figure 5.51 Execution time for a fork scenario (S6€..5)

In Figure 5.52 and in Figure 5.53 we see our sdnaglupolicies’ memory
requirements. Concerning average memory, RR pesfavorse than the other two,
while MC is a little better than RR. MM has a véow average here. For maximum
memory MC is performing much better than RR and MMich have similar values.
Again when the input is small MM has the smalleakimum memory.
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Figure 5.52 Average memory for a fork scenario €5@I5)
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Figure 5.53 Maximum memory for a fork scenariol (56.5)

5.10.2.Effect of workflow selectivity

In Figure 5.54 we see how our scheduling policiesfgsm in the case of a fork

scenario. For all scheduling policies the executime increases linearly.
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Figure 5.54 Execution time for a fork scenario (S8.5)

In Figure 5.55 and in Figure 5.56 we see the aweragd maximum memory
requirements for gork scenario. RR has the worst average memory reqairenand
MC is doing a little better than RR. MM though oeiorms RR and MC, having
very low average values. All three scheduling pe$ichave similar values for

maximum memory.
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Figure 5.55 Average memory for a fork scenario £3F5)
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Figure 5.56 Maximum memory for a fork scenario (S.5)

5.11. Observations deduced from experiments

At first we conducted some preface experimentshsd Wwe can tune and optimize
each scheduling policy. For RR and MC we found adgeet of values that optimize
the executions' time. For MM we chose asset of eslthat could give a good

execution time as well as distinctly smaller mem@guirements.

From our experiments we come to the following caosigns:

— RR: This simple scheduling policy does not performiwi@ all cases was
worse than MC, in terms of execution time and memreguirements, both
average and maximum.

— MC: This scheduling policy outperforms the other i@pthe execution time
metric. Also, in most cases it has better maximuml average memory
requirements.

— MM: This scheduling policy manages to outperform dktger two, when it
comes to average memory requirements. MM couldskd in an environment
where more than one concurrent operations runpaimy memory efficient is

important, but memory can be available at peakgime
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In general, our three scheduling algorithms increintleeir execution time linearly as
the selectivity of a workflow or the input size irases. As the selectivity or the input
size increase, MC outperforms RR. Also, regardiédie input size or the selectivity
the average memory requirements are not affectisd, &vhen the execution time of a

scenario is relatively small, MM might not have grgaks at all.
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CHAPTER 6. CONCLUSIONSAND FUTURE
WORK

6.1 Conclusions
6.2 Future Work

6.1. Conclusions

In this thesis we designed an ETL engine, powezhdugh to support all possible
data operations. The architecture of our engirgniple. Every logical-level activity
that participates in an ETL scenario is implementechore than one physical-level
operators. Every operator participating in the aders execution is performed by
using a single thread. The threads communicateeanoldange data, through the data
structures they share. Disk usage is necessarylbgnbtocking operators for saving
data temporarily, e.g., when they need to sort thput and the size is too big to fit in
the system's main memory. The progress of the ¢xecis controlled by a monitor
thread. The monitor thread performs the executiscfeduling. At every scheduling

step the monitor activates the operator the sckeedulggests.

In our system we have implemented three schedyoigies. Round Robin (RR),
Minimum Cost (MC) and Minimum Memory (MM). RR is aimple and fair
scheduling policy, since it schedules the operatording to a pre-defined order.
MC schedules the operator that has many data wegsp achieving better execution
times. Finally MM is a time slot-based schedulingligy, and at every scheduling
step it selects the operator that consumes maray Wt consider that an operator

consumes data when it process and rejects data.
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Finally, a set of fiducial ETL workflows is propasas an experimental methodology,
lacking related methodology in the research ardalaf tools. This well organized set

contains a broad variety of workflows covering maages of ETL scenarios.

6.2. Future Work

There are many issues that are of interest fordutesearch. The execution engine,
though well designed, can be expanded to a morarenatchitecture. Also, there are
a few issues concerning our scheduling policies.

— A set of well designed software modules (page-basgdbase algorithms)
could be embedded so that the common operationsodep by the engine
can function in a more efficient manner. For examplur external sorter is
one issue, since the engine has no control owerdtany unexpected behavior
cannot be handled (e.g., a possible crash wouldireeghe sorting to start
over). The adaptation of optimizing techniquesis® a good opportunity for
future research.

— A more specialized design for the physical-levekobywould offer the ability
to embed easily more activity types. The desighinéry and unary templates
is a first step towards this direction.

— One important issue in this engine is the commuiticacost we experienced
while conducting our experiments. A lighter andtéasmessaging system
could benefit all scheduling policies.

— A failure handling system could also be designedhabin case of a system
failure (e.g., process termination), the enginelddoacover and continue the
scenario's execution.

— MM can be improved so that we will not experienog @eaks in maximum
memory requirements.

— Also a different approach could be used, basedhendiea that some operators
need more memory to keep their input tuples, wthke sum of all queues
capacity will remain fixed.

— Finally, adapting our scheduling policies in orderschedule not only one

operator at each scheduling step is of interestesmulti-core computers are
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very common in our days. This could be achievedhdying the scheduler to
propose two operators instead of one, the onesteahs most appropriate and

the operator that is the second most appropriate.
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APPENDI X

Table A.1 Experiments from the Aurora Scheduler R3G3]

Description Y-axis X-axis
Comparison between the thread-per-box and| the
_ _ Average Latency Number of
Aurora architecture. The thread-per-box is not
(seconds) Boxes
scalable.
The second experiment shows that two lgvel
) o ) ) System  load
scheduling (application at a time) is maqgre Average Latency _
o ] ] ) (input  queue
efficient that simple scheduling (box at a timg), (seconds) )
o . capacity)
specifically using the MC strategy.
Comparison between MC and ML strategies|on
] ] ~ Average Latency Cost per box
average latency for different processing costs in
(seconds) (msec)
each operator box.
Comparison of MC, ML and MM strategies for Memory  required
memory consumption during the run of|a (normalized on Time (sec)
superbox. MM)
This experiment shows how tuple batching ¢an
reduce overhead in bursty inputs. There |areAverage overhead o
) ) Train size
measures for three burst sizes, in each case ther@uples / sec)
is less overhead when the train size is bigger
A graph that shows the distribution of execution ]
o ) ) Relative overhead The three
workloads with different scheduling tactics. The ]
_ ) (percentage values scheduling
tactics compared are "tuple at a time", "tuple _
from 0 to 100) tactics

train" and "superbox"
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Table A.2 Experiments from the Chain Scheduler [BEL3]

Description Y-axis X-axis
A simple comparison of FIFO and greedy
scheduling. The greedy algorithm performs much
better.
Comparison of all scheduling algorithm in|a )
) ) total queue size )
single stream with two operators and a real data Time (msec)
(Kbytes)
set
Comparison of all scheduling algorithm in|a )
) ) _ total queue size )
single stream with two operators and a synthetic Time (msec)
(Kbytes)
data set
Comparison of all scheduling algorithm in|a )
) ) total queue siz€ )
single stream with four operators and a real data Time (msec)
(Kbytes)
set
Comparison of all scheduling algorithm in|a )
) ) ~ total queue size )
single stream with four operators and a synthetic Time (msec)
(Kbytes)
data set
Comparison of all scheduling algorithm in|a )
) ) ~ total queue size )
single stream with two operators and a synthetic Time (msec)
(Kbytes)
data set and s> 1.
Comparison of all scheduling algorithm in|a )
) ) o ] o total queue size )
single stream with sliding-window join, three (Kbytes) Time (msec)
. ytes
selections and a real data set
Comparison of all scheduling algorithm in|a )
) ) o ] o total queue size )
single stream with sliding-window join, three (Kbytes) Time (msec)
: . ytes
selections and a synthetic data set
Comparison of all scheduling algorithm with total queue sizg )
) ) Time (msec)
multiple queries and a real data set (Kbytes)
Comparison of all scheduling algorithm with total queue sizg )
) ) ) Time (msec)
multiple queries and a synthetic data set (Kbytes)
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Table A.3 Experiments from the X-Join Schedulerdtd ]

Description

Y-axis

X-axis

Shows how the scheduling algorithms beh
when we schedule 4 streams with 16 in

relations (lower is better)

nve

but Time (sec)

Size of final

output (#tuples)

Shows how the scheduling algorithms beh
when we schedule 2 streams with 4 input relati

(lower is better)

nve

pnsTime (sec)

Size of final

output (#tuples)

These results show the selective input and

processing behave, with each algorithm. Also t
measure the simple case of ordered and unord
input data. Joined relations are of equal sizeeH

are the results after 5 seconds of execution.

oin

hey ]
Percentage of final
ered
output
ler

Methods that are

compared

Here are the results after 25 seconds of execu

Joined relations are of equal size

tionPercentage of fina

output

Methods that are

compared

Here are the results after 5 seconds of execu

Joined relations are not of equal size.

ionPercentage of fina

output

Methods that are

compared

Here are the results after 25 seconds of execu

Joined relations are not of equal size.

tionPercentage of fina

output

Methods that are

compared
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