
A Taxonomy of ETL Activities
Panos Vassiliadis
University of Ioannina

Ioannina, Greece

pvassil@cs.uoi.gr

Alkis Simitsis
HP Labs

Palo Alto, CA, USA

alkis@hp.com

Eftychia Baikousi
University of Ioannina

Ioannina, Greece

ebaikou@cs.uoi.gr

ABSTRACT
Extract-Transform-Load (ETL) activities are software modules
responsible for populating a data warehouse with operational data,
which have undergone a series of transformations on their way to
the warehouse. The whole process is very complex and of signifi-
cant importance for the design and maintenance of the data ware-
house. A plethora of commercial ETL tools are already available
in the market. However, each one of them follows a different
approach for the modeling of ETL activities; i.e., of the building
blocks of an ETL workflow. As a result, so far there is no stan-
dard or unified approach for describing such activities. In this
paper, we are working towards the identification of generic prop-
erties that characterize ETL activities. In doing so, we follow a
black-box approach and provide a taxonomy that characterizes
ETL activities in terms of the relationship of their input to their
output and provide a normal form that is based on interpreted
semantics for the black box activities. Finally, we show how the
proposed taxonomy can be used in the construction of larger
modules, i.e., ETL archetype patterns, which can be used for the
composition and optimization of ETL workflows.

Categories and Subject Descriptors
H.2.7 [Database Administration]: Data warehouse and repository.

General Terms
Management, Design, Experimentation.

Keywords
Data Warehouses, ETL, Taxonomy, Optimization.

1. INTRODUCTION
The back-stage of data warehouse comprises many software mod-
ules responsible for its population with fresh data, extracted from
the appropriate sources, transformed, and cleansed to comply with
the target schemata. Such software constructs are commonly
known as Extract-Transform-Load (ETL) activities and as they
cooperate all together they compose ETL workflows responsible
for populating and maintaining data warehouses. ETL workflows
are quite complex by nature, mostly due to the plethora and the
large volume of different activities contained in such processes.

Typical activities are schema transformations (e.g., pivot, normal-
ize), cleansing activities (e.g., duplicate detection, check for in-
tegrity constraints violations), filters (e.g., based on some regular
expression), sorters, groupers, flow operations (e.g., router,
merge), function application (e.g., built-in function, script written
in a declarative programming language, call to an external library
–hence, functions having ‘black-box’ semantics) and so on.

Nowadays, a large number of ETL tools are available in the mar-
ket [e.g., 5, 7, 10, 11]. However, in general, they follow different
design and modeling techniques, and use different internal lan-
guage. Until recently, ETL was faced as a software technicality in
the data warehouse architecture, and, so far, the research commu-
nity has not dealt with and agreed upon the basic characteristics
of ETL workflows and activities. Without a formal way to repre-
sent ETL activities, and at the same time, by using ad hoc design
techniques, it is not possible to improve the quality and efficiency
of ETL workflows in a systematic manner or to perform other
crucial operations like what-if and impact analysis.

In this paper, we work toward the determination of a principled,
reference way to model ETL workflows by investigating their
main characteristics. To this end, we provide insights for the mod-
eling of ETL flows and its exploitation in three levels: (a) the
characterization of activities with respect to the relationship of
their input-output schemata and tuples, (b) the characterization of
activities via a powerful “normal form” representation that can be
used to describe both activities and workflows, and (c) the possi-
bilities for efficient operation opened by a set of recurring arche-
type patterns for parts of ETL flows.

Our first contribution is a taxonomy of ETL activities based on the
relationship of activity input to its output in terms of both its
schemata and the way it processes incoming tuples. The motiva-
tion for the taxonomy is the possibility of exploiting the taxo-
nomical characteristics for the logical and physical optimization
of a workflow, the parallelization of activities, and any other tun-
ing that may improve their efficiency and resilience to failures.
The foundations of the taxonomy lie in the possibility of local
processing of input tuples: if every tuple that arrives in an activity
can be locally processed, then there is flexibility in parallelizing
the activity, changing its physical implementation (e.g., to exploit
tuple ordering), and so on. On the other hand, if aggregations or
routing of tuples to multiple destinations are performed, the pos-
sibilities are more constrained. The proposed taxonomy classifies
activities on these grounds and, as a proof of concept, we relate its
categories with activities provided by popular ETL tools.

The second contribution of this paper deals with the need for pro-
viding a unique formalism for the taxonomy classes. We believe
that the most convenient way to handle ETL activities for our
purposes is to express them via black-box semantics. We draw an
analogy between ETL activities and the structure of the matter,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee.
DOLAP’09, November 6, 2009, Hong Kong, China.
Copyright 2009 ACM 978-1-60558-801-8/09/11...$10.00.

from the domain of physics, as an intuitive means for identifying
ETL components of different complexity as well as their compo-
sitions. We introduce a normal form for ETL activities and use it
to express different operations such as composition, split, and
swap. Moreover, we show that simple operations discussed in the
related literature, such as the swapping of activities can be han-
dled by this normal-form based “language”.

Finally, we demonstrate that it is possible to express complicate
workflows through the combination of typical, recurring activity
compositions, which we call patterns. This provides the possibil-
ity to equip the research community with a testbed structure over
which design, optimization and resiliency methods can be tested,
and the industrial community with methods to build ETL tools
that exploit any such occurrence of internal structure in deployed
workflows. At the end, we present results in terms of pattern-
based scheduling and optimization of ETL flows.

Outline. The rest of the paper is as follows. Section 2 discusses
the rationale for the foundations of the proposed taxonomy and
Section 3 describes the taxonomy intuitively. Section 4 introduces
a normal form for ETL activities. Section 5 presents ETL arche-
type patterns. Section 6 presents the related work. Finally, Section
7 summarizes our approach.

2. A RATIONALE FOR THE TAXONOMY
An ETL workflow can be seen as a directed graph. The nodes of
this graph are activities and recordsets. The edges of the graph are
provider relationships that combine activities and recordsets. Fol-
lowing the common practice, we envisage ETL activities to be
combined in a workflow. Therefore, we do not assume that the
output of a certain activity will be necessarily directed towards a
recordset, but rather, that the recipient of this data can be either
another activity or a recordset.

Figure 1 abstractly depicts the combination of an activity (com-
puteAmts) with its providers and consumer. Each input schema of
an activity should be mapped to a provider; i.e., an output schema
of another activity or the schema of a recordset. Similarly, each
output schema of an activity should be mapped to a consumer;
i.e., an input schema of another activity or the schema of a re-
cordset. In the example of Figure 1, computeAmts is populated by
two providers Person and Service and populates a single con-
sumer, Payments. Internally, the input schemata of an activity
populate its output schemata by means designated by the opera-
tional semantics of the activity. In Figure 1, computeAmts com-
bines employee history (YrsService) with salary (Sal) and pro-
duces an output schema containing two new attributes (Bonus and
Tax) that populates its consumer (Payments).

2.1 ETL activities
In this section, we discuss the different types of ETL activities
based on the interrelationship of their input and output. We begin
with a high-level classification with respect to input (e.g., unary,
binary, n-ary) or output (e.g., routers, filters) schemata and within
each such category, we discuss the mappings between input and
output tuples.

Unary activities. These activities take the data from the input
schema, perform a transformation or cleaning operation to them,
and direct the processed data to the output. Unary activities have
exactly one input and one output schemata.

Figure 1. Graphical representation of an exemplary activity A

Within a unary activity, the combinations that can occur among
its input and output tuples are as follows:

0
1
N

:

0
1
M

, ≠ {0,0}

Based on that, the most interesting values for the cardinality of
mapping in unary activities are the following:

− 1:1, an input tuple is mapped to exactly one output tuple.

− 1:M, an input tuple is mapped to more than one output tuples.

− N:1, more than one input tuples are combined to produce
exactly one output tuple. Observe that this relationship intro-
duces a set of classes among input tuples: all tuples belonging
to the same class correspond to the same output tuple. If each
input tuple corresponds to at most one class, then these are
equivalence classes.

− 0:M, some functions or constant values are employed to pro-
duce one or more output tuples.

− N:M, the relationship among a certain group of input tuples
and a certain group of output tuples cannot be simplified to
one of the above categories.

N-ary activities. N-ary activities combine information from mul-
tiple inputs and populate one output schema. Different tools pro-
vide different implementations regarding the input schemata. An
n-ary activity (e.g., a multi-way join) may have n inputs or can be
implemented as a series of binary activities. Although our analy-
sis covers both, for the sake of presentation we discuss the case of
binary activities, which involves two popular configurations:

− Primary flow. These are binary activities where one of their
inputs is a part of a primary flow that probes a second input to
test whether their values qualify for further propagation. An
example primary flow – see Figure 8(a) – may contain a se-
ries of the binary surrogate_key operators, which replace the
production keys of the incoming data (this data would be the
first input) with surrogate keys found in lookup tables (these
tables would constitute the second input). The primary flow
may employ the vocabulary for unary activities (in fact, most
of these binary activities can be classified under the 1:1 cate-
gory.) Here, we do not focus on how the input values are
combined, but rather, how the tuples are related to each other.
In the case of primary flow, for each outgoing tuple there is
exactly one input tuple in the primary flow that corresponds
to it (but not vice versa). At the same time, typically (but not
obligatorily), there is at most one corresponding tuple in any
non-primary input schema, for any tuple of the primary flow.

Table 1. Built-in transformations provided by commercial ETL tools

− Combinators. These are binary (or n-ary in general) activities
whose output instances are a combination of values from
more than one input schema.

Routers & Filters. The previous two classes involve exactly one
output schema. It is possible, however, that ETL activities possess
more than one output schema to perform their task. Typically,
such activities are used as in the following cases:

− Routers. These activities direct tuples to a specific path of the
workflow, according to the value of one of their attributes.
Routers are applicable to all cases where a tuple must un-
dergo different kind of processing and storage, depending on
a certain value it has.

− Filters. These activities block the further processing of un-
necessary tuples and allow the propagation of tuples, which
respect a specific selection criterion. The non-blocked tuples
populate one or more output schema (e.g., a typical filter
populates exactly one output schema, whilst a conditional fil-
ter direct the outgoing tuples to many directions). The re-
jected (or blocked) tuples go to a dedicated output (e.g., an er-
ror log). This category contains also activities possessing
quarantine error schemata that are responsible for isolating
records with offending values from further regular processing
and directing them towards quarantine or specific processing.

Table 1 illustrates how our classification fits in existing ETL
technology. Although each tool follows a different modeling tech-
nique and provides its own palette of transformation, these
transformations fall seamlessly into our classification. Table 1
shows that each of the aforementioned categories in terms of
mapping input to output tuples is practically corresponding to
several activity types used in popular ETL tools. A similar analy-
sis of ETL activities provided by ETL tools, but from a different
perspective, has been presented in [14].

3. AN INTUITIVE PRESENTATION OF
THE PROPOSED TAXONOMY
In this section, we describe the fundamental concepts of the pro-
posed taxonomy in an intuitive way. Our discussion employs a
terminology coming from the domain of physics, concerning the
structure of the matter in an attempt to enhance the intuition be-
hind the introduced concepts. We want to cover both the case of
ETL tools and the case of built-in ETL code; so our taxonomy is
broad enough to incorporate both approaches (still, for reasons of
intuition, we will frequently resort to discussions from the tools).

Commercial ETL tools provide a palette of reusable ETL trans-
formations that are customized per scenario. In previous research
[22] we have called this kind of built-in transformations template
activities. Figure 2 presents an example ETL design drawn in the
canvas of a commercial tool [11] and a palette of template activi-
ties, called particles in our terminology.

ETL Particles. An ETL particle involves a single transformation
or cleaning task. When the developer adds an activity in the can-
vas, he introduces a particle in the design. Assuming a library of
template tasks, a particle is a materialization of a template for a
specific schema-respecting input. Thus, we can capture the se-
mantics of the particle via a simple predicate with commonly
agreed upon semantics.

ETL Atoms. An ETL atom is a simple ETL activity that performs
exactly one job and involves exactly one ETL particle. When the
developer customizes the schemata of an activity and connects it
to providers and consumers he defines an atom. The number of
output schemata of an ETL atom can be more than one and sev-
eral input attributes can be projected out, whereas new attributes
can be generated at the output (e.g., in the case of a function ap-
plication, like a conversion of dollars to euros, a new attribute can
be added). The particle involved is called the nucleus of the atom.

Figure 2. Example ETL workflow [11]

Figure 3 depicts the internals of a transformation atom that pro-
duces a new output field. The atom has: (a) an input schema of 6
attributes, (b) a single particle that performs a simple transforma-
tion (e.g., calculation of profit given price, quantity, cost and tax
of items) and (c) an output schema that comprises a subset of the
input attributes along with the newly generated attribute. Also, the
attributes that have been projected out are also depicted.

Figure 4 depicts a binary atom that merges two input schemata.
The atom is the most complicated atom possible as it performs all
the individual subtasks an atom can do: (a) it merges 2 input
schemata, (b) it performs a computation of two new attributes, (c)
it routes the result to the appropriate output schema on the basis
of a set of selection conditions (or if-then-else, switch programs),
and (d) it projects out several attributes. Observe that the new
values appear only at the Output schema 3.

ETL Molecule. An ETL molecule is a combination of ETL atoms
that are merged in a larger construct. This is a frequent case in
hand-tailored code where several functionalities are merged with-
in the same script. In this case, instead of a single particle, there is
a linear workflow of particles in between these two groups of
schemata. The line of particles between the merger of the inputs
and the router for the outputs will be called the chain of the
molecule (see Figure 5 for an example of an ETL molecule). The
semantics of a molecule can be defined as follows: for each
output, the semantics are expressed as the conjunction of the
predicates all the way to the inputs. Special care is paid to the
“merge” predicate though, since it is merge(I1(),I2(), …, In()).

ETL Compound. Activities are composed to form workflows: to
capture this case, we model workflows as compounds where ac-
tivities and recordsets (relations or structured files) are mapped to
each other to form a workflow graph.

4. NORMAL FORMS FOR ETL ACTIVITIES
In this section, first we present different categories for ETL parti-
cles and atoms. Then, we provide a generic common representa-
tion of particles and atoms, which are treated as normal forms.

4.1 Foundations
Assume an infinitely countable set of attribute names Ω. A sche-
ma S is a finite list of attributes S = [A1…, An], Ai∈Ω, i = 1…n.
Each attribute A is accompanied by a domain dom(A). An atomic
formula of a selection condition is true, false or an expression of
the form x θ y, where θ is an operator from the set (>, <, =, ≥, ≤,

=, ≥, ≤, ≠) and each of x and y can be one of the following: (a) an
attribute A, (b) a value l belonging to the domain of an attribute
l∈dom(A). A selection condition ϕ is a formula that combines
atomic formulae in disjunctive normal form.

Assume also an infinitely countable set of template activity names
Λ. Each template activity t∈Λ is accompanied by a predicate
name Pt() and a finite set of parameter names D={D1, …, Dm}.
The predicate carries commonly accepted, interpreted semantics
for the template. For example, assume a template activity notNull,
with commonly accepted semantics of testing inputs for not null
values over a specific attribute, expressed as the parameter D1. A
particle is practically an instantiation of the template activity over
a concrete schema that maps the parameter names of the template
to a specific set of attributes Pt(X), X=[X1,…,Xn], Xi∈Ω, i = 1…n.
Hence, the template activity notNull, can be materialized as not-
Null(Age) and D1 has been substituted by an attribute named Age.

A specific subset of the template activities M involves activities
that merge several input schemata (e.g., join(), diff(), sortedUn-
ion(), partialDiff(), and so on). We refer to the members of this
set as mergers.

A router r is defined as a finite set of selection conditions (not
necessarily disjoint with each other).

Definition (ETL Atom). An ETL atom is a pentad of the form (I,
m(), P(X), r, O), where:
− I is a finite set of (input) schemata,
− m is a merger,
− P(X) is a materialization of a template predicate over the

schema X, which we call functionality schema of the atom,
− r is a router,
− O is a finite set of (output) schemata.

The following well-formedness constraints must hold for an ETL
atom:
− X is a subset of the union of attributes of the schemata of I.
− There is a 1:1 mapping between the selection conditions of r

and the output schemata of O. Assuming O = [O1,…,On], and
r = [ϕ1,…, ϕn], we will consider that condition ϕi corre-
sponds to schema Oi, for all i = 1…n.

Assuming X = [X1,…,Xn], the semantics of a tuple t arriving at an
output schema Oi are merge(I) ∧ P(t.X1,…,t.Xn) ∧ ϕi.

Observe that single inputs have a true merger particle and single
outputs have a single valued {true} router particle.

Example. Let us see how the particle classes of Table 1 corre-
spond to the abovementioned formal definitions. As an example
of unary atoms, unary groupers are atoms of the form: (I1, true,
group(Xgroupers, Xgrouped), true, O1). An example of a binary atom is
the traditional join of two inputs, which is expressed as: (I(I1,I2),
join(join-fields), true, true, O1). More complex atoms with one
particle can also be expressed. Assume a specific case where a
join atom merges items and orders, performs a conversion of Eu-
ros to Dollars values over attribute cost, and routes the results to
output O1 if the dollar cost is higher than 500 or to output O2 in
any other case. This transformation is expressed as:

(I (IORDERS, IITEMS), join(O.I_ID=I.IID), €2$(€Cost,$Cost),
{$Cost>500, $Cost <=500 }, O(O1,O2)).

Figure 3. A unary ETL atom

Figure 4. A binary ETL atom

Figure 5. An ETL molecule

Figure 6. Coupling of two ETL molecules

Definition (ETL molecule). An ETL molecule is defined as a
pentad of the form (I, m(), P, r, O). The definition is similar to the
definition of ETL atoms, with the following additions:

− P = [P1(X1), …, Pn(Xn)] is a list of predicates, each corre-
sponding to a particle. In other words, the particles form a
line, with the order of the predicates respecting the order of
the particles in the line.

− The semantics of a tuple t arriving at an output schema Oi are
merge(I) ∧ P(t.X11,…,t.X1m) ∧ … ∧ P(t.Xn1,…,t.Xnm) ∧ ϕi, as-
suming the respective schemata Xi = [Xi1,…,Xim].

Several operations are defined for ETL molecules. Coupling two
molecules explains how the output of a molecule connects to the
input of the other; this operation formalizes the workflow con-
struction and it is needed for defining ETL compounds too. Swap-
ping two molecules allows rearranging their execution order; this
operation is useful for the algebraic optimization of ETL work-
flows, as for example, for executing a more selective activity
before a less selective one. In addition, we can merge two mole-
cules into one and split a molecule to two others. Next, we elabo-
rate on these operations.

4.2 Coupling of two molecules
The coupling of two molecules is a simple act of mapping the
output of one molecule to the input of the other. Therefore, we
need a mapping M among the output schema ΟΧ of a molecule a
and the input schema ΙΥ of another molecule b.

Definition. Assume a molecule a (Ia, ma(), Pa, ra, Oa) and one of
its output schemata Oa,j and an activity b (Ib, mb(), Pb, rb, Ob) and
one of its input schemata Ib,k (see Figure 6). Assume also a map-
ping M between Oa,j and Ib,k. Finally, assume an arbitrary output
of b, say Ob. Then, the following hold:

− For each tuple arriving at Oa,j the semantics are sem(Ia,j):
ma(Ia) ∧ Pa ∧ φj.

− For each tuple arriving at Ob the semantics are sem(Ob):
mb(Ib1,…, Ibn) ∧ Pb ∧ φOb.

− After the composition, the second semantics is
mb(Ib1, …, Ibk-1, M(Ibk), Ibk+1, …, Ibn) ∧ Pb ∧ φOb =
mb(Ib1, …, Ibk-1, (ma(Ia) ∧ Pa ∧ φj), Ibk+1, …, Ibn) ∧ Pb ∧ φOb

Similarly, semantics can be defined for all inputs of molecule b.

Example. A simple atom with one input and one output can be
coupled with another atom of the same family as follows: sem(Oa)
= sem(Ia) ∧ Pa, meaning that sem(Ob) = sem(Ib) ∧ Pb = sem(M(Ib))
∧ Pb = sem(Ia) ∧ Pa ∧ Pb.

Having defined couplings, we can now introduce compositions of
molecules (i.e., activities) to compounds (i.e., workflows).

Definition (ETL Compound). An ETL atom is a tetrad of the
form (Df, Ds, M, C), where:
− Df, is a finite set of input fountain data stores,
− Ds, is a finite set of intermediate or target data stores,
− M is a finite set of molecules
− C is a finite set of correspondence mappings between mole-

cules and data stores
The following well-formedness constraints must hold for an ETL
compound:
− The schemata of fountain data stores in Df are mapped to

input activity schemata and only. Every schema of the data
stores of Ds has the output schema of at least one activity
mapped to it. A special case of sink, i.e., target, data stores
are not further mapped to other schemata.

− No molecule has unmapped schemata.
− The graph having a finite set of data stores and molecules as

nodes and the mappings among them as directed edges is
acyclic.

4.3 Composition and Splitting of ETL activities
Composition of molecules is an act of merging two particles into
one. The inverse act, splitting, subtracts a molecule from another.

Serial composition. Assume two ETL molecules, a1 = (I1, m1(),
P1, r1, O1) and a2 = (I2, m2(), P2, r2, O2). Then, under certain con-
ditions, it is possible to merge these two molecules into one. At
the same time it is also possible to show that there are cases where
two molecules cannot be composed.

Theorem. Assume a molecule a1 that has exactly one output O
and a molecule a2 has exactly one input I. Assume also that the
attributes of O are a superset of the attributes of I. In this case, we
can define a new molecule a3 = a1○ a2, a3 = (I3, m3(), P3, r3, O3)
such that: I3 = I1, m3() = m1(), P3 = P1 ∪ P2, r3 = r2, O3 = O2.
Proof sketch. It is clear that a mapping can be devised among the
two schemata. Then, the semantics for the output of the second
molecule are the same with the ones for molecule a3.

Still, serial composition is not always possible. On the contrary,
the fact that routers are exactly before the outputs imposes a nec-
essary constraint for composition.

Theorem. Serial composition of two molecules is not a closed
operation.
Proof. Assume a molecule a1 that has exactly 2 outputs O1,1 O1,2
and an atom a2 that has exactly one input I and one output O.
Assume also that we want to compose a2 with O1,1. This is the
simplest possible non-feasible case of serial composition. If we
compose a1 and a2, into one molecule a3 = a1○a2, then a3 = (I1,
m1(), P1∪P2, r1, π−2, π+

2, O). This is problematic since the tuples
arriving at O1,2 will have semantics:

merge(I1) ∧ P1,1 (X1,1) ∧ P1,2 (X1,2) ∧ P2 (X2) ∧ φ2

as opposed to the appropriate
merge(I1) ∧ P1,1 (X1,1) ∧ P1,2 (X1,2) ∧ φ2

Subtraction. Subtraction is the inverse operation of composition
and produces a molecule with less particles, or schemata. For-
mally, assume two molecules a1 and a2 that have the same merger
m. Then, we can define a new molecule a3 = a1 - a2, a3 = (I3, m,
P3, r3, O3) such that:

I3 = {I1i – I2i} for all the input schema of I1
P3 = P1 - P2,
r3 = [ϕ1,…, ϕn], s.t. ¬ϕ1,i ⇒ϕ2,i for all the selection
conditions of the router r1
O3 = {O1i – O2i} for all the output schemata of O1,

and where the attributes participating in the merger and router are
still present after the subtraction of the input schemata.

4.4 Management of Schemata
A subtle point not covered so far is the management of schemata
and the mapping among them. The complete semantics of a mole-
cule are given via a mapping M (which is not necessarily a func-
tion) that maps input to output attributes. Then, M: attributes(I) →
attributes(O) which is onto, but not necessarily total or bijective.

Figure 7. Activity swapping

In the case that M is not total it means that there are attributes that
are not propagated from the output of an activity to the corre-
sponding input of a subsequent activity. Another point is that due
to the particles in the chain of the molecule, new attributes are
generated. A straightforward extension of the normal form with
attributes involves the following actions:
− Inclusion of two schemata, π+, π− the first with generated

attributes and the second with attributes projected-out.
− Each particle is defined as P(X,Y), with X being its input

parameters and Y being the generated parameters.
− A constraint that guarantees that for every particle Pa(Xa,Ya)

in the chain (the router included), its input parameters are a
subset of the union of attributes of all the input schemata
and the generated attributes of the previous particles.

Then, a molecule can be defined as (I, m(), P(), r, π−, π+, O).

The treatment of schemata is useful, since there are two ways to
populate the schema mapping function with the appropriate pairs:
(a) automatically or (b) manually (as currently happens in ETL
tools). The automatic way has been described in previous work
[15] and it computes schemata from the target of the workflow
towards its start based on the templates. The templates’ parame-
ters need to be substantiated by specific attributes involved in the
schema (e.g., the template NotNullt(p), p being a template parame-
ter can be instantiated as NotNull(Sal), with Sal being a concrete
input attribute). In this case, we need to assign π+, π− to compute
the exact attributes that participate in the computed schemata.

4.5 Swapping of two activities
A straightforward application of the manual generation of sche-
mata involves the swapping of activities. In principle, two mole-
cules a and b can be swapped in two ways. The first (Figure 7a)
involves two unary activities and the swapping can be performed
if the attributes needed for a to operate are still present after the
swapping. The second (Figure 7b) brings a unary activity a before
all the input schema of an n-ary activity b. Again, the same con-
straint needs to hold. The formal proof for this result has been
provided in [15] and fits gracefully in the current framework.

5. ETL ARCHETYPE PATTERNS
The previous sections discussed how we can introduce a taxon-
omy and a normal form as a basis for a theory for ETL activities
and workflows. In this section, we go one step further and suggest
that apart from a normal form of activities (as discussed in Sec-
tion 4), it is meaningful to come up with normal forms for whole
workflows, too with an aim of exploiting them in terms of optimi-
zation, resource allocation, and scheduling.

We refer to these frequently reused compounds as patterns or

butterflies [14] due to their structure, since they are composed of
three parts: (a) the left wing, which deals with the combination,
cleaning and transformation of source data on their way to the
warehouse, (b) the body of the butterfly, which involves the main
points of storage of these data in the warehouse, and, (c) the right
wing, which involves the maintenance of data marts, reports, and
so on, after the fact table has been refreshed; all are abstracted as
materialized views that have to be maintained. Typical butterflies
are: the line, wishbone, tree, fork workflows, the primary flow and
so on (see [14] for more details).

Figure 8 depicts (a) a primary flow and (b) a combination of a line
and fork workflows. A primary flow is a typical pattern for the
beginning of ETL processing, when data should be assigned sur-
rogate keys for every dimension of the warehouse. A fork sce-
nario, on the other hand, is a typical scenario at the end of the
ETL process, where data that are already cleansed and ready for
loading in the fact table are also ready for multiple aggregations
in order to populate reports, data marts and materialized views (all
abstracted as materialized views in our examples). The line work-
flow combines linearly a set of unary activities.

As an alternative use of patterns, besides their use for the opera-
tional side of ETL tools, we have found that the treatment of large
ETL scenarios as compositions of archetypical structures is bene-
ficiary for the purpose of benchmarking ETL as well [14, 21].

Next, we discuss two practical problems that can be tackled using
the ETL archetype patterns.

5.1 Archetype patterns for the physical opti-
mization of ETL workflows
In previous research, we experimented with the physical optimi-
zation of ETL processes and the exploration of alternatives for the
execution of ETL scenarios. Part of this work, concerned the ex-
ploration of intentional addition of sorters to the workflows to
exploit the order of data at the physical level [21]; once the cost
for sorting has been paid, costly operations like joins and aggrega-
tions may exploit the ordering of data and complete much faster.

For example, Figure 9 shows that for different ETL patterns and
different settings (not shown in the figure) we get different gains
when adding sorters. As a general rule, when data volumes are
high (left wing of the butterfly, early stages of the ETL process)
sorting is not that beneficial. Once data have been cleansed and
integrated, sorting can accelerate the aggregations of the right
wing (materialized view loading part) of the ETL scenario.

However, the main insight here is that in principle, once the ETL
scenario has been designed as the composition of archetype pat-
terns, an optimizer can avoid spending the time needed to explore
alternative configurations and directly go to the appropriate heu-
ristics for each of its parts.

5.2 Scheduling ETL workflows
We have also experimented with the usage of alternative schedul-
ing policies (like round robin, minimum cost, minimum memory)
for different archetype patterns [8]. Again, the presence of arche-
type patterns can serve as the basis for the decisions taken by a
scheduler of an ETL tool. Once the designer has studied the effect
of an ETL application to the ETL archetype patterns, then he/she
is able to tune the whole ETL workflow accordingly.

Figure 8. Example ETL archetypical patterns

Observe for example Figure 10. In the case of a primary flow, we
can find a scheduling policy that minimizes the peaks in memory
consumption. In the case of a fork scenario, the optimal choice is
dependent upon the selectivity of the scenario; in this case, the
scheduler needs to take this kind of statistical information under
consideration before scheduling this part of the scenario. Having
acquired such knowledge, one may tune the scheduling of an ETL
workflow containing these two constructs appropriately.

5.3 Overall observations
The ETL design can be viewed as the act of compound composi-
tion via atoms and molecules. Whereas atoms can be of arbitrary
nature, it is very important that compounds (i.e., workflows) are
constructed in ways that can later be exploited by the optimizer or
the scheduler of an ETL tool. Archetype patterns have already
been suggested [14] and it is important to realize that the synthe-
sis of ETL scenarios should be performed in a manner that allows
the underlying engine to exploit them. In simple terms, designers
should try to compose compounds in ways that resemble arche-
type patterns; the design tools, on the other hand, could present
the user with the opportunity to construct the design in terms of
such patterns that are later exploitable by the execution engine.

6. RELATED WORK
Several research approaches have dealt with ETL modeling by
exploring either UML [e.g., 9, 20], semantic web [e.g., 17] or sui
generis [23] modeling techniques . Other efforts have focused on
the optimization of ETL processes [e.g., 6, 15, 21] and on indi-
vidual operators [12] or phases, like the load [18, 19]. However,
none of the existing works has dealt with the problem of catego-
rizing ETL activities based on their characteristics.

Figure 9. Effect of adding sorters in ETL
workflows [21]

Figure 10. Effect of workflow selectivity to memory peaks under different schedul-
ing policies

Apart from research efforts, there is a variety of ETL tools avail-
able in the market [e.g., 5, 7, 10, 11]. Given that so far there is no
standard categorization of ETL activities, each tool follows a
different approach. Interestingly, our categorization (see Table 1)
covers the functionality provided by these tools.

Work on schema mappings [e.g., 4, 13] is related to ETL proc-
esses; however, existing efforts focus on a subset of mappings that
usually we encounter in typical ETL scenarios. Some works deal
with the issue of input and output relationships both, in terms of
the involved schemata [3] and tuples [1]. The former work pre-
sents a set of mapping operators for entities and attributes. It dis-
cusses a classification of possible mapping cases based on the
cardinality of the schemata. However, our work delves into the
semantics of an ETL activity and also, considers the physical
operation of ETL activities. The latter work is representative of a
large part of the related literature concerned with the issue of
input-output relationship in terms of the involved instances —
usually under the name of lineage tracing. The goal of that work
is to identify the originating tuples out of which a data warehouse
tuple was produced (with the obvious benefit of being able to
identify which part of the ETL process must be resumed in the
case of a failure, once intermediate results are rescued from the
failure). We are looking at the instance mappings from a different
perspective: the categorization of ETL activities based on those
mappings.

7. CONCLUSIONS
As Business Intelligence deals with continuously increasing
amounts of information and more complex environments, there is
a stressing need for standardizing ETL processes that feed data
warehouses [2, 16]. In this paper, we have introduced a generic
categorization of ETL activities and have demonstrated that the
ETL transformations used by popular commercial ETL tools fall
into our categorization. We have presented how this simple char-
acterization can lead to a normal form for performing simple op-
erations for ETL activities, like composition, coupling and swap-
ping. Apart from a normal form for the formal treatment of ETL
activities and workflows, we also discuss normal forms at the
macro level (i.e., design patterns) and demonstrate evidence that
these reusable patterns can be used for improving the efficiency
of ETL flows.

An interesting challenge for future work is to construct an ETL
optimizer that will be able to automatically decompose ETL
workflows into archetype patterns and then, optimize them based
on the proposed principles.

8. REFERENCES
1. Y. Cui, J. Widom. Lineage tracing for general data warehouse trans-

formations. In VLDB J. 12(1): 41-58, 2003.
2. U. Dayal, M. Castellanos, A. Simitsis, K. Wilkinson. Data integration

flows for business intelligence. In EDBT, pp. 1-11, 2009.
3. A. Dobre, F. Hakimpour, K.R. Dittrich. Operators and Classification

for Data Mapping in Semantic Integration. In ER, pp. 534-547, 2003.
4. L. M. Haas, M. A. Hernández, H. Ho, L. Popa, M. Roth. Clio Grows

Up: From Research Prototype to Industrial Tool. In SIGMOD, pp.
805-810, 2005.

5. IBM, “IBM Data Warehouse Manager”, in the Web, available at:
http://www-306.ibm.com/software/data/integration/datastage/,2009.

6. Informatica. How to Achieve Flexible, Cost-effective, Scalability and
Performance through Pushdown Processing. White paper, 2007.

7. Informatica, “PowerCenter”, in the Web, available at:
http://www.informatica.com/products/powercenter/, 2009.

8. A. Karagiannis, P. Vassiliadis, A. Simitsis. Macro-level Scheduling of
ETL Workflows. Submitted for publication, 2009.

9. S. Luján-Mora, P. Vassiliadis, J. Trujillo. Data Mapping Diagrams for
Data Warehouse Design with UML. In ER, pp.191-204, 2004.

10. Microsoft. SQL Server 2005 Integration Services (SSIS), in the Web,
available at: http://technet.microsoft.com/en-
us/sqlserver/bb331782.aspx, 2009

11. Oracle, “Oracle Warehouse Builder 10g”, in the Web, available at
http://www.oracle.com/technology/products/warehouse/, 2009.

12. N. Polyzotis, S. Skiadopoulos, P. Vassiliadis, A. Simitsis, N.-E.
Frantzell. Supporting Streaming Updates in an Active Data Ware-
house. In ICDE, pp. 476-485, 2007.

13. E. Rahm, P. A. Bernstein. A Survey of Approaches to Automatic
Schema Matching. In VLDB Journal, 10(4): 334-350, 2001.

14. A. Simitsis, P. Vassiliadis, U. Dayal, A. Karagiannis, V. Tziovara.
Benchmarking ETL Workflows. In TPC-TC, 2009.

15. A. Simitsis, P. Vassiliadis, T. K. Sellis. Optimizing ETL Processes in
Data Warehouses. In ICDE, pp. 564-575, 2005.

16. A. Simitsis, K. Wilkinson, M. Castellanos, U. Dayal. QoX-driven ETL
design: reducing the cost of ETL consulting engagements. In SIG-
MOD Conference, pp. 953-96, 2009.

17. D. Skoutas, A. Simitsis. Designing ETL processes using semantic web
technologies. In DOLAP, pp. 67-74, 2006.

18. M. Thiele, U. Fischer, W. Lehner: Partition-based workload schedul-
ing in living data warehouse environments. In DOLAP, pp. 57-64, 2007.

19. C. Thomsen, T.B. Pedersen, W. Lehner. RiTE: Providing On-Demand
Data for Right-Time Data Warehousing. In ICDE, pp. 456-465, 2008.

20. J. Trujillo, S. Luján-Mora: A UML Based Approach for Modeling
ETL Processes in Data Warehouses. In ER, pp. 307-320, 2003.

21. V. Tziovara, P. Vassiliadis, A. Simitsis. Deciding the physical imple-
mentation of ETL workflows. In DOLAP, pp. 49-56, 2007.

22. P. Vassiliadis, A. Simitsis, P. Georgantas, M. Terrovitis. A Framework
for the Design of ETL Scenarios. In CAiSE, pp. 520-535, 2003.

23. P. Vassiliadis, A. Simitsis, S. Skiadopoulos: Conceptual modeling for
ETL processes. In DOLAP, pp. 14-21, 2002.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

