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Abstract - As a decision support information system, a data warehouse must provide high level quality of data 

and services. In the DWQ project (Foundations of Data Warehouse Quality), we have proposed how semantically 

rich meta-information of a data warehouse can be stored in a metadata repository. This sfutic representation of the 
various perspectives of data warehouse components and their linkage to quality factors is complemented by an 

operutionul methodology on how to use these quality factors and achieve the quality goals of the users. This 
approach is an extension of the Goal-Question-Metric (GQM) approach, based on the idea that a quality goal is 
operationally defined over a concrete set of questions, i.e., algorithmic steps. The proposed approach covers the 

full lifecycle of the data warehouse, allows capturing the interrelationships between different quality factors and 
helps the interested user to organize them in order to fulfill specific quality goals. Furthermore, we prove how the 

quality management of the data warehouse can guide the process of data warehouse evolution, by tracking the 
interrelationships between the components of the data warehouse. Finally, we present a case study, as a proof of 
concept for the proposed methodology. 0 2000 Published by Elsevier Science Ltd. All rights reserved 
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I. INTRODUCTION 

Many researchers and practitioners share the understanding that a Data Warehouse (DW) architecture 
can be formally understood as layers of materialized views on top of each other. A data warehouse 
architecture exhibits various layers of data in which data from one layer are derived from data of the 
lower layer. Data sources, also called operational databases, form the lowest layer, They may consist of 
structured data stored in open database systems and legacy systems, or unstructured or semi-structured 
data stored in files. The central layer of the architecture is the global (or primary) data warehouse. The 
global data warehouse keeps a historical record of data that result from the transformation, integration, 
and aggregation of detailed data found in the data sources. Usually, a data store of volatile, low 
granularity data is used for the integration of data from the various sources: it is called Operational Data 
Store CODS). The Operational Data Store, serves also as a buffer for data transformation and cleaning so 
that the data warehouse is populated with clean and homogeneous data. The next layers of views are the 
local, or client warehouses, which contain highly aggregated data, directly derived from the global 
warehouse. There are various kinds of local warehouses, such as the data marts or the OLAP databases, 
which may use relational database systems or specific multidimensional data structures. 

All the data warehouse components, processes and data are - or at least should be - tracked and 
administered from a metadata repository. The metadata repository serves as an aid both to the 
administrator and the designer of a data warehouse. Indeed, the data warehouse is a very complex system, 
the volume of recorded data is vast and the processes employed for its extraction, transformation, 
cleansing, storage and aggregation are numerous, sensitive to changes and time-varying. The metadata 
repository serves as a roadmap that provides a trace of all design choices and a history of changes 
performed on its architecture and components. For example, the new version of the Microsof Repository 
[I] and the Metadata Interchange Specification (MDIS) [IS] provide different models and application 
programming interfaces to control and manage metadata for OLAP databases. In Figure 1, a generic 
architecture for a data warehouse is depicted. 

As a decision support information system, a data warehouse must provide high level quality of data 
and service. Coherency, freshness, accuracy, accessibility, availability and performance are among the 
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End User 

Fig. I : A Generic Architecture for a Data Warehouse 

quality features required by data warehouse users. The metadata repository plays a central role in this 
concern, as it provides the necessary knowledge to understand, evaluate and analyze the architecture of a 
data warehouse, in order to predict its behavior and the resulting quality of service and quality of data. 

Data quality has been defined as the fraction of performance over expectancy, or as the loss imparted 
to society from the time a product is shipped [3]. We believe, though, that the best definition is the one 
found in [ 17, 20, 27, 291: data quality is defined as “fitness for use”. The nature of this definition directly 
implies that the concept of data quality is relative. For example, data semantics (the interpretation of 
information) is different for each distinct user. As [ 171 mentions “the problem of data quality is 
fundamentally intertwined in how [.,.I users actually use the data in the system”, since the users are the 
ultimate judges of the quality of the data produced for them: if nobody actually uses the data, then nobody 
will ever take care to improve its quality. 

From the previous it follows that, on the one hand, the quality of data is of highly subjective nature 
and should ideally be treated differently for each user. On the other hand, the reasons for data 
deficiencies, non-availability or reachability problems are definitely objective, and depend mostly on the 
definition and implementation of the information system. Furthermore, the evaluation of data quality for 
each user must be based on objective quality factors, which are computed and compared to the users’ 
expectations. The question that arises, then, is how to tune the design choices in such a way that all the 
different, and sometimes opposing, user requirements can be simultaneously satisfied. As the number of 
users and the complexity of data warehouse systems do not permit to reach total quality for every user, a 
subsidiary question is how to prioritize these requirements in order to satisfy them with respect to their 
importance. This problem is typically illustrated by the physical design of the data warehouse where the 
problem is to find a set of materialized views that optimize the response time of user requests and the 
global data warehouse maintenance cost [ 14, 22, 23, 241. 

In [ 131 a metadata modeling approach is presented that enables the capturing of all the crucial parts of 
the architecture of a data warehouse, along with information over different quality dimensions of these 
components, In this paper, we have refined the quality metamodel with a more detailed linkage between 

objective quality factors and user-dependent quality goals. Moreover, we have extended the Goal- 
Question-Metric (GQM) methodology [2] in order (a) to capture the interrelationships between different 

quality factors with respect to a specific quality goal, and (b) to define an appropriate lifecycle that deals 

with quality goal evaluation and improvement. 
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Our methodology comprises a set of steps aiming, on the one hand, to map a high-level subjective 
quality goal into the measurement of a set of interrelated quality factors, and, on the other hand, to 
propose improvement actions which may help in achieving the target quality goal. These steps involve the 
design of the quality goal, the evaluation of the current status, the analysis and improvement of this 
situation, and finally, the re-evaluation of the achieved plan. The metadata repository together with this 
quality goal definition methodology constitute a decision support system which helps data warehouse 
designers and administrators to take relevant decisions, in order to achieve reasonable quality level which 
fits the best user requirements. This work is integrated in a methodology for data warehouse quality 
design, which has been developed in the European DWQ project (Foundations of Data Warehouse 
Quality) [ IO]. 

We want to stress out that we do not follow the IS0 900x paradigm [S] in our approach; rather we try 
to present a computerized approach to the stakeholder, for both the storage and exploitation of 
information relevant to the quality of the data warehouse. The objective of this paper is to show how 
subjective quality goals can be evaluated using more objective quality factors, following an extended 
GQM approach. 

The paper is organized as follows: Section 2 describes the DWQ quality metamodel and an example 
for its instantiation. In Section 3, we detail the DWQ methodology for quality management. Section 4 
presents some hints on data warehouse evolution. A case study for the partial application of the 
methodology is presented in Section 5. Section 6 summarizes related work and finally, in Section 7 we 
discuss our results. 

2. METADATA REPOSITORY AND QUALITY MODEL 

This section summarizes the nature of metadata used in the DWQ framework and gives an overview 
of the DWQ quality model. The section particularly focuses on the quality dimensions and quality factors 
associated with the main data warehouse meta-objects. To further illustrate the relevance of data 
warehouse objects and quality factors, we use as examples, two of the most crucial processes in the data 
warehouse lifecycle, the design and the refreshment processes, along with their corresponding quality 
factors. 

2.1. Architecture Components 

In the DWQ project we have advocated the need for enriched metadata facilities for the exploitation of 
the knowledge collected in a data warehouse. In [ 131, it is shown that the data warehouse metadata should 
track both architecture components and quality factors. 

During the analysis of existing data warehouse frameworks we made the observation that these 
frameworks cover only logical schemata and their physical implementation; hence, interpretation of these 
representations is far from being natural for data warehouse users. Furthermore, since data warehouses 
may be built on a huge number of heterogeneous data sources, it is difficult to have an overall picture of 
what kind of data is available in each source and to keep track of the interdependencies between these 
data sources. Finally, any data warehouse design should satisfy some quality requirements without which 
the derived decision data become useless. 

Therefore, we have extended the traditional data warehouse architecture in three ways: 

(i) We have added a conceptual perspective which provides a clear understanding of the three data 
warehouse levels, namely the source level, the data warehouse level and the client level. We use the 
term perspective to denote the classical categorization of database models to conceptual, logical and 
physical. 

(ii) We considered both source schemata and client schemata as views defined over a global enterprise 
mode1 which describes the data warehouse level. The enterprise model is the central component in 
our framework; it gives a global understanding of the data warehouse subjects as well as the 
interrelationships between its components. 
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METAMODELS MODELS 
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Fig. 2: The Data Warehouse Architecture Metamodel 

(iii) We have associated each data warehouse component with a set of quality factors which characterize 
its usage and evolution. A quality model is then added as a corner stone to our design framework. 
The overall picture of the DWQ framework is depicted Figure 2. 

The vertical plane on the left hand-side represents the metamodels which describe any data warehouse 
system. Each instantiation of these metamodels corresponds to a particular data warehouse system with its 
own data, process and quality models. These models are represented by the horizontal planes in Figure 2. 
The data warehouse data and process models are structured into the three levels and three perspectives. 
The different components of these models are interlinked with mappings between perspectives and levels. 
The intermediate layer describes the quality model for a given data warehouse system. It provides a 
bridge between data and process models by defining quality goals. Quality goals provide reasons why 
certain processes are executed and how they affect the data [25]. For all models, we have provided 
templates which guide the design and the maintenance of any data warehouse system [ 131. These 
template models can be further refined and adopted to specific data warehouse applications. In Sec- 
tions 2.3 and 2.4, we will present models for the data warehouse refreshment and design processes. 

Different formalisms can be used to describe the various models and metamodels in the framework. 
The conceptual definition of the metamodels is expressed in an extended entity-relationship mode1 which 
is viewed as a graphical interface to a description logic language [5]. Description logic allows a more 
complete and precise specification and a formal reasoning on data warehouse objects. The models at the 
logical perspective are assumed to be defined in the relational model. The description of the models at the 
physical perspective depends on each data source, the target data warehouse system and the client tools. 

The metamodels are described in Telos, a conceptual modeling language for representing knowledge 
about information systems. Telos is implemented in the deductive object-oriented repository system 
ConceptBase [ 121 and supports the representation of models at any abstraction level. Thus we can 
represent the metamodels and their instantiations in a unified framework in ConceptBase. ConceptBase 
provides also a query language to analyze the contents of the repository. Furthermore, external 
applications like a reasoner for description logics can easily access the meta-information and check for 
the consistency of the conceptual models. Still, although empowered by the query and deductive facilities 
of ConceptBase, our approach can be applied to any metadata repository holding the respective 
information for the data warehouse. 

2.2. Quality Metamodel 

Each object in any level and perspective of the architectural framework can be subject to quality 
measurement. Since quality management plays an important role in data warehouses, we have 
incorporated it in our metamodeling approach. Thus, the quality model is part of the metadata repository, 
and quality information is explicitly linked with architectural objects. This way, stakeholders can 
represent their quality goals explicitly in the metadata repository, while, at the same time, the relationship 
between the measurable architecture objects and the quality values is retained. 
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Fig. 3: The DWQ Quality Metamodel (Simplified) 

The DWQ quality metamodel [I l] is based on the Goal-Question-Metric approach (CQM) of [ 161 
originally developed for software quality management. In GQM, the high-level user requirements are 
modeled as goals. Quality metrics are values which express some measured property of the object. The 
relationship between goals and metrics is established through quality questions. 

The main difference in our approach resides in the following points: (i) we make a clear distinction 
between subjective quality goals requested by the stakeholders and objective quality factors attached to 
data warehouse objects, (ii) quality goal resolution is based on the evaluation of the composing quality 
factors, each corresponding to a given quality question, (iii) quality questions are implemented and 
executed as quality queries on the semantically rich metadata repository. 

Figure 3 shows a simplified conceptual view of the DWQ Quality Model. The class ‘DW object type’ 
refers to any meta-object of the DWQ framework depicted in Figure 2. A quality goal is an abstract 
requirement, defined on data warehouse object types, and documented by a purpose and the stakeholder 
interested in. This s expresses natural language requirements like ‘improve the availability of source sl 
until the end of the month in the viewpoint of the data warehouse administrator’. Quality dimensions (e.g. 
‘availability’) are used to classify quality goals and factors into different categories. Furthermore, quality 
dimensions are used as a vocabulary to define quality factors and goals; yet each stakeholder might have a 
different vocabulary and different preferences in the quality dimensions. A quality factor represents an 
actual measurement of a quality value, i.e. it relates quality values to measurable objects. A quality factor 
is a special property or characteristic of the related object with respect to the quality dimension of the 
quality factor. It also represents the expected range of the quality value, which may be any subset of a 
domain. Dependencies between quality factors are also stored in the repository. Finally, a quality goal is 
operationally defined by a set of questions to which quality j&for values are provided as possible 

answers. As a result of the goal evaluation process, a set of improvements (e.g. design decisions) can be 
proposed, in order to achieve the expected quality. 

The overall setting is not separated from the automation of the solution of problems occurring in a 
data warehouse environment. Each problem can be expressed in terms of measurement, optimization or 
improvement of particular quality factors. Thus, we can exploit all the work produced by research and 
practice, in terms of automated techniques and algorithms, by linkin, 0 it to a formal quality model. We 
discriminate between three categories of quality factors: 

Primary qunlity,fizctors, which are simple estimations of stakeholders or direct measurements and play 
the role of input of the employed algorithms. 
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- Derived yuality.factors, which are the outputs of the problem-solving techniques and can be assumed 
to be the result of a function application over the primary factors. 

- Design choices, which are parameter values and control strategies and aim to regulate or tune the 
employed algorithm for the solution of a particular problem. 

For example, as far as the problem of data accuracy is concerned, the accuracy of the data of the 
sources, their size and the desired/acceptable range for the accuracy of the data in the warehouse are 
primary quality factors, the employed data cleaning algorithm is a design choice and the produced 
accuracy after the cleaning has taken place, as well as the overall time that the cleaning algorithm took to 
successfully terminate are the derived quality factors of the problem. We will elaborate more on this 
discrimination in Section 2.3 and Section 2.4, where we examine the data warehouse refreshment and the 
design problems. 

The quality repository is not instantiated simply with concrete quality factors and goals, but also with 
patterns for quality factors and goals. The use of this intermediate instantiation level enables data 
warehouse stakeholders to define templates of quality goals and factors. For example, suppose that the 
analysis phase of a data warehouse project has detected that the availability of the source database is 
critical to ensure that the daily online transaction processing is not affected by the loading process of the 
data warehouse. A source administrator might later instantiate this template of a quality goal with the 
expected availability of his specific source database. Thus, the programmers of the data warehouse 
loading programs know the time window of the update process. 

In [ 131, based on our practical experience, we have identified the following roles (now: viewpoints) of 
users in a data warehouse environment. Note that these are roles and not different persons; i.e. a person 
can be involved in more than one role: 

- Decision maker; 
- Data warehouse administrator; 
- Data warehouse designer; 
- Programmers of data warehouse components; 
- Source data users, administrators, and designers. 

For each role we describe some template quality goals. We do not claim that we cover the subject 
exhaustively, but rather we provide an illustrative initial set of templates which can be refined during the 
use of the data warehouse. We have summarized the quality goals in Table 1. In the rest of this subsection 
we will detail these roles and template quality goals. 

The Decision Maker is the final user of the data warehouse. He usually uses an OLAP query tool to 
get answers interesting to him. The main issues regarding the decision maker are the quality of the 
information (if it is relevant for his needs, fresh enough to reflect the real world, complete, consistent etc.) 
and the efficiency of the use of the system (how easy it is for him to work with the tools, how quickly are 
the responses given to him, etc.). 

The Data Warehouse Administrator is concerned with keeping the data warehouse properly operating. 
Several aspects are involved in the everyday use of the data warehouse: the system must be available to 
the users for querying, the querying must be done as efficiently as possible, the refreshment must be 
performed successfully and the evolution should happen smoothly. Moreover, the quality of the stored 
data should be satisfying for the needs of the users. To accomplish the aforementioned tasks, the data 
warehouse administrator can be aided by facilities such as error reporting (e.g., for the detection of errors 
during the execution of any process) and metadata accessibility (for the high-level description of the 
system). 

The Data Warehouse Designer is involved in a continuous design process, which is usually done 
incrementally. The data warehouse designer is concerned with two major issues, namely the construction 
of the data warehouse schema and the design of the data warehouse processes. For the former, the basic 
requirement is that the derived data warehouse schema is design efficiently and in accordance with the 
requirements of the application, the schemata of the existing sources and, most important, with the user 
needs. For the latter, it is important to take into account the derived schemata, so that the population 
processes are consistent with the underlying schema and the constraints posed by the user needs and the 
environment (freshness of data, granularity of the information, availability windows of the sources, etc.). 
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Stakeholder 
Decision Maker 

DW Admin. 

DW Designer 

Programmers of 

DW 

Components 

legacy Systems 

Stakeholders 

Purpose 
Evalunte, 

I Issue 1 Object 
1 Overall data quality (freshness, xcumcy, completeness, 1 Stored Date 

understand, 

improve 

Evaluate, 

understand, 

improve 

Evalunte, 

understnnd, 

improve 

Evalunte, 

understnnd, 

improve 

Evaluute, 

understnnd, 

improve 

with schemata and any other constraints) 

Metadnta quality 

Overall software quality 

Metadata accessibility 

Reporting (feedback) on the data quality (freshness. 

nccurxy, completeness, coherence, relevance) 

System avnilability 

Metadata 

DW components 

Metadata 

Source data 

Source operational system 

Table I: Template Quality Goals for Different Stakeholders 

Of course, the availability of all the meta-information is crucial for the success of the work undertaken by 
the data warehouse designer. 

The Programmers of Data Warehouse Components are the people who develop the actual data 
warehouse applications. Obviously, their primary concern is the quality of all the data warehouse 
software components, produced or purchased. To this end, the data warehouse programmers need 
software implementation standards to test them (e.g., the respective IS0 standard [S]). Especially for the 
production / customization of the software components, it is important that they have efficient access to 
the metadata of the warehouse, so that their implementation is successful. 

The Source Dnta Users/Administrators/Designers are affected from the data warehouse in the sense 
that they could both benefit and be disturbed from its existence, at the same time. The benefit from the 
existence of the warehouse could possibly be the extra knowledge of the quality of the source data. On the 
other hand, this can also be the reason for the disturbance of the respective stakeholders. Also, the source 
data administrators are obviously affected from the existence of the data warehouse, due to the extra 
workload both of the system and their own. 

Based on the metamodel of data warehouse architecture, we have also developed a set of quality 
factor templates which can be used as an initial set for data warehouse quality management [ 131. The 
following sections give an intuition of the quality factors, associated to the data warehouse refreshment 
process and to the data warehouse optimal design. 

2.3. Example I: Datu Warehouse Refreshment 

The refreshment process aims to propagate changes raised in the data sources to the data warehouse 
stores. This propagation is done through a set of independent activities (extraction, cleaning, integration, 
etc.) that can be organized in different ways. The orderin, 0 of these activities and the context in which 
they are executed define the semantics of the refreshment process and influence its quality 141. As shown 
in [ 131, it is not sufficient to describe a data warehouse as layers of materialized views on top of each 
other. For example, a view definition is not sufficient to capture the semantics of the refreshment process. 
Indeed, a view definition does not include information such as whether this view operates on a history or 
not, how this history is sampled, which transformations are necessary during the refreshment, whether the 
changes of a given source should be integrated each hour or each week, and which data timestamp should 
be taken when integrating changes of different sources. Consequently, based on the same view 
definitions, a refreshment process may produce different results depending on all these extra parameters 
which have to be fixed independently, outside the queries which define the views. 
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Quality 
Dimension 

Coherence 

Complete- 
ness 

DW objects 

- Sollrces 

- ODS 
- Views 

- sources 

- ODS 

- Sources 
- ODS 
- Views 

Primary Quality Factors 

- Availability window of each 

source 

- Expected response time for a 
given query 

- Availability window of each 

source 
- History duration for each 

DW store 

- Percentage of present vs. 

estimated full data items 

- Availability window of each 

source 
- Expected freshness for a 

given query 

- Estimated response time of 
extraction for each source, of 

integration and of 

propagation 

- Volume of data extracted and 
integrated 

Derived Quality Factors 

- Extraction frequency of 
each source 

- Estimated response time of 

extraction for each source 

- Extraction frequency of 
each source 

- Extraction frequency of 
each source 

- Actual freshness for n 
given query 

- Actual response time for n 

given query 

Design Choices 

- Gmnulnrity of data 

- Extraction and 
cleaning policy 

- Integration policy 

- Extraction policy 
- Integration policy 

- Extraction policy 
- Integration policy 

- Update policy 

Table 2: Different Levels of Abstraction for the Management of Quality for the Refreshment of the Data Warehouse 

As mentioned before, the refreshment process is one of the main data warehouse processes for which 
the quality is an important issue. The associated quality template includes quality dimensions such as 
coherence, completeness and freshness. 

- Data coherence: the respect of (explicit or implicit) integrity constraints from the data. For example, 
the conversion of values to the same measurement unit allows also doing coherent computations. 

- Datu conlpleteness: the percentage of data found in a data store, with respect to the necessary amount 
of data that should rely there. 

- Datafreshnes,s: the age of data (with respect to the real world values, or the date when the data entry 
was performed). 

Given a quality dimension, several low level quality factors of this dimension may be defined in a data 
warehouse. For example, one can define quality factors like the nvnilabili~ win&w or the extraction 
.frequency of a source, the estimated values for the response time of an algorithm or the volume qf the data 
extracted each time, etc. In Table 2, which was derived both from practical experience and the study of 
research results in the field of data warehousing, we mention several quality factors which are relevant to 
the refreshment process and link them to the corresponding data warehouse objects and quality 
dimensions. One can also notice that some quality factors may belong to more than one dimension. Some 
of them are primary quality factors, arbitrarily assigned by the data warehouse administrator whereas 
others are derived. The deriving procedures can be mathematical functions, logical inferences or any acl 
/rot algorithms. The values of derived quality factors depend on design choices which can evolve with the 
semantics of the refreshment process. Underlying the design choices <are design techniques, that comprise 
all the rules, events, optimizations and algorithms which implement the strategies on which refreshment 
activities are based. 

We believe that quality dimensions, quality factors and design choices are tightly related. For 
example, in the case of the refreshment process, the design choice ‘extraction policy’ is related to the 
derived quality factor ‘extraction frequency’ of each source, which is computed from the corresponding 
primary quality factor ‘availability window’ of each source. As another example, the completeness of a 
source content may be defined with respect to the real world this source is supposed to represent. Hence, 
the completeness of this source is a primary quality factor, since it is a subjective value directly assigned 
by the data warehouse administrator or the source administrator. On the other hand, the completeness of 
the operational data store content is a derived quality factor, since it can be defined as a formula over the 
completeness of the sources. The extraction, integration and update policies are algorithms and 
parameters tuned to complete the task of data warehouse refreshment. The designer can pick from a 
variety of alternatives for each of these policies. The particular design choice he makes ultimately affects 
the quality of the involved dimensions and factors of the problem. 
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Fig. 4: The Quality Scenario for the Data Warehouse Optimal Design Problem 

2.4. Example 2: Data Warehouse Design Optimization 

In [24], a data warehouse is seen as a set of materialized views defined over distributed heterogeneous 
databases. All the queries posed to the data warehouse are evaluated locally using exclusively the data 
that are stored in the views. The materialized views have also to be maintained when changes occur to the 
data of the sources. Note that the term “queries” includes both the possible ad-hoc user queries (seeking 
for detailed information) and the batch, regularly posed queries used for the updating of the high level, 
aggregated views of the data warehouse and its data marts. 

For a given set of different source databases and a given set of queries over the data warehouse, there 
is a number of alternative sets of materialized views that the administrator can choose to maintain. Each 
of these sets has different refreshment and query answering cost while some of them may require more 
disk space than the space which is available for the data warehouse. Also, each of these views can be 
differently evaluated with respect to the quality of its data (in terms of accuracy, freshness, consistency 
etc.). 

The data warehouse design problem is the selection of the set of materialized views with the 
maximum overall “benefit” (minimum overall “cost”) that fulfill all the predefined requirements, set by 
the involved stakeholder. In the sequel, we will use an exemplary constraint, demanding that the solution 
fits into the available space. These views have to answer all the queries posed to the data warehouse 
without accessing the heterogeneous sources. Obviously, the benefit (or cost) can be quantified with 
respect to the aforementioned parameters as well as with respect to the total execution time of the design 
algorithm. 

The overall problem of data warehouse design optimization, composed of its objects and quality 
factors is graphically depicted in Figure 4. We present the basic object types and for each of them we give 
their relevant quality factors. 

We can determine three basic object types for the problem of optimal data warehouse design: the 
sources, which are considered to be relational (or at least provide a relational interface through a 
wrapper), the queries posed from the user over these sources and the intermediate materialized views that 
the algorithms produce, which serve as buffers to speed up the answering of the queries. The design 
choices of the problem, which are present in the problem definition (although implicit), are the employed 
policies for the propagation and the cleaning of the information, as well as the employed algorithm itself. 

We believe that the basic quality dimensions affecting the problem are related to time and space: 

I. Query Timeliness: the answering of the queries must be done as quickly as possible. 
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Quality 
Dimension 

Query 
timeliness 

System 
availability 

DW Object 

- DW views 
- User queries 

- DW views 
- Source 

Primary Quality Derived Quality Factors Design choices 
Factors 
- Query cost over the - Query cost over the views - View definition 

sources - Total query cost for the 
DW 

- View definition - Update cost for view - Refreshment 
- Refreshment window - Total update cost policy 

Data quality 

Design 
consistency 

relations 
- DW views 
- Source 

relations 

- DW views 
- Source 

relations 

- Source accuracy 
- Source completeness 
- Source consistency 
- Source freshness 
- Disk space 
- Space occupied by 

each view 

- DW view accuracy 
- DW view completeness 
- DW view consistency 
- DW view freshness 
- DW space 

- Propagation and 
cleaning policies 

- Model for size 
prediction 

Design 
efficiency 

- DW views 
- Queries 

- Size of propagated 
data from the sources 

- Query frequency - Design time - Employed 
- Update costs - Quality of the solution algorithm 
- Cost model 

Table 3: Quality Factors for the Data Warehouse Design Optimization Problem 

System Availability: the downtime of the system due to refreshment reasons must be the smallest 
possible (the maintenance of the materialized views must be done as quickly as possible or at least 
within a specified time interval). 
Data Quality: the data delivered to the users must be accurate, complete, up to date and abiding by 
the internal rules (constraints) of the data warehouse. 
Design Consistency: the constraints over the result of the design process must be respected (e.g. 
the volume of the produced materialized views must be such, that fits in the disk space provided 
for the data warehouse). 
Design ESficiency: the choice of the materialized views must be done as quickly as possible, 
without a severe impact in the quality of the solution. 

For each of the related objects of the problem, one can define relevant quality factors that affect the 
result of the data warehouse design. As far as the sources are concerned, one can identify the size of 
source relations, which will be used for estimations in the cost model and the original cost of the queries 
over the sources. The data warehouse views are affected by several quality factors such as the final 
number of views in the data warehouse, the available disk space for the data warehouse, the space 
occupied by each view (as well as the total space occupied by al the views), the update cost for each view 
(i.e. the time to perform the update of an data warehouse view) as well as the total update time for the 
data warehouse. The queries are characterized, in general, from their query cost (i.e., the time needed to 
perform the query over the data warehouse). The sources, the views and the queries are also characterized 
by their data quality. The quality factors related to data quality are the accuracy (i.e., the validity of the 
data, with respect to real world values), the completeness (i.e., the percentage of available information 
with respect to expected volume of information), the consistency (i.e., the percentage of information 
obeying the database rules), and the freshness (i.e., the age of the data with respect to their transaction 
time). Finally, the algorithm itself is characterized by the design time (i.e., the total time needed for the 
algorithm to terminate) and the quality of its solution (i.e., the fraction of the cost of the obtained solution 
over the best possible solution which can be obtained). All the aforementioned quality factors are listed in 
Table 3. 

3. EXPLOITATION OF THE METADATA REPOSITORY AND THE QUALITY METAMODEL 

In the GQM approach, each goal is defined from a set of questions, in order to help the transition from 
a very general, high level, user request to a set of specific measurements. Yet, the selection of the right set 
of questions for a specific goal, or better, for a specific type of goals, remains an open issue. Basili gives 
some hints [2, 161: there are questions informative on the current status of an object (or process), 
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questions objectively quantifying this situation through specific measures and finally questions 
subjectively judging the current status from the viewpoint of the user. 

Naturally, these guidelines are too general, since they are supposed to open a path for the development 
of specific algorithms/methodologies for the different fields of applications. As a result the suggested 
guidelines do not really provide a concrete set of steps for the operational usage of the metadata 
repository. So, in our approach we attack this problem from a methodological point of view: we try to 
come up with a set of steps in order to be able to exploit the information residing inside the data 
warehouse metadata repository. To perform this task, we customize the GQM process to fit with the 
DWQ approach as far as the problems of data warehousing and the given solutions are concerned. More 
specifically, we base our approach on the idea that a goal is operationally defined over a set of questions. 
Thus, we provide specific “questions” for the full lifecycle of a goal, not only for the identification of a 
situation, but also for the interrelationships between its crucial components and quality factors. Moreover, 
we do not restrict our approach to the detection of the anomalies in the quality of a data warehouse: we 
extend GQM towards the re-action to encountered problems by providing guidelines for the improvement 
of an undesired situation as well as for the re-evaluation of the usage of a goal in the presence of a 
continuously evolving environment as a data warehouse. Underlying our methodology, we exploit: 

- A metadata repository, which provides all the necessary knowledge to understand quality goals, quality 
factors and their related data warehouse objects. This repository allows to trace design decisions, and 
to report on the history of quality goals with their successive evaluations and improvements. 

_ A computational engine composed of all the deriving procedures of quality factors. The techniques 
underlying this engine can be simple functions and procedures or more sophisticated reasoning 
mechanisms. For example, in the case of performance evaluation of a given query, a mathematical 
function is generally sufficient while in the case of coherence validation of a conceptual schema we 
need a more sophisticated inference mechanism. 

Based on this, the DWQ methodology for quality management is composed of four main phases: (i) 
the design phase which elaborates a quality goal by defining its “ingredients” and their interrelationships 
at the type level; (ii) the evaluation phase which deals with the computation of quality factors; (iii) the 
analysis and improvement phase which gives an interpretation to the quality goal evaluation and suggests 
a set of improving actions; (iv) the re-evaluation and evolution phase, which deals with the problem of 
continuous change both of the data warehouse and the status of the quality goals of the users. 

In Figure 5, we graphically present our methodological approach for quality management. This 
methodology is influenced by the TQM paradigm, which has also been adopted by other approaches such 
as TDQM [27]. In the sequel we provide a detailed presentation for the different steps / questions of each 
phase. Before proceeding, we would like to mention that the proposed methodology does not consist of a 
strict algorithm: one may choose to ignore several steps, according to the specific situation he is tackling. 

3.1. The Design Phase 

Naturally, when dealing with a quality goal, we assume that there is always a first time when an 
involved stakeholder defines the goal. The design process of the goal is the first phase of the interaction 
between the stakeholder and the repository and should result in the selection of the involved object types 
and their quality factors. 

There are two steps that can take place at the same time: the identification of the object types which 
are related to the goal and the respective low level quality factors. The identification of the object types 
tries to reuse the experience stored in the metadata repository. The repository is powerful enough to 
model the relationships not only at the instance but at the type level as well. 

Take for example, the refreshment process, described in Section 2.3. Several object types of the data 
warehouse are involved, e.g., “source data stores ” “ODS”, “materialized views” (Table 2). Each of these , 
template object types can be linked to template quality factors (e.g., “availability window of each data 
source”). Actually, there are two kinds of template object types that can be reused this way. First, at the 
metamodel level (Figure 2), we can find relationships between object and quality factor types applicable 
to any data warehouse. In the DWQ project, we have provided a “list” of such template interrelationships 
for all the crucial phases of the data warehouse lifecycle [ 131. Second, these interrelationships, found at 
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Fig. 5: The Proposed Methodology for Dam Warehouse Quality Management 

the metamodel level, can be enriched with template patterns at the metadata level (i.e., concerning the 
architecture of the particular data warehouse that the involved stakeholder considers). This can be the 
case, when a general pattern is followed for a certain kind of processes, throughout all the data 
warehouse. We will exemplify this situation in Section 5, where we present a real-world case study. 

The identification of the involved object and quality factor types is accompanied by a complementary, 
but necessary step. Since the identified object types are most probably composite (e.g. a schema is 
composed from several relations) one has to decompose them at a satisfactory level of detail. For 
example, if the examined type is the refreshment process, one can try to decompose it into more refined 
objects such as data extraction, data cleaning and transformation, data integration and high level 
aggregation. 

The next step deals with the identification of the interrelationships between objects and quality 
factors. Each object can be viewed as a node in a graph. Every node in the graph has input and output 
arcs, determining the interdependencies of the data warehouse components with respect to their quality 
factors. Several design choices are by default encapsulated in the graph (e.g. the simple fact that the data 
of a materialized view stem from source data). The graph is enriched by the tracking of high-level quality 
dimensions, expressed by the user. The final output of the application of the methodology will be a set of 
specific quality factors, measuring these quality dimensions. 

The goal of this process is, not only to set up a list of the “ingredients” of the problem, but also, to 
come up with a list of “functions”, determining the outcome of the quality of an object, in terms both of 
its own characteristics and of the quality of other objects affecting it. We call the outcome of the process, 
the scenario of the quality goal. 

More specifically, to produce the list of functions, the involved stakeholder has to try to define the 
interrelationships between the determined object types, by inspecting the peculiarities of the problem. 
Take for example the problem of determining the timeliness of a materialized view. The stakeholder 
should use a standard statistical methodology, like a Pareto diagram [3], or a specific algorithm (acting 
like a function) to take into account the availability of the sources, the frequency of updates and queries 
and the capacity of the propagators. 
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We do not advocate that these functions can always be derived or discovered in an analytic form. 
Before proceeding, we feel that it is important to stress that the presence of an analytical function, or a 
concrete algorithm, can be the case in several occasions. We will demonstrate this with an elementary 
example in the sequel. 

Still, even if this is not the case, we can complement the lack of an analytical function to describe the 
relationship of two quality factors, in various ways. First, it is quite common -as we have observed in our 
practical experience- that the involved stakeholders have a detailed empirical knowledge of the domain in 
which they are involved. This kind of knowledge can be captured both in the design and the evaluation 
stage (as we shall also see in the sequel). Moreover, it is important to note that even the existence of an 
interdependency link can be used as a boolean function to denote dependency, between the involved 
objects. We will demonstrate how this kind of interrelationship works in Section 5, where we present a 
real-world case study. 

Example 1 In the example of Figure 6, we try to quantify a quality dimension: the believability of the 
information delivered to the final user. To achieve this goal, we decide that we have to measure a specific 
quality factor: the accuracy of the data in the views used by the final users. The scenario is composed 
from all the components participating in the refreshment of a view: the source database (which in terms is 
decomposed to a set of source relations), the transformation agents converting the data to the desired 
format and the data warehouse / ODS views, each one possibly defined on top of another view. We also 
provide an analytical function for the accuracy of a view, calculating it from the size and the accuracy of 

the input data. q 

A fascinating feature of a scenario is the tracking of the inverse relationships between the quality 
factors. In other words, by describing the interdependencies of the quality factors, not only do we get a 
clear view of the way the overall quality of our final “product” is influenced, but also we get a first insight 
of how to remedy an undesired situation. For example, in Figure 6, we can improve the believability of 
our information by increasing its accuracy, something which, in terms, can be achieved through the 
improvement of the accuracy of the transformation agents and/or the source relations. In the case of 
redundant information, one can also increase the volume of the utilized data from a source with higher 
accuracy. In any case, to generalize this observation, the inverse functions can be either analytical 

relationships or the inverse interdependency path on the scenario. 

3.2. The Evaluation Phase 

After the design process, the following step is the evaluation of the current status. The purpose of the 
evaluation phase is to construct a detailed map based on the constructed scenario, which describes 
accurately all the interplaying components and factors at the instance level. This can also be the first step, 
when a goal has already been defined in the past and a scenario has been developed and can be currently 
reused. 
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First, we must determine the specific object instances of the specific evaluation through a query to the 
metadata repository. In the example of Figure 6, one can identify two source relations (S,, Sz), pumping 
data to two views in the ODS (V,, V,), through a respective transformation agent and a final view (V,), of 
which we have to quantify the accuracy (Figure 7). 

Next, one must take into account several design choices, i.e., the properties of the interplaying objects 
which influence the quality of the outcome. In our example, one can take into account the size of the 
propagated data, the time windows of the sources, the regularity of the refreshment, etc. For reasons of 
simplicity of the presentation and since we deal only with the accuracy factor, we retain only the size of 
the propagated data and the view definitions. 

Apart from the component refinement, we can also refine the interrelationships between the quality 
factors. The refinement can be performed either through the use of analytical formulae or direct 
instantiations in the scenario, based on the empirical knowledge of a specific situation. Empirical 
knowledge can be obtained from simple observation, user expertise, or through the use of well-tested 
techniques such as statistical process control (SPC), concurrent engineering, etc. [3]. In our example, 
simple sampling could show that in the past, the transformation agent increased the accuracy of the data 
by a scale of 2. 

Then, for each quality factor one should also determine the metrics and measuring agents. If no 
measuring agent(s) has ever been defined, one must determine the computation procedure for the actual 
values of the quality factors. Also, the parameters of the measuring procedures should be set accordingly. 

The final step is the addition of acceptable/expected values for each quality factor, wherever 
necessary. This is a crucial step for the evaluation of the current status later on. The accepted range of 
values will be the basic criterion for the objective judgment of a subjective quality goal. The outcome of 
this step should provide the stakeholder with a well-defined map of the problem (see also Figure 7). 

With respect to the scenario of Figure 6, the map is enriched with (a) agents for the computation of 
primary quality factors (e.g. the queries at the metadata repository), (b) formulae for the computation of 
the derived quality factors, (c) properties of the components such as the view definition, or the size of the 
propagated data and (d) acceptable ranges of values (e.g. accuracy of view V3). 

After that, the only thing left is the acquisition/calculation of the specific values of the selected quality 
factors, through the necessary computation. In Figure 8, a certain instance of the quality map is depicted. 

The acquisition of these values is performed through the use of the already defined measuring agents. 
In fact, we anticipate that if the values are regularly (i.e. not on-demand) computed and stored in the 
metadata repository, then their acquisition can be done through a simple query to the metadata repository. 

Here we must clarify again, that several steps can be omitted. In fact, if we consider that the metadata 
repository is regularly refreshed through an external agent, then some of the intermediate steps of this 
process can be avoided. 
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3.3. The Analysis and Improvement Phase 

At the end of the second phase, the map of the problem is fully instantiated with actual values (e.g., 
like in Figure 8). Yet, if the situation is not satisfactory, the stakeholder may choose to react against it. 
Although this is a process with different characteristics each time, we can still draw some basic guidelines 
for the steps that can be taken. Consider for example the case in Figure 8, where the computed accuracy 
for view V3 is not within the accepted range. Obviously there must be some reaction against this 
undesired situation. 

One of the main advantages of our approach is that if we have an understanding of the mechanism that 
produces the problem, we can attack the problem directly through the use of the inverse quality functions, 
which have been derived during the design phase or detected during the evaluation phase. Again, by 
‘inverse functions’ we mean both the possible analytical functions and the inverse interrelationships in the 
map of the problem. 

The inverse functions in our example suggest that an increase of 10% for the accuracy of view V3 
calls for one of the following actions: 
a) Use the analytical formulae directly: increase of 10% to the accuracy of views 1 and 2 (directly 

through the formula), which in terms implies: 
- increase of the accuracy of source 1 by 10%; 
- increase of the accuracy of source 2 by 5% or the accuracy of the agent by 10% or a combination of 

the two. 
b) Customize the reaction to the specific characteristics of the situation: Through the use of the specific 

measurements one could also try to derive a plan taking into account the sizes of the input views. For 
example, elementary calculations prove that it suffices to increase the accuracy of source 2 to 45%, for 
the quality of the view 3 to be in the accepted range. 
We call the final result of the negotiation process, the final instance of the quality map. In Figure 9, 

the final map instance of the motivating example is depicted, according to the second proposed solu- 
tion (b). 

Nevertheless, there is always the possibility that this kind of approach is not directly feasible. If our 
understanding of the problem is not full, then steps must be taken so that we deepen our knowledge. 
Moreover, it is possible that the derived solution is not feasible -or is too costly to achieve. 

In the first case, we must go all the way back to the design process and try to refine the steps of the 
function discovery. In the second case, we must try to use the inverse functions in order to determine 
which are the feasible limits of values that we can negotiate. The negotiation process is a painful task, 
since one has to deal with contradictory goals and priorities. Yet, several specific techniques exist which 
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4. DATA WAREHOUSE EVOLUTION 

Complementing the three previous steps of the DWQ methodology is the last step: Reevaluation and 
evolution. A data warehouse is a very complex system whose components evolve frequently 
independently of each other. New materialized views can be created and old ones can be updated. Some 
sources may stop being used, while others are added. The enterprise model can evoIve with new 
enterprise objectives and strategies. The technical environment constantly changes due to product 
evolution and updates. Design choices at the implementation level can also evolve in order to achieve 
user requirements and administration requirements. 

As a result of evolution and errors, our quality factors are never to be fully trusted. Each time we reuse 
previous results we must always consider cases like: lack of measurement of several objects, errors in the 
measurement procedure (e.g., through an agent that is not appropriate), outdated information of the 
repository with respect to the data warehouse, etc. 

In this section, we do not deal with the problem of schema evolution or the redefinition of data 
warehouse views, but rather we focus on how the evolution of quality factors and quality goalsfits into 
our methodology. In our view, the quality of the data warehouse is a view of the metadata and data of the 
warehouse. For example, the quality of the data warehouse depends on the quality of the sources, the 
quality of the extraction process and the quality of the data warehouse components itself. One can think 
of the quality factors as materialized views over the metadata and data of the warehouse; thus the 
evolution of the data warehouse can be seen as a view maintenance problem on the aggregated quality 
views. 

The consequence of this observation is that, exactly as in the case of view maintenance, the relevance 
of data warehouse evolution and quality factors is two-fold. On the one hand, changes in the architecture 
of a data warehouse result in the evolution of its quality factors. On the other hand, a change in the user 
goals can impose a change in the architecture of the data warehouse, in any perspective: conceptual, 
logical or physical. In the former case, which we will describe in Subsection 4.1, we are dealing with a 
situation similar to the view refreshment problem, whereas in the latter case, which we present in Sec- 
tion 4.2, we have a situation similar to the view evolution problem. Both these cases are efficiently 
supported by the results of the application of our methodology. Still, in Section 4.3 we present how the 
use of the data warehouse metadata repository can provide further support to both cases, in a uniform 
fashion. 



Towards Quality-Oriented Data Warehouse Usage and Evolution 105 

4.1. Evolution of Quality Factors 

Quality factors can evolve because of changes in the architecture of the data warehouses. The data 
stores can produce changes due to reasons of schema evolution in logical and conceptual perspective, 
changes to the physical properties of the source (e.g., location, performance etc.), insertions or deletions 
of data stores, or specific reasons particular to their nature (e.g., in the sources, the time window for 
extraction or the data entry process can change). The software components can be upgraded, completed, 
or debugged. The propagation agents of all types (e.g., loaders, refreshers, wrappers, mediators and 
source integrators) can obtain new schedules, new algorithms, rules, or physical properties. Moreover, the 
business rules of an organization are never the same, due to real world changes. 

In all these cases, the evolution of the quality factors can take many forms: new factors can be needed 
for the precise tracking of the new situation, while existing ones maybe useless. The measurement 
techniques may need to change too and the values of the quality factors have to be recomputed. For 
example, if a source is changed - either its data or its properties that are captured by the system metadata 
- the quality of the source must be recomputed. All objects and their quality factors which depend on this 
source must be adapted to the new situation. As another example, in the case a new source is integrated, 
we just have to compute the quality of this source and recompute the data warehouse and data mart 
quality using the information of the process quality, which describes how the data is transformed and 
what improvement or debasement to the data quality has been made. 

Our methodology is powerful enough to support this kind of evolution efficiently, both at the 
metamodel and the metadata levels. The metamodel level captures interdependencies of generic types 
(e.g., a view depends on its sources, or the data freshness inside the data warehouse depends on the 
extraction frequency of the sources). The quality scenarios trap this meta-information explicitly, through 
the respective dependency functions. Note that, due to their nature, it is rather straightforward to hardcode 
any generic technical results from database research and practice into the quality scenarios. For example, 
the operational cost for loading and maintaining the data warehouse, as a result of the design process [22], 
depends on the query and update frequencies: this meta-information can be incorporated into the 
respective quality scenarios of the repository. Thus, any change in the instances of any of the involved 
types in a quality scenario signifies the need to redesign (or simply re-evaluate) the respective instances 
of the quality factor types appearing in this scenario. 

At the same time, at the metadata level, the peculiarities of the interdependencies in the data 
warehouse that the interested stakeholder examines, are captured in the quality maps of the metadata 
repository. Thus, any changes in the particular object instances, appearing in the quality maps calls for the 
re-evaluation - or even redesign - of the affected quality factors. 

4.2. Evolution of Quality Goals 

Similarly to the view evolution problem, where a change in the view definition signifies a new way to 
materialize it, the user requirements continuously change, possibly resulting in a new data warehouse 
architecture. New requirements arise, while old ones may become obsolete, new users can be added, 
priorities and expected/acceptable values change through the time, etc. In the evolving context of a data 
warehouse, the re-evaluation of a goal and of the strategy to achieve it is a strict contingency. There are 3 
main reasons for this: 

(a) evolution reasons: there are natural changes happening in such a complex environment; 
(b) failure in the achievement of the desired quality, and 
(c) meta-quality: we can never be sure for the quality of our measuring processes. 

All these changes, or observations, may lead to the evolution of the data warehouse architectme, so 
that the new quality goals of the users are met. Consequently, in addition to the maintenance process of 
the quality, the inverse of the computation functions for the quality factors can be used, to find the data 
warehouse object that has to be improved to reach a certain quality goal. This process can be compared 
with the view update process in databases systems, where updates to views (here: derived quality factors, 
expressed as “views”) are translated to updates in base data (here: primary quality factors). As an 
example, we can mention the very common case where the users demand more up-to-date data: this 
evolving user quality goal affects directly the data warehouse architecture, at least at its physical level, 
since new definitions of the data warehouse materialized views (in the logical perspective) are employed, 
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Fig. 10: A Meta Model for Data Warehouse Evolution 

along with the appropriate physical changes in the clustering and indexing of the data warehouse 
tablespaces. Alternatively, or when these techniques are proved to be inadequate, new refreshment 
techniques and tools have to be applied, in order to achieve the requested timeliness. 

Our methodology can support the evolution of the user quality goals through the use of its 
intermediate results. Whilst the direct dependency functions support the architecture evolution, the 
inverse dependency functions can enable the evolution of quality goals. Take for instance the working 
example of Section 3: it was the existence of the inverse functions that led to the solution of the problem. 
In a similar manner, the inverse functions indicate which quality factors are affected or should interplay in 
an evolved user requirement. Again, as in the case of architecture evolution, this can happen both at the 
metamodel (here: scenario) and the metadata (here: map) level. 

4.3. Repository Support for Data Warehouse Evolution 

Apart from the facilities provided by the methodologically derived scenarios and maps, we can extend 
the support provided by the repository for the task of data warehouse evolution. The repository, thus, 
gains added value since, ex ante the data warehouse stakeholders can use it for design purposes (e.g., to 
perform what if analysis through the application of the methodology) and ex post, people can relate the 
data warehouse objects to decisions, tools and the facts which have happened in the real world [9]. 

A way to control data warehouse evolution is to provide complementary metadata which track the 
history of changes and provides a set of consistency rules to enforce when a quality factor has to be re- 
evaluated. To do so, it is necessary to link quality factors to evolution operators that affect them. The idea 
behind this is to enrich the metadata repository in order to ease the impact analysis of each evolution 
operator and its consequences on the quality factor measures. In [ 181, we have proposed a metamodel to 
capture the semantics of evolution operations and to their effect on data warehouse quality (see 
Figure 10). 

A data warehouse evolution process is composed of several sub-processes, which may be further 
decomposed. These sub-processes are executed in a specific order, which is described by the next 
relationship between evolution processes. An evolution process works on an object type and its result is 
some value of a domain. The process is linked to a stakeholder that controls or has initiated the process. 
Processes affect a quality factor of an object type, e.g. the availability of data source or the accuracy of a 
data store. It might be useful to store also the expected effect on the quality factor, i.e. if the process 
improves or decreases the quality factor. However, the achieved effect on the quality factor can only be 
determined by a new measurement of this factor. A query on the metadata repository can then search for 
the processes which have improved the quality of a certain object. 

While this description provides the general framework under which the evolution operators function, 
we also provide interrelationships between specific data warehouse objects and the impact of their 
evolution on quality. In [6] a taxonomy for schema evolution operators in object-oriented databases is 
given. We have adapted this taxonomy to relational databases, which constitute the most popular platform 
used in data warehouses. Table 4 summarizes the evolution operators for base relations and views, and 
relates them to the quality factors, which are affected by this evolution operator. 

The evolution operators for base relations and views in data warehouse mainly work (a) on the 
representation of the relation in the logical perspective of the architecture model, i.e. the relation itself and 
the logical schema it belongs to, and (b) on the physical objects where the data of the relation is stored or 
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Evolution 
Operator 
Add base relation I 
view 

Delete base relation 
I view 

Add attribute to base 
relation / view 

Delete attribute from 
base relation / view 

Rename Relation, 
View, or Attribute 

Change of attribute 
domain 

Add Integrity 
Constraint 

Delete Integrity 
Constraint 

Change to view 
definition 

Affects Quality Factor 

- Completeness, correctness and consistency of the logical 
schema wrt. the conceptual model 

- Usefulness of schema 
- Availability of the data stoK 

- Minim&y of logical schema 
- Completeness, comxtness and consistency of the logical 

schema wrt. the conceptual model 
- Availability of data store 

- Completeness, correctness and consistency of the logical 
schema wrt. the conceptual model 

- Interpretability of the relation 
- Redundancy of the attributes 

- Completeness, correctness and consistency of the logical 
schema wrt. the conceptual model 

- Interpretability of the relation 
- Redundancy of the attributes 

- Interpretability and understandability of the relation and 
their attributes 

- Interpretability of data 

- Credibility and Consistency of data in data store 

- Consistency of data wrt. integrity constraints 

- Completeness, comxtness and consistency of the logical 
schema wrt. the conceptual model 

- Usefulness of schema 

Works On 

- Relation 
- Logical Schema 
- Data Store 

- Relation, Log. Schema 
- Data Store 
- View 
- View Maintenance (VM) 

Agent 

- Relation 
- Data Store 
- View 
- VM Agent 

- Relation 
- Data Store 
- View 
- VM Agent 

- Relation. View 
- Data Sto’m, VM Agent 

- Relation. View 
- Data Stok, VM Agent 

- Logical Schema 
- Data Store 

- Logical Schema 
- Data Store 

- View 
- Data Store 
- VM Agent 

Table 4: Evolution Operators for Base Relations and Views in Data Warehouses and Their Effect on Data Warehouse Quality 

where the view is materialized, i.e. the data stores. In addition, if there exists a view, which is based on 
the evolved relation or view, the view definition, the materialization of the view, and the maintenance 
procedure must be updated, too. 

The completeness, correctness and consistency of the logical schema with respect to conceptual model 
are the most important quality factors affected by these evolution operators. Furthermore, the deletion of a 
base relation or an attribute might have a positive impact on the minimality or the redundancy of the 
logical schema. The renaming of attributes and relations to more meaningful names improves the 
interpretability and the understandability of the logical schema. The change of the domain of an attribute 
to a more applicable domain, e.g. changing the domain from string to date, improves the interpretability 
of data. New integrity constraints in the logical schema may improve the credibility and the consistency 
of the data. Finally, if the view definition is changed without an impact on the structure of the view (e.g. 
the WHERE clause in a SQL statement is changed) the view may become useful for more client 
applications. 

As an example, to show the usefulness of the data warehouse evolution meta model, we suppose that 
an analyst has detected that the views he is using are often changed, and that he wants to get notified 
about future changes. We can establish a view on the metadata repository for the analyst that monitors the 
changes to the view he is interested in. 

View EvolutionOperationsOnView isA RelationalEvolutionProcess with 
parameter 

v : DWView 
constraint 

c: $ (this worksOn v) $ 
end 

This view returns all evolution operations that are made to the given data warehouse view assuming 
that all evolution processes concerning relational schema evolution are instances of the process type 
RelationalEvolutionProcess. A similar view that notifies data warehouse administrators whether base 
relations have changed might be also useful for them. Our repository system ConceptBase is able to 
maintain views on the metadata and supports the notification of external client applications if a view, 
which they are interested in, has changed [ 193. 
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5. CASE STUDY 

To demonstrate the feasibility of our approach, we will present its partial application to a specific case 
study. The case study involves an organization of the Greek public sector, which is not revealed for 
reasons of confidentiality. In the rest of this section we will briefly present the architecture of the data 
warehouse which was built, the problems that occurred during its testing and the way we applied our 
methodology to resolve the respective situations. 

5.1. The System Architecture 

The role of this organization is to support the general policy of Greek State towards issues of health. 
In the past, various data about the yearly activities of all the Greek hospitals were collected from all the 
hospitals once a year and an annual report was produced from a legacy system. The data warehouse that 
we built aimed to replace and extend the old system. In the sequel, we will present a small subset of the 
data warehouse, concerning a specific problem, which we resolved with our methodology. 

The system relies on operational data coming from COBOL files (see Figure 11). We focus on two 
COBOL files, the first presenting the annual information by department and the second by class of beds 
for each hospital. Each COBOL file yields a specific attribute for each type of department (or class of 
beds respectively), along with various other information. Each year, the COBOL files are transferred from 
the operational system to the data warehouse and stored in “buffer” tables of the data warehouse, acting 
as mirrors of the files, inside the DBMS. Then, the tuples of the buffer tables are used by computation 
procedures to further populate normalized tables in the data warehouse. Several materialized views are 
then populated with aggregate information and used by client tools for querying. In this study, we will 
present a case where the materialized view could be populated from any of two different data flows. The 
wrong choice of data flow led to incorrect data. 

5.2. Problems and Quality Goals of the Project 

Among the requirements that were originally set for the system, we distinguish two that will concern 
us in this paper: 

- Data Completeness. All the information for all the hospitals should be in place after the annual 
refreshment process. 

- Data Consistency. Any information presented to the users should be identical to the one that would be 
produced by the legacy system (for the parts that provided the same functionality). 

The testing of the deployed application showed that the first goal was achieved. Nevertheless, the 
application seemed to fail the second goal. In particular, we observed that there were hospitals where the 
total number of beds did not match the number calculated for the legacy system. Thus, the following 
quality goal was set: “Firm up the consistency for the data stored inside the warehouse “. 

Purpose: firm up 
Object: data stored inside the 
warehouse 

Issue: consistency 
Viewpoint: data 
designer 

warehouse 

In the sequel, we will show the results and the actions undertook in the context of each step of the 
methodology. 

5.3. The Design Phase: Scenario of the Quality Goal 

To find out what had gone wrong we first designed the scenario of the loading process (we do not 
present the querying process here, for reasons of simplicity). 
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Client 1-1 tools 

Fig. 11: The Data Flow in the Architecture of the Case Study 

Step 1. Decomposition of complex objects and identification of object types. The only object participating 
in the definition of the quality goal is the data residing in the warehouse. A genera1 statement like this had 
to be decomposed to more detailed object types. The metamodel layer can be exploited in this stage, since 
it provides all the information about the object types and processes that constitute a composite object. In 
our case study, the data warehouse, which we previously described, primarily consisted of data stores and 
loading processes. The interplay of these two high-level object types abided by a genera1 pattern that was 
followed throughout the whole data warehouse. This way, the scenario that we built could be reused later, 
for testing other parts of the data warehouse architecture, too. 

We identified the following important object types for the map of the quality goal: the source COBOL 
file, the “buffer” mirror table, the normalized table and the materialized view in the data warehouse. 
Apart from the static objects, the loading, cleaning and computing applications of the warehouse affected 
the overall quality of the stored data. 
Step 2. Identification of quality factor types. In general, we can rely on two beacons in order to define the 
relevant quality factor types for a quality scenario: the quality dimensions participating in the definition of 
the quality goal and the quality factors related to the interplaying objects of the scenario. Obviously, 
quality factor and object types, as well as quality dimensions are interrelated: thus, the definition of 
quality factor and object types for a particular scenario is an iterative process. 
In our case, we identified the relevant quality factors by inspecting (a) the quality dimension of the 
quality goal (namely the consistency of the stored data) and (b) the quality factors of the interplaying dara 
stores and applications, which are listed in the previous paragraph. The outcome of this process 
comprises quality factors such as the correctness of the developed software applications and the 
completeness and consistency of the involved data stores. 
Step 3. Analytical derivation of “‘functions”. The goal of this step is to analytically define the 
computational procedure for the derived quality factors and to identify any kind of interrelationships over 
the quality scenario. This means that the involved stakeholder must (a) detect any dependency between 
the object and quality factor types and (b) employ known algorithms, or self-defined heuristics for the 
definition of the computation procedure of the derived quality factors. 

To identify the interrelationship of the quality factors of the problem we were based on the following 
observations: 

- Given a data flow abiding by the general pattern of the particular warehouse of the case study, the 
consistency of the data in a certain stage depends on the consistency of the data in a previous stage. 

- The consistency of a data store also depends on its completeness, since missing information affects the 
result of any process operating over this data store (e.g., aggregation or cleaning). 

- The correctness of the employed processes also affects the consistency and the completeness of a data 
store, since erroneously rejected or propagated data affect the amount of information residing in the 
data store. 

These observations led to a general picture as suggested by Table 5. 
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DW objects Primary Quality Factors Derived Quality 
Factors 

Design Choices 

- COBOL Source tile - Consistency of a data store - Consistency of a - Dam flow 
- Buffer table - Completeness of a dnta data store - Chosen source 
- Normalized table store - Completeness of 8 tiles 
- Materialized View - Correctness of an data store 
- Loading process application 

- Cleaning process 
- Computation process 

Table 5: Quality Factors for the Data Warehouse Design Optimization Problem 
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Fig. 12: The Scenario of the Quality Goal of the Case Study 

In our case study, we could not possibly exploit the results of previous research or industrial efforts, 
since we were not aware of any related work, performed in the context of data warehouse quality 
management, by that time. Thus, in order to compute the consistency and completeness of the data stores 
of the quality scenario, we had to resort to some rather ndive analytical functions which seemed to be 
reasonable. In our scenario, the completeness of a data store equals the completeness of its previous data 
store in the data flow by the correctness of the intermediate programs. The same holds for consistency, 
too. For example, 

Norm_Table.completeness=Computation.correctness*Cleaning.correctness*Buffer_Table.completenes.~ (1) 

Norm_Table.consistency = Computation.correctness * Cleaning.correctness * Buffer_Table.consisteency (2) 

The resulting scenario after the three aforementioned steps of the design phase is depicted in Figure 12. 
We should note that in our case study we did not have the possibility of using a metadata repository. 
Thus, we did not have the possibility of storing this template and reusing it electronically; still the 
meaning of the approach was kept, even on hard-copy. The same applies for the rest of the steps that will 
be presented in the sequel. 

5.4. The Evaluation Phase: Map of the Quality Goal 

The construction of the map of the quality goal was rather easy, due to the simplicity of the processes 
involved. 

Step 1. Identification of object instances. To perform this particular step, one would normally pose a 
simple query to the metadata repository, in order to instantiate the template object and quality factor 
types. In our case, the absence of a repository was compensated by the simplicity of the problem that we 
considered. The particular instantiation of the quality scenario is depicted in Figure 13. To give an 
example, we instantiated the “template” types, such as Buffer-table, Materialized View, Computation 
Process, to specific architecture objects such as tables Buff_class, Hospital-info and processes 
Computation_cl and Computation_cZ. 
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Fig. 13: The Map of the Case Study 
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Step 2. Definition of metrics and agents. Since we had no personal knowledge of the particularities of the 
data and the warehouse was under construction (i.e., no empirical knowledge had been acquired from its 
run-time usage), we were not able to enrich the derived scenario with empirical functions. Thus, we 
proceeded to define metrics and agents to test the assigned quality factors. The task was dealt with 
standard techniques. The correctness of the deployed applications would be examined by white box 
testing. The completeness and consistency of the data stores would be tested using SQL queries with 
respect to the previous data store in the data flow. 
Step 3. Definition of accepted ranges for the quality factors. In our case study, the definition of the 
quality goal and the simplicity of the data flow posed clear restrictions for the quality of the stored data: 
only 100% completeness and consistency would be allowed. The analytical formulae, which were 
produced during the design phase, imposed a similar constraint for 100% correctness of the deployed 
applications. 
Step 4. Value acquisition for the quality factors. This is the final step in the construction of the quality 
map. Normally, the acquisition of the values of the quality factors is performed either through a query to 
the metadata repository (in the case where the repository is periodically kept up-to-date with respect to 
the real world values), or the execution of the defined agents and metrics. Obviously, we followed the 
latter approach in our case. Initially, we performed the computation of the hospital beds from the tables 
involving the “class of beds”. We followed the path of the “inverse functions” to evaluate the quality 
factors of the map of the problem: we started the tests from the application performing the load / update 
of the materialized view, then we tested the consistency of the “normalized” tables, and so on. We were 
surprised to see that the consistency of the data, with respect to the previous data stores in the data flow, 
was lOO%, all the way back to the buffer table. 

5.5. The Analysis and Improvement Phase: Final Map of the Problem 

There was not too much of a negotiation during the analysis and improvement phase. Clearly, the path of 
inverse functions pointed towards the source COBOL file as the reason for data deficiencies. The mystery 
was solved when the source administrators verified our suspicion that the COBOL file for the “class of 
beds” was inconsistent. Moreover, they empirically knew that the COBOL file involving departments was 
the right one to choose. Of course, this file was also the one used in the production of the reports of the 
legacy system. Our testing (following again the constructed map) verified their - rather late to arrive - 
story. Our scripts were changed accordingly, so that the correct information was delivered to the users. 

The final map of the problem is depicted in Figure 14, where one can notice that the computation of 
the materialized view Hospital_Info is performed by the new computation process Computation_d2. 
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6. RELATED WORK 

There has been much research on the definition and measurement of data quality dimensions [20, 26, 
29, 301. A very good review is found in [28]. The GQM methodology is best presented in [ 16, 21. 

The TDQM methodology [27] follows the Total Quality Management approach, adapted for the 
evaluation of data quality in an information system (by assuming that each piece of produced information 
can be considered a product). The TDQM methodology also follows the TQM cycle: Definition, 
Measurement, Analysis and Improvement. The Definition part identifies the important quality dimensions 
and the corresponding requirements. The Measurements step produces the quality metrics. The Analysis 
step identifies the roots of any quality problems and their interplay, while the Improvement step provides 
techniques for improving the quality of information. 

Negotiation techniques enable the negotiation over the desired quality of a system. Statistical Process 
Control (SPC) is one of the best tools for monitoring and improving product and service quality [3]. SPC 
comprises of several techniques, such as Pareto diagrams (used to identify the most important factors of a 
process), process flow diagrams, cause and effect (or Ishikawa) diagrams, check sheets, histograms and 
control charts. 

Quality Function Deployment, (QFD) [7, 31 is a team-based management technique, used to map 
customer requirements to specific technical solutions. This philosophy is based on the idea that the 
customer expectations should drive the development process of a product. The basic tool used in QPD is 
the so-called “House of Quality”, mapping user expectations to technical solutions, taking into account 
priorities and conflicts. 

However, while the two aforementioned techniques certainly have a useful role in rough quality 
planning and cross-criteria decision making, using any of them alone would throw away the richness of 
work created by research in measuring, predicting, or optimizing individual data warehouse quality 
factors. In other words, these techniques are mostly based on human expert participation and statistical 
models for ad-hoc problem resolving. Our proposal, on the other hand, suggests a treatment of the quality 
problems at two levels, namely the type and instance level, increasing thus the reusability of the solutions. 
Moreover, the exploitation of quality is done through the use of a repository, enabling in this way the 
potential measurement of the involved quality factors through the use of well-established automated 
techniques and algorithms. We mention two prominent examples to support this claim: (a) the solution to 
the data warehouse design problem can be based on the use of concrete quality factors like the query and 
update frequency or the overall data warehouse operational cost [14, 22, 23, 241 and (b) the tuning of the 
refreshment process based on the quality factors of Section 2.3 [3,21]. 
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Table 6: Different Levels of Abstraction for the Management of Quality in a Data Warehouse 

7. CONCLUSIONS 

In this paper, we deal with the problem of quality-oriented design, usage and evolution of data 
warehouses. Following the approach of previous papers [l 1, 131, we store semantically rich 
meta-information of a data warehouse in a metadata repository concerning the conceptual, logical and 
physical perspective of the data warehouse. In addition, the information on the quality of the stored 
objects is recorded in this repository, too. 

Our approach extends GQM, based on the idea that a goal is operationally defined over a set of 
questions. Thus, we provide specific “questions” for the full lifecycle of a goal: this way the data 
warehouse metadata repository is not simply defined statically, but it can be actually exploited in a 
systematic manner. These questions are expressed as a set of steps aiming, on the one hand, to map a 
high-level subjective quality goal into the measurement of a set of interrelated quality factors, and, on the 
other hand, to propose improvement actions which may help in achieving the target quality goal. These 
steps involve the design of the quality goal, the evaluation of the current status, the analysis and 
improvement of this situation, and finally, the re-evaluation of the achieved plan. Specific products stem 
out of each case: a quality scenario is the outcome of the design phase, capturing the problem at the type 
level. This reusable component is instantiated in the second step resulting in the specific map of the 
problem. The third step modifies this map, so that the user receives an acceptable value for his quality 
goal. 

The benefit from the use of the methodology is not only the obtained solution to a specific problem. 
Maybe of greater importance is the fact that the involved stakeholder gets a more clear view of the data 
warehouse interdependencies. This is achieved through the systematic application of the methodological 
steps, which convert a subjective problem, expressed in a high-level vocabulary, to specific measurable 
factors that affect the solution to the problem. In Table 6 we can clearly depict this fact. 

The subjective, user-oriented GQM Goal, shown in the first row of Table 6, is captured by the 
proposed Quality Goal of our methodology. The objective solution to the problem, obtained with respect 
to data warehouse architecture components is achieved through the application of specific metrics (in 
GQM vocabulary), expressed as qualityfactors in our approach, as shown in the last row of Table 6. The 
mediator between the problem and the solution is the proposed methodology, expressed as a process, 
which produces specific quality scenarios and maps (instead of more abstract GQM questions). 

The application of our GQM-like methodology also helps us to design and maintain the knowledge 
about the data warehouse evolution efficiently. We make extensive use of our metadata repository, so that 
the information is obtained in a controlled, efficient fashion. We have elaborated on our quality 
metamodel, in order to track the basic primitives of the interrelationships between data warehouse 
components and quality factors. Our GQM extension gives us the advantage of exploiting the 
interrelationships of components and tracks the full lifecycle of a stakeholder’s requirement. 

We have verified our methodology in a set of case studies. One of these cases has also been presemted 
in this paper as an example of the partial application of the methodology. We believe that the full 
application of the methodology in a wider extent in the future will provide the academic community with 
the insight for further tuning. In any case, we sincerely hope that people in the data warehouse research 
and industry will find our results fruitful, useful and helpful. 
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