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ABSTRACT 
In this paper, we investigate the problem of answering top-k 
queries via materialized views. We provide theoretical guarantees 
for the adequacy of a view to answer a top-k query, along with 
algorithmic techniques to compute the query via a view when this 
is possible. We explore the problem of answering a query via a 
combination of more than one view and show that it is impossible 
to improve our theoretical guarantees for the answering of a query 
via a combination of views. Finally, we experimentally assess our 
approach for its effectiveness and efficiency. 

Categories and Subject Descriptors 
H.2.4 [Database Management]: Systems – query processing 

General Terms 
Algorithms, Theory 
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Top-k queries, materialized views 

1. INTRODUCTION 
Business Intelligence is extending more and more the palette of 
tools that the analyst is using. Apart from the traditional reporting 
and OLAP operations, dashboards and automated alerts are 
presenting analysts with relatively new and important data. To 
avoid the overwhelming amount of available information, 
analysts need tools that help them to focus their attention to few 
pieces of information of high importance.  
To achieve this focused presentation of important, personalized 
data, BI tools need to allow the user to specify a profile of 
preferences that rank incoming information and constrain the 
result in order to reduce it to few valuable records. This kind of 
process is known in the database literature under the name of top-
k querying. The top-k querying problem concerns the retrieval of 
the top-k results of a ranked query over a database. Specifically, 
given a relation R (tid, A1, A2,...Am), a query Q over R retrieves 
the top-k tuples from R having the k highest values according to a 

scoring function f that accompanies Q.  Typically, f is a monotone 
ranking function of the form score = a1*A1+…+an*An. In this 
paper, we focus on a specific variant of the problem that concerns 
the exploitation of top-k materialized views: assuming several top-
k queries over the underlying data, is it possible to cache them as 
materialized views and improve the efficiency of the querying 
process by answering the queries via these materialized views? 

In a real case study, every morning, the high-level executives of a 
large telecommunications company want to see in their PDA's 
reports exported from the warehouse with the findings coming 
from the data after the last night's refreshment. It would be nice 
for an analyst from the sales department to be able to see a report 
with the top 10 regions in terms of earnings, ranked by (a) the 
difference of today's and yesterday's outgoing traffic and (b) the 
budget spent for advertisements in the local press for urban 
regions. The combination of these two criteria can be expressed 
via a score function like e.g., score1 = 0.6*difftraffic + 0.4*budget. 
Another analyst from the advertisement might ask a similar report 
either with different weights, or by different number of results 
(e.g., top 5), or by completely ignoring the traffic aspect. Is it 
possible to answer all these top-k queries fast, in an on-line 
fashion, without resorting to the large fact tables or data marts? 

Related work has extensively dealt with the problem of efficiently 
computing the top-k results of a query. The first algorithms that 
occurred in this context are FA [2], [3] and TA [4], with various 
extensions that followed them for specific contexts (e.g., parallel 
or distributed computation, etc). In recent years, in an attempt to 
achieve improved performance, researchers solve the problem of 
answering top-k queries via materialized views [1], [6], [7]. In this 
setting, a materialized top-k view caches the results of previous 
top-k queries. Then, a new top-k query may be answered through 
these materialized views resulting in better performance than 
making use only of the base relation from the database. In this 
paper, we extend the state of the art and provide theoretical and 
algorithmic results around the problem of answering top-k 
queries via materialized views. Specifically, our contribution can 
be summarized as follows:  

First, we provide theoretical guarantees for the adequacy of a 
view to answer a top-k query. We show that even if the view 
contains more than k tuples, it is possible that the correct answer 
cannot be provided by the view. We utilize these theoretical 
results to come up with a simple algorithm that decides whether a 
view is suitable to answer a query or not, and computes the 
answer to the query via an appropriate view. We also show that 
the theorem for deciding view adequacy might be too strict in 
certain cases (thus providing room for further optimizations). 
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Moreover, we explore the problem of answering a query via a 
combination of more than one view. Despite the efficiency of 
using two views instead of one for the answering of a query [1], 
we prove that it is impossible to improve our theoretical 
guarantees for the answering of a query via a combination of 
views. Consequently, in the absence of other information, the 
search space of candidate views for the answering of a top-k 
query is restricted to single view candidacies as explored by our 
algorithm. 

Roadmap. The structure of this paper is as follows: in Section 2, 
we review related work. We present our results for the adequacy 
of a view to answer a top-k query in Section 3, along with our 
algorithmic results. In Section 4, we discuss our findings for the 
case where more than one view could be used. In Section 5, we 
experimentally assess the effectiveness and efficiency of the view 
usability method, enhanced with our theoretical guarantees. 
Finally, in Section 6, we summarize our findings and present 
possibilities for future research. 

2. RELATED WORK AND BACKGROUND  
In this section, we give a brief overview of the basic algorithms 
that answer a top-k query over a relation R. Also, we give some 
background information on the technique that we will employ 
later to come up with our theoretical and algorithmic results.  

The first algorithms that dealt with the problem of computing the 
top-k results of a query that utilizes a monotone function over the 
combination of a relation’s attributes are due to Fagin [2], [3]. 
This first algorithms (a.k.a FA algorithm) where later 
complemented by the highly cited TA algorithm [4], [5] that 
appears to provide better performance. The research community 
was quick to provide additional means for the computation of the 
top-k tuples of such a query via the exploitation of materialized 
views. First, the PREFER system was introduced in [6], [7]. 
PREFER uses a core algorithm that answers top-k queries using 
materialized views in a pipelined way. The results of the PREFER 
research were further expanded in [1], where a linear 
programming algorithm was introduced for the same purpose.  

LPTA [1]. LPTA is implemented through a two-step procedure. 
Assume a set of materialized views V=(V1, …Vr) that contain the 
base views. For a relation R containing an attribute Ai, a base view 
Vi is a materialized view of the form (id, Ai) ordered over all the 
tuples of relation R. The first procedure of LPTA is the 
SelectViews algorithm. Algorithm SelectViews(V, Q)  determines 
the most efficient subset U⊆V over a set of materialized views V, 
in order to execute a given query Q. The set U is the most 
efficient subset of V in the sense that it produces the answer to the 
top-k query most efficiently among all possible subsets of V. The 
SelectViews algorithm is based on a simple greedy heuristic 
procedure that selects the subset U that has the cheapest cost. 
Secondly, the LPTA algorithm obtains an answer to Q combining 
all the information conveyed by the views in U. Each view V(tid, 
scorev) is a set of pairs of the form (tuple identifier, score of that 
tuple) using the view’s scoring function. The main idea of LPTA 
is based on solving a linear programming problem. The stopping 
condition of the algorithms holds when the solution of the linear 
program is at least equal to the minimum value of the top-k 
buffer. In case the set of views U is equal to the set of base views 
then LPTA becomes the TA algorithm.  

The key intuition of the LPTA algorithm can be visualized 
through a geometric representation.  Assume a relation R(id, X, Y) 
where without loss of generality the domains of X and Y are 
normalized over the interval [0, 1]. Apart from the base views Vx 
and Vy, assume two materialized views Vu(id, Score1) and Vd(id, 
Score2). Scores Score1 and Score2 are defined as linear functions 
over the attributes of the relation R. In addition, assume a query Q 
with a linear scoring function as well. The scoring functions of 
the views and the query can be depicted as lines. In particular, the 
line of a linear scoring function of the form w(a⋅x + y) = score is 
depicted as: y = a-1 ⋅x. The linear scoring function is depicted as 
its perpendicular line for the reason that the score of a tuple t(id, 
x, y) in regards to the scoring function can be found by projecting 
that point over the corresponding line. In Figure 1a we depict a 
view Vu and a query Q via the corresponding lines. Assume that 
the tuple with the k-th largest score according to Q is denoted as 
M. In addition, AB denotes the line that passes through M and is 
perpendicular to the line Q. Then, the top-k tuples according to Q 
belong in the region of the triangle ABR. This is due to the fact 
that top-k tuples will have a score higher than the score of the k-th 
tuple. The only possible points that can have a higher score than 
the point M are contained in the triangle ABR.  

 

(a) The query is lower 
 than the view 

(b) The query is higher  
than the view 

 
(c) Two views for the answering of a query 

Figure 1. Visual demonstration of the LPTA technique for 
query answering top-k via views 

Assume now we want to answer the query Q by using the tuples 
stored in a materialized view V. The way LPTA proceeds, is by 
performing sorted accesses over the tuples of V. In the geometric 
representation, this can be visualized as sweeping a line 
perpendicular to the line of the view towards the point O(0, 0). 
The order of tuples read by LPTA through sorted accesses over V 



is identical to the order of the points met by sweeping the line 
towards O. 

In case only Vu is available, the stopping condition for the 
algorithm is reached when the sweeping line crosses position A1B. 
This occurs because, the view should encounter all tuples whose 
score in respect to Q are at least equal to the score of the point B. 
Remember that points M and B have the same score in regards to 
Q and therefore, the region below the line A1B does not contain 
any tuples with score greater than the score of M. Similarly, in 
case only view Vd is available, the stopping condition is reached 
when the sweeping line crosses position AB2. In case both views 
Vu and Vd are available, the stopping condition is reached when 
the sweeping lines intersect in a point that lies on the line AB 
where in Figure 1c is denoted as S.  

In the first case, where only Vu is used for answering Q, the 
number of sorted accesses performed through LPTA is the 
number of points that belong in the region of the triangle A1BR. 
Correspondingly, if only Vd is used, the number of points that 
belong in the region of the triangle AB2R is the number of sorted 
accesses LPTA will perform.  
The best choice of the set of views that will answer Q depends 
upon the number of points that will be accessed, since the points 
accessed is identical to the number of sorted accesses LPTA will 
perform. Assume that the number of tuples visited when only Vu 
is used (i.e., the number of points that belong in the triangle 
A1BR) is T1. The number of tuples visited when only Vd is used 
(i.e., the number of points that belong in the triangle AB2R) is 
denoted as T2. The number of tuples visited when both views Vu 
and Vd are used (i.e., the number of points in the region A1SB2R 
which is the shaded area in Figure 1c) is denoted as T3. Then, Vu 
will be preferred in case T1 is less than T2 and less than T3. 
Respectively, view Vd will be preferred when T2 is less than T1 
and less than T3. Finally, both views would be preferred in case T3 
is less than T1 and T2.  

Comparison to Related work. LPTA answers a query Q using a 
suitable number of views, in order to minimize its execution time. 
[1] have provided the algorithm SelectViews that selects a suitable 
set of views according to the query. In order to do so, they 
estimate the score of the last tuple (denoted as topkmin) in regards 
to the query Q. The estimation is computed through the usage of 
histograms for the distribution of the data. The SelectViews 
algorithm is based on this estimation. Therefore, there is no 
theoretically established guarantee that the selected views will be 
able to answer the query. In fact, there are two variants of how the 
set of views are selected. In the first case, views contain all the 
tuples from relation R ranked according to their scoring function. 
Since the views contain all the tuples, query Q will definitely be 
answered because there will not be any missed tuples that should 
be contained in the top-k answer of Q. However, an error in the 
estimation of topkmin, might lead to a selection of views that is not 
the best choice in regards to execution time. In the second case, 
views only contain a portion of the tuples from relation R. 
Actually, they contain the top-k tuples according to their scoring 
function. An error in the estimation of topkmin might cause the 
inability to answer Q. This is because there might be tuples not 
included in the set of views selected, which however should be 
part of the top-k answer of Q. In order to overcome this problem, 
[1] have proposed the set of selected views to always contain the 
base views Vx and Vy. For a query Q over two attributes namely x 

and y, Vx is a materialized view of the form (id, x) ordered over all 
the tuples of relation R. Similarly, Vy is a materialized view of the 
form (id, y) ordered over all the tuples of relation R. Therefore, 
even if the selected views apart from Vx and Vy cannot provide an 
answer to the query Q, then the usage of the base views will 
guarantee it. Still, despite these heuristics, there are no clear 
theoretical or experimental results on the limits of the usability of 
top-k materialized views, or on the efficiency of exploiting them 
for the answering of queries. 

3. ADEQUACY OF A MATERIALIZED 
VIEW TO ANSWER A QUERY  
In this section, we provide theoretical and algorithmic results for 
answering top-k queries using materialized views. We start with 
our fundamental result and then proceed to investigate why our 
basic theorems could prove to be too strict. Finally, we present a 
simple algorithm for deciding the usability of a view for a top-k 
query.  

3.1 Problem formulation  
Assume a relation R(ID, X, Y, …) and a materialized view V(ID, 
X, Y, s), with the score s being defined as s=w(a⋅x +y) and w, a 
being positive parameters. Following the setting of [1], this 
equation is characterized by a line y=a-1⋅x. Assume also the query 
Q(ID, X, Y, sQ) with the score sQ being defined as sQ=wQ(aQ⋅x+y) 
and wQ, aQ being positive parameters. Again, this equation is 
characterized by a line y = aQ

-1⋅ x. 

 
Figure 2. Answering a query Q via a view VU when the view is 

“higher” than the query 

Assume that the extent of V has n tuples and the query Q requests 
k ≤ n tuples. The question is whether it is possible to answer Q 
using only the tuples materialized in V. We will explore the 
problem based on its diagrammatic representation and we will 
discern two cases: in the first case, the line of the view is higher 
than the one of the query, in the second case, the reverse holds.  

3.2 The case when the view is “higher” than 
the query 
In this case (Fig. 2), we assume that aQ

-1≤ a-1 (which means that V 
is drawn “higher” than Q in their graphical representation). We 
will employ the subscript U for the entire notation concerning 



view V and refer to it as VU(ID, X, Y, sU), with the score sU being 
defined as sU=wU(aU⋅x+y) .  

Let tn be the n-th tuple materialized in VU. Assume that tn has a 
score s(tn). Let LU: xNUyNU be the line perpendicular to the line of 
VU passing from point s(tn) (with xNU, yNU  being the points were it 
meets the axes X, Y). The area above the line LU contains the top-
n tuples with respect to VU. Now, take the line LQ: xNUyQ, which is 
perpendicular to Q and starts at the point xNU. This area contains 
points that belong both to Q and VU (which we call safe area).  

Lemma 1. It is possible that VU contains more than k tuples but 
misses the answer to Q.  

Proof. Assume a tuple t of R (Figure 3, near the X-axis) that (a) 
does not belong to VU and (b) should be part of Q’s top-k answer 
set. In this case, since t does not belong to VU, it is lower than the 
line LU. Assume also tuples t1, t2 placed as depicted in Figure 3. 
The scores of these tuples are high enough so that they can be 
included in the top-n for view VU (remember that the score of a 
tuple with respect to a query/view involves projecting the tuple to 
the line of the query/view). Still, tuple t has a higher score than all 
of these tuples with respect to query Q (observe that the dotted 
line which starts from t and is perpendicular to Q produces a 
higher score than the respective line for t2). Observe that this 
situation includes the tuple tn which is the n-th tuple of VU. 
Therefore, VU is insufficient to answer Q.  

 
Figure 3. Example of why a view V is not always reliable for 

answering a query Q 

Theorem 1. VU can answer Q if the area above line LQ contains at 
least k points.  

Proof. We will prove the theorem by contradiction. Assume a 
tuple t of R (Figure 3) that (a) does not belong to VU and (b) 
should be part of Q’s top-k answer set. In this case, since t does 
not belong to VU, it is lower than the line LU. Still, LU is always 
lower than LQ, therefore, the projection of t over line Q will also 
be lower than LQ. If the shaded area beyond LQ has more than k 
points, these k points all have scores (projections to line Q) higher 
than t, with respect to Q, which cannot be true, since we assume 
that t belongs to the top-k answer set of Q.  
It is interesting to observe that (a) the inverse of Theorem 1 does 
not always hold, and (b) how can we decide that a point belongs 
to the safe area.  

3.3 Strictness of the suitability theorem  
It is not possible to infer the inverse of Theorem 1. Even if the 
shaded area of line LQ does not contain k tuples it would still be 
possible to answer Q with tuples that belong to VU if a critical 
area below the line VU does not contain any tuples. For example, 
assume the case where tuple t was not present in R, no tuple 
belongs to the shaded area and the query Q asked for top-3 tuples. 
Then tuples t1, t2, tn can answer Q since there are not other tuples 
below line LU. Still, the main problem is that we need to refer to R 
(or to some sketch of it) to find whether such tuples lying below 
LU exist or not. In fact, it is not even necessary to search the 
whole area below LU, but rather a specific subset of it. In our 
example, it is sufficient to check whether the area of the triangle 
(xNUx1p1) contains any tuples or not. The following theorem 
formalizes the conditions under which a view can answer a query 
even if its safe area is insufficient.  

Theorem 2. It is possible that VU can answer Q even if there are 
less than k tuples in the safe area. For this to hold, it is necessary 
that the area defined by the line LU, the X-axis and the line that 
produces the lowest possible score for Q from the tuples of VU is 
void of tuples.  

 
Figure 4. At least k points in the safe area of a view V make it 

reliable for answering a query Q 

Proof. The point x1 is the point that meets the X-axis and belongs 
to line L1 that corresponds to the tuple in VU with the lowest score 
with respect to Q (here, in the example of Figure 4, tuple t1). The 
point p1 is the point where this line meets LU. In other words, we 
need to find the line that produces the lowest score for Q, for all 
the tuples in VU. If the triangle defined by the X-axis, LU and L1 
has no points, then the points within VU are the ones producing 
the lowest possible scores for Q. So, if VU contains more than k 
points, it can answer Q.   

3.4 Computation of offsets and safe areas 
If one does not want to go through the computation of Q’s score 
for all the tuples of VU, then another safe criterion would be to use 
xlast, which is the point of the X-axis that corresponds to the line 
that gives the score for yNU with respect to Q.  

In any case, this property can be used if one is interested in 
approximate results (in fact, the smaller the area of the triangle, 
the higher the possibility that VU can answer the query Q). 



Moreover, sketches of the data distribution in R can also help in 
deciding whether the area is empty or not (and to what extent).  

A second technical point has to do with whether a point belongs 
to the shaded area or not. The line LQ is defined by the equation 
y= - aQ ⋅ x + aQ⋅

 xNU (easy to check: being perpendicular to line Q, 
the product of line Q with the line LQ must be -1; then the offset 
can easily be computed by putting y = 0 for LQ). Assume a tuple 
tb(xb, yb). Tuple tb belongs to the shaded area if yb ≥ -aQ⋅xb + 
aQ⋅xNU.  

Quite similar to the above point is the computation of the point 
xNU which is needed for the equation of the line LQ: assume we 
know the n-th tuple of VU, tn(xn, yn). Then, this belongs to the line 
LU that is perpendicular to VU, therefore with an equation y= -aU⋅x 
+ offset. Since tn belongs to this line, offset = yn + aU

 ⋅ xn. For y = 
0, we deal with the point xNU and then offset = aU ⋅

 xNU, i.e., xNU = 
aU

-1(yn + aU⋅
 xn). 

3.5 The case when the view is “lower” than 
the query 
In this case, we assume that aQ

-1 ≥ a-1  (which means that V is 
drawn “lower” than Q in their graphical representation). We will 
employ the subscript D for all the notation concerning view V and 
refer to it as VD(ID, X, Y, sD), with the score sD being defined as sD 
= wD ( aD⋅x +y). 

Similarly to the previous case, we can prove that (a) it is possible 
for view VD to omit tuples that should belong to the extent of Q 
and (b) there is a safe region that can guarantee that Q can be 
answered solely by VD. Again, we will employ the line (xND yND) 
that passes from the n-th point of VD and gives its score (i.e., it is 
perpendicular to the line of VD). We use point yND this time and 
take the line LQ: yND xQ that is perpendicular to the line Q. The 
line LQ is defined by the equation y = -aQ ⋅ x + yND and a tuple tb 
(xb, yb) belongs to the safe shaded area above the line LQ if yb ≥ -
aQ ⋅ xb + yND.  

 
Figure 5. The case where the view is “under” the query 

3.6 Special Cases  
In the above we have assumed that the scoring functions of the 
views and the query are in the form of w(a ⋅ x + y)= s. However, 

the scoring function of a view or a query can be of the form score 
s = x or s = y. In this section, we describe these special cases.  

(i) Assume a view with a scoring function of the form sV = yV 
(i.e., the attribute x does not play any role in the computation of a 
tuple’s score). In such a case (Fig. 6), the line that is 
perpendicular to V and passes through the last tuple of the view 
tn(xn, yn), is of the form LV : y = yn. In addition, assume a query Q 
with scoring function wQ(aQ ⋅ x + y)= sQ. In order to compute the 
safe area in which V can answer Q, we need to know the active 
domain of the attributes X and Y. Assume that the active domains 
of attributes X and Y are X∈[xmin, xmax] and Y∈ [ymin, ymax]. Then, 
the safe area is above line LQ that is defined as the line that is 
perpendicular to Q and passes through the point p (xmax, yn).  

 
Figure 6. Special case where V is of the form sV = y 

An even more extreme case is when both the view and the query 
ignore attribute x in their scoring function (i.e., both aV = aQ = 0). 
In this case, both V and Q are found over axis Y. Then, V can 
answer Q when it contains more tuples than what Q requests. This 
is due to the fact that in such a case the scoring function of V is 
proportional to the scoring function of Q.  

 
Figure 7. Special case where V is of the form sV = x 

An intriguing situation arises when view V is found over the Y-
axis and the query Q is found over axis X. In other words, the 
view score sV is defined as sV= y and the query score is defined as 



sQ = x. In this case, there is no guarantee that V can answer Q.  
Assume the case where there exist tuples with very high X values 
and very low Y values; then these tuples are the top-k tuples of the 
query; still due to their low Y values they are outside the safe area 
border and not part of the view. Therefore, it is obligatory to 
consider the full space as the safe area.  

Algorithm Test 2DView Suitability 
Input:  A materialized view V(ID, X, Y, sU)n,  
 with its equation s = w (a ⋅ x + y) and its n tuples,  
 a Q(ID, X, Y, sQ)k, sQ = wQ (aQ ⋅ x + y), k ≤ n,  
Output: a decision on whether Q can be answered by V along 

with the population of V 
Variables: a counter to count how many tuples V has inside the 

safe area of Q 
Begin 

1. Let tn be the n-th tuple of V, tn(xn,yn)=V[n]. 
2. if (αQ

-1 ≤ α-1){ 
3.  compute point xNU: xNU = a-1 (yn + a⋅xn) 
4.  define line LQ as y = -αQ⋅x + αQ⋅xNU 
5. } 
6. else{ 
7.  compute point yND: yND = yn + a⋅xn 
8.  define line LQ as y = -αQ⋅x + yND 
9. } 
10. for all tuples of V {  
11.  compute sQ(V[i]) 
12.  if (sQ(V[i]) belongs above line LQ) counter++ ; 
13. } 
14. if (counter ≥ k ) return(true); 
15. else return(false);       

End. 
Figure 8. Algorithm Test 2DView Suitability 

(ii) Assume a view with a scoring function of the form sV = xV 
(Fig. 7). In such a case, the line that is perpendicular to V and 
passes through the last tuple tn(xn, yn)  materialized, is of the form 
LV : x = xn. In addition, assume a query Q with scoring function 
wQ(aQ ⋅ x + y)= sQ. In order, to compute the safe area in which V 
can answer Q we need to know the active domain of the attributes 
X and Y. Assume that the active domains of attributes X and Y are 
X∈[xmin, xmax] and Y∈ [ymin, ymax]. Then, the safe area is above 
line LQ. LQ is defined as the line that is perpendicular to Q and 
passes through the point p (xn, ymax). 

Similarly to the previous case, we can encounter two extreme sub 
cases. The first of these cases concerns the situation where the 
scoring function of the query has the same slope with the query. 
Then, V can answer Q when it contains more tuples than what Q 
requests for. This is because in such a case the scoring function of 
V is proportional to the scoring function of Q. The second of these 
cases, concerns the situation where the scoring function of the 
query has the parameter aQ = 0: again, there is no guarantee that V 
can answer Q.  

3.7 Algorithmic Results  
Now, we are ready to give an algorithm (Fig. 8) that decides 
whether Q can be answered by V and populates V if the test is 
positive. As Fig. 9 indicates, the complexity of the algorithm 
depends on the number of tuples stored in the materialized view 
(i.e., the number of iterations for the for loop in Fig. 8). 

 
Figure 9. All the safe area should possibly be exhausted for 

the determination of the top-k query tuples 

4. WORKING WITH MORE THAN ONE 
VIEW 
[1] have proved that a query can be answered either by a single 
view, or by a combination of two views whose lines lie on 
different sides of the query’s line. Assume now that for a given 
query Q, we do not have a single view that can answer the query, 
but, there exist two views VU and VD that lie on different sides of 
the query’s line. Is it possible to use these two views to answer Q 
without referring to the relation R?  

4.1 Safe area containment  

 
Figure 10. A query Q with one view on either of its sides, VU 

for the upper side and VD for the lower side 

Observe Figure 10. A query Q is encompassed by two 
preexisting, materialized views VU and VD, the first on the upper 
and the second on the lower side of Q. Figure 10 also depicts the 
lines LU and LD, which are perpendicular to the respective views 
and signify their last stored tuple. These lines are also used to 
draw the lines LQU and LQD which are perpendicular to Q and 
characterize the safe areas for VU and VD respectively.  

Theorem 3. Assume two views encompassing a query Q, none of 
which is safe to be used for answering the query by itself. It is 



impossible to safely guarantee the answering of the query by the 
combined usage of the two views.  

Proof. Since lines LQU and LQD are both perpendicular to Q, the 
safe area of one view is encompassed in the safe area of the other 
view. Since neither view is safe for the answering of the query, it 
follows that the union of their safe areas is insufficient, too.  

5. EXPERIMENTS 
In this section, we report on the experimental assessment of the 
usage of materialized views to answer top-k queries.  

5.1 Experimental Methodology 
Our experimental study has been conducted towards assuring the 
following two goals:  

1. Effectiveness. The first desideratum of the experimental 
study has been the verification of the hypothesis that the 
proposed theoretical results can actually produce a 
significant number of views that can be employed to answer 
a top-k query.  

2. Efficiency. The second desideratum of the experimental 
study has been the testing of the hypothesis that the 
answering of top-k queries via materialized views can indeed 
improve the performance of query answering at a significant 
factor. 

 

We have implemented our view usability method and use the only 
method that can guarantee view usability correctness (i.e., TA) as 
an opponent. We do not use auxiliary structures in our 
experiments (e.g., sketches of the non-covered area of a 
materialized view, or any other indexes). All our experiments 
involve a relation R(tid,X,Y). All the queries were fully answered 
and then used as materialized views for the subsequent queries.  
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Figure 11. Percentage of views used for 100 queries 

We have generated random data sets of different sizes. We 
generate a sequence of queries with random coefficients and 
result size (k). Each query’s result is cached as a materialized 
view; so, every query tests all its previous queries as candidates. 
The important parameters that we have experimented with are: (a) 
the relation size |R|, (b) the number of queries asked |Q| 
(practically testing how the method works as time passes and 
more views get to be materialized) and, (c) the range of the 
requested tuples k as compared to the underlying database size 
|R|/k. The values that we have worked are listed in the following 
table.  

In all our experiments, we have used a server with 1GB memory 
and a Core 2 CPU at 2.13 GHz. All the implementations were 
made using BerkeleyDB and its C API.  

Table 1. Experimental parameters 

 Size of source table R (tuples) |R|  1x104, 5x104, 1x105 

 Size of mat. view (tuples) k  10, 50, 100, 500, 1000 

 Number of queries asked |Q| 100, 1000 
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Figure 12. Percentage of views used for different time spans 

(numbers of posed queries) 

5.2 Effectiveness 
The effectiveness of the method is depicted in Figures 11 and 12. 
Figure 11 shows that the effectiveness of the method is quite 
stable and ranges around 30%-35% for different data sizes. It is 
also interesting to observe Figure 12, where we use different time 
spans and different ranges for k to observe the behavior of our 
method. This is practically achieved by issuing a larger number of 
queries (i.e., 1000 instead of 100 queries).  

The first observation when comparing the two figures concerns 
the difference in efficiency as we vary the maximum value of k 
that the queries can take. Observe the dark bars of the two figures, 
both depicting what happens when 100 queries were issued (so, 
the only difference is the R/k factor). In Figure 11, the queries are 
large in size and can request up to 1% of the relation as a result. 
Frequently, it was the case that a large view that was materialized 
early in the query series would serve as the answering source for 
subsequent queries. A second observation from Figure 12, 
concerns the effectiveness of the method over time. So, in Figure 
12, we see what happens as time passes (1000 queries), and we 
can observe that the effectiveness of the method rises significantly 
after a while (again to the height of 35%-40%), even for small k’s.  

5.3 Efficiency 
The efficiency of the method over random data is depicted in 
Figure 13. We vary two parameters, specifically, the relation size, 
and the maximum possible number that k can take, and we assess 
the improvement in time when comparing our method with the 
opponent. The detailed numbers (including total query times) are 
depicted in Fig. 14.  

Interestingly, the time savings present a conflicting case. As the 
number of stored results rises (dark bars, concerning large k’s, up 
to 1% of the relation size) the savings drop from a 25% 
improvement to a decrease of 18%. This is clearly due to the size 



of used memory. As more results are collected in main memory 
there are two problems: (a) memory allocation becomes slow (in 
fact, we frequently brought our gnu compiler to its limits) and (ii) 
it is possible that a certain view will be able to answer several 
queries due to a very large k and a usable slope. Exhausting the 
safe area for this view might prove too slow for queries with a 
large k (remember that we can be ascertained for the correct result 
only once we have reached the safe area border). Thus, a caching 
problem has to be solved based on the grounds of this 
observation. In any case, if one considers realistic BI scenarios, a 
top-k query returning 1% is extremely too large; so this is a case 
in the limit of this technology. On the other hand, the efficiency 
increases consistently for more reasonable k’s of size 0.1% (still 
large for BI). As the memory allocation is not a problem for this 
setting, the improvements start from a negligible 1% for small 
relations and rise up to 24% for a large relation. This is clearly 
due to the fact that views with appropriate slopes can significantly 
speed-up the whole process as compared to their full evaluation.  
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Figure 13. Time savings from the usage of queries for 

different database sizes and requested results. 

6. CONCLUSIONS 
In this paper, we have provided theoretical and algorithmic results 
for the problem of answering top-k queries via materialized views. 
We have provided theoretical guarantees for the adequacy of a 
view to answer a top-k query, along with algorithmic techniques 
to compute the query via a view when this is possible. Moreover, 
we have explored the problem of answering a query via a 
combination of more than one view and showed that despite the 
efficiency of using two views instead of one for the answering of 
a query as demonstrated in the related literature, it is impossible 
to improve our theoretical guarantees for the answering of a query 
via a combination of views.  

Research can follow in different directions. The most prominent 
ones involve (a) the usage of the appropriate sketches of the 
involved data to compensate for lack of knowledge on unsafe or 
not-covered areas of a view with respect to a given query, and (b) 
the discussion of issues concerning the view caching problem, in 
order to efficiently accommodate large numbers of view contents 
that can appropriately serve as subsequent queries within a limited 
memory budget.  
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R k D/k % views 

used 
Total time without 

views (sec’s) 
Total time 
via views 

Total opponent 
time  

% 
improved 

10000 100 100 35,00% 0,351653 0,006241 0,091611 24,28% 

10000 10 1000 7,00% 0,074605 0,000011 0,000749 0,99% 

50000 500 100 32,00% 4,323892 0,396714 1,06225 15,39% 

50000 50 1000 10,00% 1,064684 0,000193 0,072758 6,82% 

100000 1000 100 31,00% 12,037897 4,599822 2,458762 -17,79% 

100000 100 1000 11,00% 2,682971 0,003201 0,262244 9,66% 

Figure 14. Detailed information for the efficiency of the method in time savings. 

 


