
View Usability and Safety for the Answering of Top-k
Queries via Materialized Views

Eftychia Baikousi Panos Vassiliadis
Dept. of Computer Science, Univ. of Ioannina

Ioannina, 45110 Hellas

{ebaikou, pvassil}@cs.uoi.gr

ABSTRACT
In this paper, we investigate the problem of answering top-k
queries via materialized views. We provide theoretical guarantees
for the adequacy of a view to answer a top-k query, along with
algorithmic techniques to compute the query via a view when this
is possible. We explore the problem of answering a query via a
combination of more than one view and show that it is impossible
to improve our theoretical guarantees for the answering of a query
via a combination of views. Finally, we experimentally assess our
approach for its effectiveness and efficiency.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems – query processing

General Terms
Algorithms, Theory

Keywords
Top-k queries, materialized views

1. INTRODUCTION
Business Intelligence is extending more and more the palette of
tools that the analyst is using. Apart from the traditional reporting
and OLAP operations, dashboards and automated alerts are
presenting analysts with relatively new and important data. To
avoid the overwhelming amount of available information,
analysts need tools that help them to focus their attention to few
pieces of information of high importance.
To achieve this focused presentation of important, personalized
data, BI tools need to allow the user to specify a profile of
preferences that rank incoming information and constrain the
result in order to reduce it to few valuable records. This kind of
process is known in the database literature under the name of top-
k querying. The top-k querying problem concerns the retrieval of
the top-k results of a ranked query over a database. Specifically,
given a relation R (tid, A1, A2,...Am), a query Q over R retrieves
the top-k tuples from R having the k highest values according to a

scoring function f that accompanies Q. Typically, f is a monotone
ranking function of the form score = a1*A1+…+an*An. In this
paper, we focus on a specific variant of the problem that concerns
the exploitation of top-k materialized views: assuming several top-
k queries over the underlying data, is it possible to cache them as
materialized views and improve the efficiency of the querying
process by answering the queries via these materialized views?

In a real case study, every morning, the high-level executives of a
large telecommunications company want to see in their PDA's
reports exported from the warehouse with the findings coming
from the data after the last night's refreshment. It would be nice
for an analyst from the sales department to be able to see a report
with the top 10 regions in terms of earnings, ranked by (a) the
difference of today's and yesterday's outgoing traffic and (b) the
budget spent for advertisements in the local press for urban
regions. The combination of these two criteria can be expressed
via a score function like e.g., score1 = 0.6*difftraffic + 0.4*budget.
Another analyst from the advertisement might ask a similar report
either with different weights, or by different number of results
(e.g., top 5), or by completely ignoring the traffic aspect. Is it
possible to answer all these top-k queries fast, in an on-line
fashion, without resorting to the large fact tables or data marts?

Related work has extensively dealt with the problem of efficiently
computing the top-k results of a query. The first algorithms that
occurred in this context are FA [2], [3] and TA [4], with various
extensions that followed them for specific contexts (e.g., parallel
or distributed computation, etc). In recent years, in an attempt to
achieve improved performance, researchers solve the problem of
answering top-k queries via materialized views [1], [6], [7]. In this
setting, a materialized top-k view caches the results of previous
top-k queries. Then, a new top-k query may be answered through
these materialized views resulting in better performance than
making use only of the base relation from the database. In this
paper, we extend the state of the art and provide theoretical and
algorithmic results around the problem of answering top-k
queries via materialized views. Specifically, our contribution can
be summarized as follows:

First, we provide theoretical guarantees for the adequacy of a
view to answer a top-k query. We show that even if the view
contains more than k tuples, it is possible that the correct answer
cannot be provided by the view. We utilize these theoretical
results to come up with a simple algorithm that decides whether a
view is suitable to answer a query or not, and computes the
answer to the query via an appropriate view. We also show that
the theorem for deciding view adequacy might be too strict in
certain cases (thus providing room for further optimizations).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DOLAP’09, November 6, 2009, Hong Kong, China.
Copyright 2009 ACM 978-1-60558-801-8/09/11…$10.00.

Moreover, we explore the problem of answering a query via a
combination of more than one view. Despite the efficiency of
using two views instead of one for the answering of a query [1],
we prove that it is impossible to improve our theoretical
guarantees for the answering of a query via a combination of
views. Consequently, in the absence of other information, the
search space of candidate views for the answering of a top-k
query is restricted to single view candidacies as explored by our
algorithm.

Roadmap. The structure of this paper is as follows: in Section 2,
we review related work. We present our results for the adequacy
of a view to answer a top-k query in Section 3, along with our
algorithmic results. In Section 4, we discuss our findings for the
case where more than one view could be used. In Section 5, we
experimentally assess the effectiveness and efficiency of the view
usability method, enhanced with our theoretical guarantees.
Finally, in Section 6, we summarize our findings and present
possibilities for future research.

2. RELATED WORK AND BACKGROUND
In this section, we give a brief overview of the basic algorithms
that answer a top-k query over a relation R. Also, we give some
background information on the technique that we will employ
later to come up with our theoretical and algorithmic results.

The first algorithms that dealt with the problem of computing the
top-k results of a query that utilizes a monotone function over the
combination of a relation’s attributes are due to Fagin [2], [3].
This first algorithms (a.k.a FA algorithm) where later
complemented by the highly cited TA algorithm [4], [5] that
appears to provide better performance. The research community
was quick to provide additional means for the computation of the
top-k tuples of such a query via the exploitation of materialized
views. First, the PREFER system was introduced in [6], [7].
PREFER uses a core algorithm that answers top-k queries using
materialized views in a pipelined way. The results of the PREFER
research were further expanded in [1], where a linear
programming algorithm was introduced for the same purpose.

LPTA [1]. LPTA is implemented through a two-step procedure.
Assume a set of materialized views V=(V1, …Vr) that contain the
base views. For a relation R containing an attribute Ai, a base view
Vi is a materialized view of the form (id, Ai) ordered over all the
tuples of relation R. The first procedure of LPTA is the
SelectViews algorithm. Algorithm SelectViews(V, Q) determines
the most efficient subset U⊆V over a set of materialized views V,
in order to execute a given query Q. The set U is the most
efficient subset of V in the sense that it produces the answer to the
top-k query most efficiently among all possible subsets of V. The
SelectViews algorithm is based on a simple greedy heuristic
procedure that selects the subset U that has the cheapest cost.
Secondly, the LPTA algorithm obtains an answer to Q combining
all the information conveyed by the views in U. Each view V(tid,
scorev) is a set of pairs of the form (tuple identifier, score of that
tuple) using the view’s scoring function. The main idea of LPTA
is based on solving a linear programming problem. The stopping
condition of the algorithms holds when the solution of the linear
program is at least equal to the minimum value of the top-k
buffer. In case the set of views U is equal to the set of base views
then LPTA becomes the TA algorithm.

The key intuition of the LPTA algorithm can be visualized
through a geometric representation. Assume a relation R(id, X, Y)
where without loss of generality the domains of X and Y are
normalized over the interval [0, 1]. Apart from the base views Vx
and Vy, assume two materialized views Vu(id, Score1) and Vd(id,
Score2). Scores Score1 and Score2 are defined as linear functions
over the attributes of the relation R. In addition, assume a query Q
with a linear scoring function as well. The scoring functions of
the views and the query can be depicted as lines. In particular, the
line of a linear scoring function of the form w(a⋅x + y) = score is
depicted as: y = a-1 ⋅x. The linear scoring function is depicted as
its perpendicular line for the reason that the score of a tuple t(id,
x, y) in regards to the scoring function can be found by projecting
that point over the corresponding line. In Figure 1a we depict a
view Vu and a query Q via the corresponding lines. Assume that
the tuple with the k-th largest score according to Q is denoted as
M. In addition, AB denotes the line that passes through M and is
perpendicular to the line Q. Then, the top-k tuples according to Q
belong in the region of the triangle ABR. This is due to the fact
that top-k tuples will have a score higher than the score of the k-th
tuple. The only possible points that can have a higher score than
the point M are contained in the triangle ABR.

(a) The query is lower
 than the view

(b) The query is higher
than the view

(c) Two views for the answering of a query

Figure 1. Visual demonstration of the LPTA technique for
query answering top-k via views

Assume now we want to answer the query Q by using the tuples
stored in a materialized view V. The way LPTA proceeds, is by
performing sorted accesses over the tuples of V. In the geometric
representation, this can be visualized as sweeping a line
perpendicular to the line of the view towards the point O(0, 0).
The order of tuples read by LPTA through sorted accesses over V

is identical to the order of the points met by sweeping the line
towards O.

In case only Vu is available, the stopping condition for the
algorithm is reached when the sweeping line crosses position A1B.
This occurs because, the view should encounter all tuples whose
score in respect to Q are at least equal to the score of the point B.
Remember that points M and B have the same score in regards to
Q and therefore, the region below the line A1B does not contain
any tuples with score greater than the score of M. Similarly, in
case only view Vd is available, the stopping condition is reached
when the sweeping line crosses position AB2. In case both views
Vu and Vd are available, the stopping condition is reached when
the sweeping lines intersect in a point that lies on the line AB
where in Figure 1c is denoted as S.

In the first case, where only Vu is used for answering Q, the
number of sorted accesses performed through LPTA is the
number of points that belong in the region of the triangle A1BR.
Correspondingly, if only Vd is used, the number of points that
belong in the region of the triangle AB2R is the number of sorted
accesses LPTA will perform.
The best choice of the set of views that will answer Q depends
upon the number of points that will be accessed, since the points
accessed is identical to the number of sorted accesses LPTA will
perform. Assume that the number of tuples visited when only Vu
is used (i.e., the number of points that belong in the triangle
A1BR) is T1. The number of tuples visited when only Vd is used
(i.e., the number of points that belong in the triangle AB2R) is
denoted as T2. The number of tuples visited when both views Vu
and Vd are used (i.e., the number of points in the region A1SB2R
which is the shaded area in Figure 1c) is denoted as T3. Then, Vu
will be preferred in case T1 is less than T2 and less than T3.
Respectively, view Vd will be preferred when T2 is less than T1
and less than T3. Finally, both views would be preferred in case T3
is less than T1 and T2.

Comparison to Related work. LPTA answers a query Q using a
suitable number of views, in order to minimize its execution time.
[1] have provided the algorithm SelectViews that selects a suitable
set of views according to the query. In order to do so, they
estimate the score of the last tuple (denoted as topkmin) in regards
to the query Q. The estimation is computed through the usage of
histograms for the distribution of the data. The SelectViews
algorithm is based on this estimation. Therefore, there is no
theoretically established guarantee that the selected views will be
able to answer the query. In fact, there are two variants of how the
set of views are selected. In the first case, views contain all the
tuples from relation R ranked according to their scoring function.
Since the views contain all the tuples, query Q will definitely be
answered because there will not be any missed tuples that should
be contained in the top-k answer of Q. However, an error in the
estimation of topkmin, might lead to a selection of views that is not
the best choice in regards to execution time. In the second case,
views only contain a portion of the tuples from relation R.
Actually, they contain the top-k tuples according to their scoring
function. An error in the estimation of topkmin might cause the
inability to answer Q. This is because there might be tuples not
included in the set of views selected, which however should be
part of the top-k answer of Q. In order to overcome this problem,
[1] have proposed the set of selected views to always contain the
base views Vx and Vy. For a query Q over two attributes namely x

and y, Vx is a materialized view of the form (id, x) ordered over all
the tuples of relation R. Similarly, Vy is a materialized view of the
form (id, y) ordered over all the tuples of relation R. Therefore,
even if the selected views apart from Vx and Vy cannot provide an
answer to the query Q, then the usage of the base views will
guarantee it. Still, despite these heuristics, there are no clear
theoretical or experimental results on the limits of the usability of
top-k materialized views, or on the efficiency of exploiting them
for the answering of queries.

3. ADEQUACY OF A MATERIALIZED
VIEW TO ANSWER A QUERY
In this section, we provide theoretical and algorithmic results for
answering top-k queries using materialized views. We start with
our fundamental result and then proceed to investigate why our
basic theorems could prove to be too strict. Finally, we present a
simple algorithm for deciding the usability of a view for a top-k
query.

3.1 Problem formulation
Assume a relation R(ID, X, Y, …) and a materialized view V(ID,
X, Y, s), with the score s being defined as s=w(a⋅x +y) and w, a
being positive parameters. Following the setting of [1], this
equation is characterized by a line y=a-1⋅x. Assume also the query
Q(ID, X, Y, sQ) with the score sQ being defined as sQ=wQ(aQ⋅x+y)
and wQ, aQ being positive parameters. Again, this equation is
characterized by a line y = aQ

-1⋅ x.

Figure 2. Answering a query Q via a view VU when the view is

“higher” than the query

Assume that the extent of V has n tuples and the query Q requests
k ≤ n tuples. The question is whether it is possible to answer Q
using only the tuples materialized in V. We will explore the
problem based on its diagrammatic representation and we will
discern two cases: in the first case, the line of the view is higher
than the one of the query, in the second case, the reverse holds.

3.2 The case when the view is “higher” than
the query
In this case (Fig. 2), we assume that aQ

-1≤ a-1 (which means that V
is drawn “higher” than Q in their graphical representation). We
will employ the subscript U for the entire notation concerning

view V and refer to it as VU(ID, X, Y, sU), with the score sU being
defined as sU=wU(aU⋅x+y) .

Let tn be the n-th tuple materialized in VU. Assume that tn has a
score s(tn). Let LU: xNUyNU be the line perpendicular to the line of
VU passing from point s(tn) (with xNU, yNU being the points were it
meets the axes X, Y). The area above the line LU contains the top-
n tuples with respect to VU. Now, take the line LQ: xNUyQ, which is
perpendicular to Q and starts at the point xNU. This area contains
points that belong both to Q and VU (which we call safe area).

Lemma 1. It is possible that VU contains more than k tuples but
misses the answer to Q.

Proof. Assume a tuple t of R (Figure 3, near the X-axis) that (a)
does not belong to VU and (b) should be part of Q’s top-k answer
set. In this case, since t does not belong to VU, it is lower than the
line LU. Assume also tuples t1, t2 placed as depicted in Figure 3.
The scores of these tuples are high enough so that they can be
included in the top-n for view VU (remember that the score of a
tuple with respect to a query/view involves projecting the tuple to
the line of the query/view). Still, tuple t has a higher score than all
of these tuples with respect to query Q (observe that the dotted
line which starts from t and is perpendicular to Q produces a
higher score than the respective line for t2). Observe that this
situation includes the tuple tn which is the n-th tuple of VU.
Therefore, VU is insufficient to answer Q.

Figure 3. Example of why a view V is not always reliable for

answering a query Q

Theorem 1. VU can answer Q if the area above line LQ contains at
least k points.

Proof. We will prove the theorem by contradiction. Assume a
tuple t of R (Figure 3) that (a) does not belong to VU and (b)
should be part of Q’s top-k answer set. In this case, since t does
not belong to VU, it is lower than the line LU. Still, LU is always
lower than LQ, therefore, the projection of t over line Q will also
be lower than LQ. If the shaded area beyond LQ has more than k
points, these k points all have scores (projections to line Q) higher
than t, with respect to Q, which cannot be true, since we assume
that t belongs to the top-k answer set of Q.
It is interesting to observe that (a) the inverse of Theorem 1 does
not always hold, and (b) how can we decide that a point belongs
to the safe area.

3.3 Strictness of the suitability theorem
It is not possible to infer the inverse of Theorem 1. Even if the
shaded area of line LQ does not contain k tuples it would still be
possible to answer Q with tuples that belong to VU if a critical
area below the line VU does not contain any tuples. For example,
assume the case where tuple t was not present in R, no tuple
belongs to the shaded area and the query Q asked for top-3 tuples.
Then tuples t1, t2, tn can answer Q since there are not other tuples
below line LU. Still, the main problem is that we need to refer to R
(or to some sketch of it) to find whether such tuples lying below
LU exist or not. In fact, it is not even necessary to search the
whole area below LU, but rather a specific subset of it. In our
example, it is sufficient to check whether the area of the triangle
(xNUx1p1) contains any tuples or not. The following theorem
formalizes the conditions under which a view can answer a query
even if its safe area is insufficient.

Theorem 2. It is possible that VU can answer Q even if there are
less than k tuples in the safe area. For this to hold, it is necessary
that the area defined by the line LU, the X-axis and the line that
produces the lowest possible score for Q from the tuples of VU is
void of tuples.

Figure 4. At least k points in the safe area of a view V make it

reliable for answering a query Q

Proof. The point x1 is the point that meets the X-axis and belongs
to line L1 that corresponds to the tuple in VU with the lowest score
with respect to Q (here, in the example of Figure 4, tuple t1). The
point p1 is the point where this line meets LU. In other words, we
need to find the line that produces the lowest score for Q, for all
the tuples in VU. If the triangle defined by the X-axis, LU and L1
has no points, then the points within VU are the ones producing
the lowest possible scores for Q. So, if VU contains more than k
points, it can answer Q.

3.4 Computation of offsets and safe areas
If one does not want to go through the computation of Q’s score
for all the tuples of VU, then another safe criterion would be to use
xlast, which is the point of the X-axis that corresponds to the line
that gives the score for yNU with respect to Q.

In any case, this property can be used if one is interested in
approximate results (in fact, the smaller the area of the triangle,
the higher the possibility that VU can answer the query Q).

Moreover, sketches of the data distribution in R can also help in
deciding whether the area is empty or not (and to what extent).

A second technical point has to do with whether a point belongs
to the shaded area or not. The line LQ is defined by the equation
y= - aQ ⋅ x + aQ⋅

 xNU (easy to check: being perpendicular to line Q,
the product of line Q with the line LQ must be -1; then the offset
can easily be computed by putting y = 0 for LQ). Assume a tuple
tb(xb, yb). Tuple tb belongs to the shaded area if yb ≥ -aQ⋅xb +
aQ⋅xNU.

Quite similar to the above point is the computation of the point
xNU which is needed for the equation of the line LQ: assume we
know the n-th tuple of VU, tn(xn, yn). Then, this belongs to the line
LU that is perpendicular to VU, therefore with an equation y= -aU⋅x
+ offset. Since tn belongs to this line, offset = yn + aU

 ⋅ xn. For y =
0, we deal with the point xNU and then offset = aU ⋅

 xNU, i.e., xNU =
aU

-1(yn + aU⋅
 xn).

3.5 The case when the view is “lower” than
the query
In this case, we assume that aQ

-1 ≥ a-1 (which means that V is
drawn “lower” than Q in their graphical representation). We will
employ the subscript D for all the notation concerning view V and
refer to it as VD(ID, X, Y, sD), with the score sD being defined as sD
= wD (aD⋅x +y).

Similarly to the previous case, we can prove that (a) it is possible
for view VD to omit tuples that should belong to the extent of Q
and (b) there is a safe region that can guarantee that Q can be
answered solely by VD. Again, we will employ the line (xND yND)
that passes from the n-th point of VD and gives its score (i.e., it is
perpendicular to the line of VD). We use point yND this time and
take the line LQ: yND xQ that is perpendicular to the line Q. The
line LQ is defined by the equation y = -aQ ⋅ x + yND and a tuple tb
(xb, yb) belongs to the safe shaded area above the line LQ if yb ≥ -
aQ ⋅ xb + yND.

Figure 5. The case where the view is “under” the query

3.6 Special Cases
In the above we have assumed that the scoring functions of the
views and the query are in the form of w(a ⋅ x + y)= s. However,

the scoring function of a view or a query can be of the form score
s = x or s = y. In this section, we describe these special cases.

(i) Assume a view with a scoring function of the form sV = yV
(i.e., the attribute x does not play any role in the computation of a
tuple’s score). In such a case (Fig. 6), the line that is
perpendicular to V and passes through the last tuple of the view
tn(xn, yn), is of the form LV : y = yn. In addition, assume a query Q
with scoring function wQ(aQ ⋅ x + y)= sQ. In order to compute the
safe area in which V can answer Q, we need to know the active
domain of the attributes X and Y. Assume that the active domains
of attributes X and Y are X∈[xmin, xmax] and Y∈ [ymin, ymax]. Then,
the safe area is above line LQ that is defined as the line that is
perpendicular to Q and passes through the point p (xmax, yn).

Figure 6. Special case where V is of the form sV = y

An even more extreme case is when both the view and the query
ignore attribute x in their scoring function (i.e., both aV = aQ = 0).
In this case, both V and Q are found over axis Y. Then, V can
answer Q when it contains more tuples than what Q requests. This
is due to the fact that in such a case the scoring function of V is
proportional to the scoring function of Q.

Figure 7. Special case where V is of the form sV = x

An intriguing situation arises when view V is found over the Y-
axis and the query Q is found over axis X. In other words, the
view score sV is defined as sV= y and the query score is defined as

sQ = x. In this case, there is no guarantee that V can answer Q.
Assume the case where there exist tuples with very high X values
and very low Y values; then these tuples are the top-k tuples of the
query; still due to their low Y values they are outside the safe area
border and not part of the view. Therefore, it is obligatory to
consider the full space as the safe area.

Algorithm Test 2DView Suitability
Input: A materialized view V(ID, X, Y, sU)n,
 with its equation s = w (a ⋅ x + y) and its n tuples,
 a Q(ID, X, Y, sQ)k, sQ = wQ (aQ ⋅ x + y), k ≤ n,
Output: a decision on whether Q can be answered by V along

with the population of V
Variables: a counter to count how many tuples V has inside the

safe area of Q
Begin

1. Let tn be the n-th tuple of V, tn(xn,yn)=V[n].
2. if (αQ

-1 ≤ α-1){
3. compute point xNU: xNU = a-1 (yn + a⋅xn)
4. define line LQ as y = -αQ⋅x + αQ⋅xNU
5. }
6. else{
7. compute point yND: yND = yn + a⋅xn
8. define line LQ as y = -αQ⋅x + yND
9. }
10. for all tuples of V {
11. compute sQ(V[i])
12. if (sQ(V[i]) belongs above line LQ) counter++ ;
13. }
14. if (counter ≥ k) return(true);
15. else return(false);

End.
Figure 8. Algorithm Test 2DView Suitability

(ii) Assume a view with a scoring function of the form sV = xV
(Fig. 7). In such a case, the line that is perpendicular to V and
passes through the last tuple tn(xn, yn) materialized, is of the form
LV : x = xn. In addition, assume a query Q with scoring function
wQ(aQ ⋅ x + y)= sQ. In order, to compute the safe area in which V
can answer Q we need to know the active domain of the attributes
X and Y. Assume that the active domains of attributes X and Y are
X∈[xmin, xmax] and Y∈ [ymin, ymax]. Then, the safe area is above
line LQ. LQ is defined as the line that is perpendicular to Q and
passes through the point p (xn, ymax).

Similarly to the previous case, we can encounter two extreme sub
cases. The first of these cases concerns the situation where the
scoring function of the query has the same slope with the query.
Then, V can answer Q when it contains more tuples than what Q
requests for. This is because in such a case the scoring function of
V is proportional to the scoring function of Q. The second of these
cases, concerns the situation where the scoring function of the
query has the parameter aQ = 0: again, there is no guarantee that V
can answer Q.

3.7 Algorithmic Results
Now, we are ready to give an algorithm (Fig. 8) that decides
whether Q can be answered by V and populates V if the test is
positive. As Fig. 9 indicates, the complexity of the algorithm
depends on the number of tuples stored in the materialized view
(i.e., the number of iterations for the for loop in Fig. 8).

Figure 9. All the safe area should possibly be exhausted for

the determination of the top-k query tuples

4. WORKING WITH MORE THAN ONE
VIEW
[1] have proved that a query can be answered either by a single
view, or by a combination of two views whose lines lie on
different sides of the query’s line. Assume now that for a given
query Q, we do not have a single view that can answer the query,
but, there exist two views VU and VD that lie on different sides of
the query’s line. Is it possible to use these two views to answer Q
without referring to the relation R?

4.1 Safe area containment

Figure 10. A query Q with one view on either of its sides, VU

for the upper side and VD for the lower side

Observe Figure 10. A query Q is encompassed by two
preexisting, materialized views VU and VD, the first on the upper
and the second on the lower side of Q. Figure 10 also depicts the
lines LU and LD, which are perpendicular to the respective views
and signify their last stored tuple. These lines are also used to
draw the lines LQU and LQD which are perpendicular to Q and
characterize the safe areas for VU and VD respectively.

Theorem 3. Assume two views encompassing a query Q, none of
which is safe to be used for answering the query by itself. It is

impossible to safely guarantee the answering of the query by the
combined usage of the two views.

Proof. Since lines LQU and LQD are both perpendicular to Q, the
safe area of one view is encompassed in the safe area of the other
view. Since neither view is safe for the answering of the query, it
follows that the union of their safe areas is insufficient, too.

5. EXPERIMENTS
In this section, we report on the experimental assessment of the
usage of materialized views to answer top-k queries.

5.1 Experimental Methodology
Our experimental study has been conducted towards assuring the
following two goals:

1. Effectiveness. The first desideratum of the experimental
study has been the verification of the hypothesis that the
proposed theoretical results can actually produce a
significant number of views that can be employed to answer
a top-k query.

2. Efficiency. The second desideratum of the experimental
study has been the testing of the hypothesis that the
answering of top-k queries via materialized views can indeed
improve the performance of query answering at a significant
factor.

We have implemented our view usability method and use the only
method that can guarantee view usability correctness (i.e., TA) as
an opponent. We do not use auxiliary structures in our
experiments (e.g., sketches of the non-covered area of a
materialized view, or any other indexes). All our experiments
involve a relation R(tid,X,Y). All the queries were fully answered
and then used as materialized views for the subsequent queries.

Effectiveness, k<=0.1|R|

29,00%

30,00%

31,00%

32,00%

33,00%

34,00%

35,00%

36,00%

10000 50000 100000
|R|

%
q

u
er

ie
s

a
n

s.
 b

y
vi

ew
s

Figure 11. Percentage of views used for 100 queries

We have generated random data sets of different sizes. We
generate a sequence of queries with random coefficients and
result size (k). Each query’s result is cached as a materialized
view; so, every query tests all its previous queries as candidates.
The important parameters that we have experimented with are: (a)
the relation size |R|, (b) the number of queries asked |Q|
(practically testing how the method works as time passes and
more views get to be materialized) and, (c) the range of the
requested tuples k as compared to the underlying database size
|R|/k. The values that we have worked are listed in the following
table.

In all our experiments, we have used a server with 1GB memory
and a Core 2 CPU at 2.13 GHz. All the implementations were
made using BerkeleyDB and its C API.

Table 1. Experimental parameters

 Size of source table R (tuples) |R| 1x104, 5x104, 1x105

 Size of mat. view (tuples) k 10, 50, 100, 500, 1000

 Number of queries asked |Q| 100, 1000

Effectiveness, k<=0.001*|R|

0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

30,00%

35,00%

40,00%

45,00%

10000 50000
|R|

%
 q

u
er

ie
s

a
n

s.
 b

y
vi

ew
s

1 00 v iew s

1 000 v iew s

Figure 12. Percentage of views used for different time spans

(numbers of posed queries)

5.2 Effectiveness
The effectiveness of the method is depicted in Figures 11 and 12.
Figure 11 shows that the effectiveness of the method is quite
stable and ranges around 30%-35% for different data sizes. It is
also interesting to observe Figure 12, where we use different time
spans and different ranges for k to observe the behavior of our
method. This is practically achieved by issuing a larger number of
queries (i.e., 1000 instead of 100 queries).

The first observation when comparing the two figures concerns
the difference in efficiency as we vary the maximum value of k
that the queries can take. Observe the dark bars of the two figures,
both depicting what happens when 100 queries were issued (so,
the only difference is the R/k factor). In Figure 11, the queries are
large in size and can request up to 1% of the relation as a result.
Frequently, it was the case that a large view that was materialized
early in the query series would serve as the answering source for
subsequent queries. A second observation from Figure 12,
concerns the effectiveness of the method over time. So, in Figure
12, we see what happens as time passes (1000 queries), and we
can observe that the effectiveness of the method rises significantly
after a while (again to the height of 35%-40%), even for small k’s.

5.3 Efficiency
The efficiency of the method over random data is depicted in
Figure 13. We vary two parameters, specifically, the relation size,
and the maximum possible number that k can take, and we assess
the improvement in time when comparing our method with the
opponent. The detailed numbers (including total query times) are
depicted in Fig. 14.

Interestingly, the time savings present a conflicting case. As the
number of stored results rises (dark bars, concerning large k’s, up
to 1% of the relation size) the savings drop from a 25%
improvement to a decrease of 18%. This is clearly due to the size

of used memory. As more results are collected in main memory
there are two problems: (a) memory allocation becomes slow (in
fact, we frequently brought our gnu compiler to its limits) and (ii)
it is possible that a certain view will be able to answer several
queries due to a very large k and a usable slope. Exhausting the
safe area for this view might prove too slow for queries with a
large k (remember that we can be ascertained for the correct result
only once we have reached the safe area border). Thus, a caching
problem has to be solved based on the grounds of this
observation. In any case, if one considers realistic BI scenarios, a
top-k query returning 1% is extremely too large; so this is a case
in the limit of this technology. On the other hand, the efficiency
increases consistently for more reasonable k’s of size 0.1% (still
large for BI). As the memory allocation is not a problem for this
setting, the improvements start from a negligible 1% for small
relations and rise up to 24% for a large relation. This is clearly
due to the fact that views with appropriate slopes can significantly
speed-up the whole process as compared to their full evaluation.

Efficiency , 100 qu eries

-20,00%
-15,00%
-10,00%
-5,00%
0,00%
5,00%

10,00%
15,00%
20,00%
25,00%
30,00%

10000 50000 100000

|R|

%
ga

in
s

fr
o

m
 v

ie
w

s

R/k=1 00

R/k=1 000

Figure 13. Time savings from the usage of queries for

different database sizes and requested results.

6. CONCLUSIONS
In this paper, we have provided theoretical and algorithmic results
for the problem of answering top-k queries via materialized views.
We have provided theoretical guarantees for the adequacy of a
view to answer a top-k query, along with algorithmic techniques
to compute the query via a view when this is possible. Moreover,
we have explored the problem of answering a query via a
combination of more than one view and showed that despite the
efficiency of using two views instead of one for the answering of
a query as demonstrated in the related literature, it is impossible
to improve our theoretical guarantees for the answering of a query
via a combination of views.

Research can follow in different directions. The most prominent
ones involve (a) the usage of the appropriate sketches of the
involved data to compensate for lack of knowledge on unsafe or
not-covered areas of a view with respect to a given query, and (b)
the discussion of issues concerning the view caching problem, in
order to efficiently accommodate large numbers of view contents
that can appropriately serve as subsequent queries within a limited
memory budget.

7. REFERENCES
[1] Gautam Das, Dimitrios Gunopulos, Nick Koudas, Dimitris

Tsirogiannis. Answering Top-k Queries Using Views. In
Proc. of the 32nd VLDB conference, pp. 451-462, Seoul
Korea, 2006.

[2] Ronald Fagin. Combining fuzzy information from multiple
systems. In Proc. of the 15th ACM Symposium on
principles of database systems, pp. 216-226, Montreal
Canada, 1996.

[3] Ronald Fagin. Fuzzy queries in multimedia database
systems. In Proc. of the 17th ACM Symposium on
principles of database systems, pp. 1-10, Seattle USA,
1998.

[4] Ronald Fagin, Amnon Lotem, Moni Naor. Optimal
aggregation algorithms for middleware. J. Comput. Syst.
Sci. 66(4), pp. 614-656, 2003.

[5] Ulrich Güntzer, Wolf-Tilo Balke, Werner Kießling.
Optimizing Multi-Feature Queries for Image Databases. In
Proc. of the 26th VLDB conference, pp. 419-428, Cairo
Egypt, 2000.

[6] Vagelis Hristidis, Nick Koudas, Yannis Papakonstantinou.
PREFER a system for the efficient execution of multi-
parametric ranked queries. In Proc. of the ACM Special
Interest Group on Management of Data Conference
(SIGMOD), pp. 259-270, Santa Barbara USA, 2001.

[7] Vagelis Hristidis, Yannis Papakonstantinou. Algorithms
and applications for answering ranked queries using
ranked views. VLDB journal, 13(1), pp. 49-70, 2004.

[8] Surya Nepal, M. V. Ramakrishna. Query processing issues
in image (multimedia) databases. In proc. of the 15th
International Conference on Data Engineering (ICDE), pp.
22–29, Sydney, Australia, 1999.

R k D/k % views

used
Total time without

views (sec’s)
Total time
via views

Total opponent
time

%
improved

10000 100 100 35,00% 0,351653 0,006241 0,091611 24,28%

10000 10 1000 7,00% 0,074605 0,000011 0,000749 0,99%

50000 500 100 32,00% 4,323892 0,396714 1,06225 15,39%

50000 50 1000 10,00% 1,064684 0,000193 0,072758 6,82%

100000 1000 100 31,00% 12,037897 4,599822 2,458762 -17,79%

100000 100 1000 11,00% 2,682971 0,003201 0,262244 9,66%

Figure 14. Detailed information for the efficiency of the method in time savings.

