Adaptive Query Formulation to Handle Database Evolution

George Papastefanatos¹, Panos Vassiliadis², Yannis Vassiliou¹

¹ National Technical University of Athens,
Dept. of Electrical and Computer Eng.,
Athens, Hellas
{gpapas,yv}@dbnet.ece.ntua.gr

² University of Ioannina,
Dept. of Computer Science,
Ioannina, Hellas
pvassil@cs.uoi.gr

Current database systems are continuously evolving environments, where design constructs are
- added
- removed
- modified

Database Evolution - Query Adaptation

Evolution is not handled by current DBMS with an automatic way, but rather they require great human effort

Existing Queries affected:
- Syntactically - i.e., become invalid
- Semantically - i.e., query must conform to the new database semantics

Adaptation of SQL queries and views
- time-consuming task
- treated in most of the cases manually by the administrators/developers

Our Approach

Graph based representation of database constructs (i.e., relations, views, constraints, queries)

Mechanism for performing what-if analysis for potential changes of database configurations

Annotation of graph with rules for adapting queries to database schema evolution

Graph-based modeling

Database Constructs mapped to directed graphs
- Relations
 Conditions (covering database constraints and query conditions)
- Queries
- Views
- Graph Semantics
 Nodes Represent Database Constructs, i.e., relation nodes, attribute nodes, query nodes, etc.
 Edges Represent Relationships Between Constructs, i.e., schema edges, map-select edges, operand edges, etc.

Adapting queries and views to Database schema Evolution

1. Set of evolving database constructs
 - relations
 - attributes
 - constraints

2. Set of potential evolution changes
 - addition
 - deletion
 - modification

3. Graph elements are annotated with policies
 - propagate
 the graph must be reshaped to adjust to the new semantics incurred by the event
 - block
 the old semantics of the graph must be retained and the (hypothetical) event must be blocked or, at least, constrained, through some rewriting that preserves the old semantics

4. Rule for policies conflict resolution
 When two graph constructs have different policies for the same event
 - Rule
 Policies defined on query graph structures are stronger than policies defined on view graph structures which in turn prevail on policies defined on relation graph structures

5. According to prevailing policy, the proper action is taken
 - query adaptation

Q: SELECT EMP.Emp#, Sum(WORKS.Hours) as T_Hours
FROM EMP, WORKS
WHERE EMP.Emp# = WORKS.Emp#
GROUP BY EMP.Emp#