
Towards Quality-Oriented Data Warehouse Usage and
Evolution

Panos Vassiliadis1, Mokrane Bouzeghoub2, Christoph Quix3

1 National Technical University of Athens, Greece, pvassil@dbnet.ece.ntua.gr
2 University of Versailles and INRIA, France, Mokrane.Bouzeghoub@prism.uvsq.fr

3 Informatik V, RWTH Aachen, Germany, quix@informatik.rwth-aachen.de

Abstract. As a decision support information system, a data warehouse must
provide high level quality of data and quality of service. In the DWQ project we
have proposed an architectural framework and a repository of metadata which
describes all the data warehouse components in a set of metamodels to which is
added a quality metamodel, defining for each data warehouse metaobject the
corresponding relevant quality dimensions and quality factors. Apart from this
static definition of quality, we also provide an operational complement, that is a
methodology on how to use quality factors and to achieve user quality goals.
This methodology is an extension of the Goal-Question-Metric (GQM)
approach, which allows to capture (a) the inter-relationships between different
quality factors and (b) to organize them in order to fulfil specific quality goals.
After summarizing the DWQ quality model, this paper describes the
methodology we propose to use this quality model, as well as its impact on the
data warehouse evolution.

1. Introduction

Many researchers and practitioners share the understanding that a data warehouse
(DW) architecture can be formally understood as layers of materialized views on top of
each other. A DW architecture exhibits various layers of data in which data from one
layer are derived from data of the lower layer. Data sources, also called operational
databases, form the lowest layer. They may consist of structured data stored in open
database systems and legacy systems, or unstructured or semi-structured data stored in
files. The central layer of the architecture is the global (or primary) DW. The global
DW keeps a historical record of data that result from the transformation, integration,
and aggregation of detailed data found in the data sources. Usually, a data store of
volatile, low granularity data is used for the integration of data from the various
sources: it is called Operational Data Store (ODS). The Operational Data Store, serves
also as a buffer for data transformation and cleaning so that the DW is populated with
clean and homogeneous data. The next layer of views are the local, or client
warehouses, which contain highly aggregated data, directly derived from the global
warehouse. There are various kinds of local warehouses, such as the data marts or the
OLAP databases which may use relational database systems or specific
multidimensional data structures.

All the DW components, processes and data are -or at least should be- tracked and
administered from a metadata repository. The metadata repository serves as an aid
both to the administrator and the designer of a DW. Indeed, the DW is a very complex
system, the volume of recorded data is vast and the processes employed for its
extraction, transformation, cleansing, storage and aggregation are numerous, sensitive
to changes and time-varying. The metadata repository serves as a maproad which
provides a trace of all design choices and a history of changes performed on its
architecture and components. For example, the new version of the Microsoft
Repository [1] and the Metadata Interchange Specification (MDIS) [9] provide
different models and application programming interfaces to control and manage
metadata for OLAP databases. In figure 1, a generic architecture for a DW is depicted.

As a decision support information system, a DW must provide high level quality of
data and quality of service. Coherency, freshness, accuracy, accessibility, availability
and performance are among the quality features required by DW users. The metadata
repository plays a central role in this concern, as it provides the necessary knowledge
to understand, evaluate and analyze current DW architecture in order to predict its
behaviour and the resulting quality of service and quality of data.

Data Warehouse
Schema

Reconciled
Data

User
Schema
Derived

Data

Aggregation & Customization

Extraction & Integration

Source
Schema

Operational
Data

Meta Schema

Business
&

Technical
Metadata

Metadata
Repository

End User

Quality
Issues

OLTP system

Source
administrator

DW Designer

Fig. 1. A generic architecture for a DW

Data quality has been defined as the fraction of performance over expectancy, or as
the loss imparted to society from the time a product is shipped [3]. We believe, though,
that the best definition is the one found in [13,11,17,14]: data quality is defined as
"fitness for use". The nature of this definition directly implies that the concept of data
quality is relative. For example, data semantics (the interpretation of information) is
different for each distinct user. As [11] mentions "the problem of data quality is
fundamentally intertwined in how [...] users actually use the data in the system", since
the users are actually the ultimate judges of the quality of the data produced for them:
if nobody actually uses the data, then nobody will ever take care to improve its quality.

From the previous it follows that, on one hand, the quality of data is of highly
subjective nature and should ideally be treated differently for each user. But, on the

other hand, the reasons for data deficiencies, non-availability or reachability problems
are definitely objective, and depend mostly on the information system definition and
implementation. Furthermore, the prediction of data quality for each user must be
based on objective quality factors which are computed and compared to users'
expectations. The question that arises, then, is how to tune the design choices in such a
way that all the different, and sometimes opposing, user requirements can be
simultaneously satisfied. As the number of users and the complexity of DW systems do
not permit to reach total quality for every user, the subsidiary question is how to
prioritize these requirements in order to satisfy them with respect to their importance.
This problem is typically illustrated by the physical design of the DW where the
problem is to find a set of materialized views which optimize user requests response
time and the global DW maintenance cost.

In [6] a metadata modeling approach is presented that enables the capturing of all
the crucial parts of the architecture of a DW, along with information over different
quality dimensions of these components. In this paper, we have refined the quality
metamodel with a more detailed linkage between objective quality factors and user-
dependent quality goals. Moreover, we have extended the Goal-Question-Metric
(GQM) methodology [2] in order (a) to capture the inter-relationships between
different quality factors with respect to a specific quality goal, and (b) to define an
appropriate lifecycle which deal with quality goal evaluation and improvement.

Our methodology comprises a set of steps aiming, in one hand, to map a high-level
subjective quality goal into the measurement of a set of interrelated quality factors,
and, in the other hand, to propose improvement actions which may help in achieving
the target quality goal. These steps involve the design of the quality goal, the
evaluation of the current status, the analysis and improvement of this situation, and
finally, the re-evaluation of the achieved plan. The metadata repository together with
this quality goal definition methodology constitute a decision support system which
helps DW designers and administrators to take relevant decisions to achieve
reasonable quality level which fits the best user requirements. This work is being
integrated in a methodology for DW quality design, that is developed in the European
DWQ project (Foundations of Data Warehouse Quality) [8].

We want to stress out that we do not follow the ISO 900x paradigm in our
approach; rather we try to present a computerized approach to the stakeholder, for both
the storage and exploitation of information relevant to the quality of the DW. The
objective of this paper is to show how subjective quality goals can be evaluated using
more objective quality factors, following an extended GQM approach.

The paper is organized as follows: section 2 describes the DWQ quality metamodel
and an example for its instantiation. In section 3, we detail the DWQ methodology for
quality management. Section 4 presents some hints on DW evolution. Section 5
summarizes related work and finally section 6 we discusses our results.

2. Metadata Repository and Quality Model

This section summarizes the nature of metadata used in the DWQ framework and
gives an overview of the DWQ quality model. The section parlicularly focuses on the

quality dimensions and quality factors associated to the main DW meta objects. As an
example, the refreshment process is taken with its corresponding quality factors,
because it is an crucial process for the quality of a DW.

2.1 Architecture Components

In the DWQ project we have advocated the need for enriched metadata facilities for
the exploitation of the knowledge collected in a DW. In [6], it is shown that the DW
metadata should track both architecture components and quality factors.

The proposed categorization of the DW metadata is based on a 3x3 framework,
depicted in Figure 2: we identified three perspectives (conceptual, logical and
physical) and three levels (source, DW, client). We made the observation, that the
conceptual perspective, which represents the real world of an enterprise, is missing in
DW projects, with the risk of incorrectly representing, or interpreting the information
found in the DW.

Client Level

DW Level

Source Level

Conceptual
Perspective

 Logical
Perspective

Physical
Perspective

in

in
in

Fig. 2. The Data Warehouse Architecture Meta-Model

The proposed metamodel (i.e. the topmost layer in Figure 2) provides a notation for
DW generic entities, such as schema, or agent, including the business perspective.
Each box shown in figure 2 is decomposed into more detailed DW objects in the
metamodel of [6]. This metamodel is instantiated with the metadata of the DW (i.e. the
second layer in Figure 2), e.g. relational schema definitions or the description of the
conceptual DW model. The lowest layer in Figure 2 represents the real world where
the actual processes and data reside: in this level the metadata are instantiated with
data instances, e.g. the tuples of a relation or the objects of the real world which are
represented by the entities of the conceptual model.

2.2 Quality metamodel

Each object in the three levels and perspectives of the architectural framework can
be subject to quality measurement. Since quality management plays an important role
in DWs, we have incorporated it in our meta-modeling approach. Thus, the quality
model is part of the metadata repository, and quality information is explicitly linked
with architectural objects. This way, stakeholders can represent their quality goals
explicitly in the metadata repository, while, at the same time, the relationship between
the measurable architecture objects and the quality values is retained.

The DWQ quality metamodel [7] is based on the Goal-Question-Metric approach
(GQM) of [10] originally developed for software quality management. In GQM, the
high-level user requirements are modeled as goals. Quality metrics are values which
express some measured property of the object. The relationship between goals and
metrics is established through quality questions.

The main difference in our approach resides in the following points: (i) a clear
distinction between subjective quality goals requested by stakeholder and objective
quality factors attached to DW objects, (ii) quality goal resolution is based on
evaluation of the composing quality factors, each corresponding to a given quality
question, (iii) quality questions are implemented and executed as quality queries on the
semantically rich metadata repository.

Figure 3 shows a simplified conceptual view of the DWQ Quality Model. The class
‘DW object type’ refers to any meta-object of the DWQ framework depicted in the
first layer of figure 2. A quality goal is an abstract requirement, defined on DW object
types, and documented by a purpose and the stakeholder interested in. This roughly
expresses natural language requirements like ‘improve the availability of source s1
until the end of the month in the viewpoint of the DW administrator’. Quality
dimensions (e.g. ‘availability’) are used to classify quality goals and factors into
different categories. Furthermore, quality dimensions are used as a vocabulary to
define quality factors and goals; yet each stakeholder might have a different
vocabulary and different preferences in the quality dimensions. Moreover, a quality
goal is operationally defined by a set of questions to which quality factor values are
provided as possible answers. As a result of the goal evaluation process, a set of
improvements (e.g. design decisions) can be proposed, in order to achieve the expected
quality. A quality factor represents an actual measurement of a quality value, i.e. it
relates quality values to measurable objects. A quality factor is a special property or
characteristic of the related object wrt. the quality dimension of the quality factor. It
also represents the expected range of the quality value, which may be any subset of the
quality domain. Dependencies between quality factors are also stored in the repository.

The quality meta-model is not instantiated directly with concrete quality factors and
goals, it is instantiated with patterns for quality factors and goals. The use of this
intermediate instantiation level enables DW stakeholders to define templates of quality
goals and factors. For example, suppose that the analysis phase of a DW project has
detected that the availability of the source database is critical to ensure that the daily
online transaction processing is not affected by the loading process of the DW. A
source administrator might later instantiate this template of a quality goal with the
expected availability of his specific source database. Thus, the programmers of the
DW loading programs know the time window of the update process.

Based on the meta-model of DW architecture, we have developed a set of quality
factor templates which can be used as a initial set for DW quality management. The
exhaustive list of these templates can be found in [12]. The following section gives an
intuition of some of them which are associated to the DW refreshment process.

Fig. 3. The DWQ Quality Metamodel (simplified)

2.3 Quality metamodel instantiation: the refreshment case

As shown in [6], it is not sufficient to describe a DW as layers of materialized views
on top of each other. For example, a view definition is not sufficient to capture the
semantics of the refreshment process. Indeed, a view definition does not include the
information whether this view operates on a history or not, how this history is sampled,
which transformations are necessary during the refreshment, whether the changes of a
given source should be integrated each hour or each week, and which data timestamp
should be taken when integrating changes of different sources. Consequently, based on
the same view definitions, a refreshment process may produce different results
depending on all these extra parameters which have to be fixed independently, outside
the queries which define the views. A detailed description for the refreshment process
can be found in [4].

As mentioned before, the refreshment process is one of the main DWs processes for
which the quality is an important issue. The associated quality template includes
quality dimensions such as coherence, completeness and freshness.
• Data coherence: the respect of (explicit or implicit) integrity constraints from the

data. For example, the conversion of values to the same measurement unit allows
also to do coherent computations.

• Data completeness: the percentage of data found in a data store, with respect to the
necessary amount of data that should rely there.

• Data freshness: the age of data (with respect to the real world values, or the date
when the data entry was performed).

Given a quality dimension, several low level quality factors of this dimension may
be defined in a DW. For example, one can define quality factors like the availability
window or the extraction frequency of a source, the estimated values for the response
time of an algorithm or the volume of the data extracted each time, etc. However, the
quality factors are not necessarily independent of each other, e.g., completeness and
coherence may induce a certain accuracy of data. We discriminate between primary
and derived quality factors as well as design choices. A primary quality factor is a
simple estimation of a stakeholder or a direct measurement. For example, the
completeness of a source content may be defined with respect to the real world this
source is supposed to represent. Hence, the completeness of this source is a subjective
value directly assigned by the DW administrator or the source administrator. On the
other hand, derived quality factors are computed as formulae over some other quality
factors: for example, the completeness of the operational data store content can be
defined as a formula over the completeness of the sources. The design choices are a
special kind of quality factors, expressed as parameter values and control strategies
which aim to regulate or tune the algorithm followed for the performance of each task
in the DW.

We believe that quality dimensions, quality factors and design choices are tightly
related. For example, in the case of the refreshment process, the design choice
‘extraction policy’ is related to the derived quality factor ‘extraction frequency’ of each
source, which is computed from the corresponding primary quality factor ‘availability
window’ of each source. In table 1, we mention several quality factors which are
relevant to the refreshment process and link them to the corresponding DW objects and
quality dimensions. One can also notice that some quality factors may belong to more
than one dimension. Some of them are primary quality factors, arbitrarily assigned by
the DW administrator, others are derived. Deriving procedures can be either

Quality
 Dim.

DW
objects

Primary Quality Factors Derived Quality Factors Design Choices

Coherence • Sources
• ODS
• Views

• Availability window of each
source
• Expected response time for a
given query

• Extraction frequency of
each source
• Estimated response time
of extraction for each
source

• Granularity of
data
• Extraction and
cleaning policy
• Integration
policy

Complete-
ness

• Sources
• ODS

• Availability window of each
source
• History duration for each
DW store

• Extraction frequency of
each source

• Extraction
policy
• Integration
policy

Freshness • Sources
• ODS
• Views

• Availability window of each
source
• Expected freshness for a
given query
• Estimated response time of
extraction for each source, of
integration and of propagation
• Volume of data extracted
and integrated

• Extraction frequency of
each source
• Actual freshness for a
given query
• Actual response time for
a given query

• Extraction
policy
• Integration
policy
• Update policy

Table 1. Different levels of abstraction for the management of quality in a data.

mathematical functions, logical inferences or any ad hoc algorithms. The values of
derived quality factors depend on design choices which can evolve with the semantics
of the refreshment process. Underlying the design choices are design techniques, that
are all rules, events, optimizations and algorithms which implement the strategies on
which refreshment activities are based.

3. Exploitation of the Metadata Repository and the Quality
Metamodel

This section describes the DWQ methodology to exploit the quality metamodel on
the basis of the meta-data repository. We first present the different phases and steps of
our methodology.

Our approach extends GQM, based on the idea that a goal is operationally defined
over a set of questions. Thus, we provide specific "questions" for the full lifecycle of a
goal: this way the DW metadata repository is not simply defined statically, but it can
be actually exploited in a systematic manner. Underlying our methodology, we exploit:

Our approach for quality management is based on two folds:
• A metadata repository which provides all the necessary knowledge to understand

quality goals, quality factors and their related DW objects. This repository allows to
trace design decisions, and to report on the history of quality goals with their
successive evaluations and improvements.

• A computational engine composed of all the deriving procedures of quality factors.
The techniques underlying this engine can be simple functions and procedures or
more sophisticated reasoning mechanisms. In the case of performance evaluation of
a given query, a mathematical function is generally sufficient while in the case of
coherence validation of a conceptual schema we need a more sophisticated
inference mechanism.
Based on this, the DWQ methodology for quality management is composed of three

main phases: (i) the design phase which elaborates a quality goal by defining its
purpose, the set of questions to solve it and the set of quality factors which answer to
these questions; (ii) an evaluation phase which deals with the computation of quality
factors; (iii) an analysis and improvement phase which gives an interpretation to the
quality goal evaluation and suggests a set of improving actions.

In Figure 4, we graphically present our methodological approach for quality
management. This methodology is influenced by the TQM paradigm, which has also
been adopted by other approaches such as TDQM [14]. The DWQ methodology
suggests four major steps (or else phases of a lifecycle) when dealing with a quality
goal: design, current status evaluation, analysis and improvement and re-evaluation of
a quality goal. In the sequel we provide a detailed presentation of a set of questions
corresponding to each step of each process. Before proceeding, we would like to
mention that the proposed methodology does not consist of a strict algorithm: one may
choose to ignore several steps, according to the specific situation he is tackling.

Fig. 4. DW Quality management

3.1 The Design Phase

When dealing with a quality goal, we assume that there is always a first time when
the stakeholder defines the goal. The design process of the goal is the first phase of its
interaction with the stakeholder and should result in the selection of the involved
object types and their quality factors.

There are two steps which can take place at the same time: the identification of the
object types which are related to the goal and the respective low level quality factors.
The identification of the object types, tries to reuse the experience stored in the
metadata repository: the metamodel is powerful enough to model the relationships not
only at the instance but at the type level as well.

Nevertheless, these steps alone are not sufficient to characterize a quality goal.
Since the identified object types are most probably composite (e.g. a schema is
composed from several relations) one has to decompose them at a satisfactory level of
detail. For example, if the examined type is the refreshment process, one can try to
decompose it into more refined objects such as data extraction, data cleaning and
transformation, data integration and high level aggregation.

The next step deals with identification of the inter-relationships between objects
and quality factors. Each object can be viewed as a node of graph. Every node in the
graph has input and output arcs, determining the interdependencies of the DW
components with respect to their quality factors. Several design choices are by default
encapsulated in the figure (e.g. the simple fact that the data of a materialized view stem

from source data). The input arc to the graph is the high level quality dimension
expressed by the user. The output is the set of specific quality factors which measure
this quality dimension.

The goal of this process is, not only to set up a list of the "ingredients" of the
problem, but also, to come up with a list of "functions", determining the outcome of
the quality of an object, in terms both of its own characteristics and of the quality of
other objects affecting it. We call the outcome of the process, the scenario of the
quality goal.

More specifically, to produce the list of functions, one has to try and analytically
define the inter-relationships by inspecting the peculiarities of the problem. For
example, one could use either a Pareto diagram [3] to determine the timeliness of a
materialized view, or a function taking into respect the availability of the sources, the
frequency of updates and queries and the capacity of the propagators.

We do not advocate that these functions can always be derived or discovered in an
analytic form: yet (a) as we will show there are truly cases where this can happen, (b)
in the absence of an analytical form we can use empirical knowledge and (c) it is
important to note that even the existence of an interdependency link can be used as a
boolean function to denote dependency.

Example. In the example of Figure 5, we try to quantify a quality dimension: the
believability of the information delivered to the final user. To achieve this goal, we
decide that we have to measure a specific quality factor: the accuracy of the data in the
views used by the final users. The scenario is composed from all the components
participating in the refreshment of a view: the source database (which in terms is
decomposed to a set of source relations), the transformation agents converting the
data to the desired format and the DW/ODS views, each one possibly defined on top of
another view. We also provide an analytical function for the accuracy of a view,
calculating it from the size and the accuracy of the input data.

SourceDB

Source
Relations

View

accuracy

Accuracy of view:
[size(input)*accuracy(input)]

[size(input)]

accuracy

believability of the
presented

information

Transformation
agent

accuracy

ODSDW

Fig. 5. The scenario of a quality goal

A fascinating feature of a scenario is the tracking of the inverse relationships
between the quality factors. In other words, by describing the interdependencies of the

quality factors, not only do we get a clear view of the way the overall quality of our
final "product" is influenced, but also we get a first insight of how to remedy an
undesired situation. For example, in Figure 5, we can improve the believability of our
information by increasing its accuracy, something which in terms can be achieved
through the improvement of the accuracy of the transformation agents or the source
relations. In the case of redundant information, one can also increase the volume of the
utilized data from a source with higher accuracy. In any case, to generalize this
observation, the inverse functions can be either analytical relationships or inverse
interdependency path on the scenario.

3.2 The Evaluation Phase

After the design process, the following step is the evaluation of the current status.
The purpose of the evaluation phase is to construct a detailed map based on the
constructed scenario, which describes accurately all the interplaying components and
factors. This can also be the first step, when a goal has already been defined in the past
and a scenario has been developed and is currently reused.

First, we must determine the specific object instances of the specific evaluation
through a query to the metadata repository. In the example of Figure 5, one can
identify two source relations (S1, S2), pumping data to two views in the ODS (V1, V2),
through a respective transformation agent and a final view (V3), the accuracy of which
we have to quantify (Figure 6).

Next, one must take into account several design choices, i.e. the properties of the
interplaying objects which influence the quality of the outcome. In our example, one
can take into account the size of the propagated data, the time windows of the sources,
the regularity of the refreshment, etc. For reasons of simplicity of the presentation and
since we deal only with the accuracy factor, we retain only the size of the propagated
data and the view definitions.

Apart from the component refinement, we can also refine the interrelationships
between the quality factors. The refinement can be performed either through the use of
analytical formulae or direct instantiations in the scenario, based on the empirical
knowledge of a specific situation. Empirical knowledge can be obtained from simple
observation or through the use of well-tested techniques such as statistical process
control (SPC), concurrent engineering, etc. [3]. In our example, simple sampling could
show that in the past, the transformation agent increased the accuracy of the data by 2.

Then, for each quality factor one should also determine the metrics and measuring
agents. If no measuring agent(s) has ever been defined, one must determine the
computation procedure for the actual values of the quality factors. Also, the parameters
of the measuring procedures should be set accordingly.

Transformation
Agent

View 2

View 1

View 3

Empirically:
scale = 2

Accuracy
(Agent:
query to

repository)

Accuracy (V3) =
size(V1)*acc(V1)+ size(V2)*acc(V2)

size(V1)+size(V2)Source 2

Source 1

Analytically: Accuracy =
Accuracy(Source 1)

Accuracy
(Agent:
query to

repository)

Analytically: Accuracy =
accuracy(S2)*accuracy(agent)

Size

Size

V3=V1 V2

Accept [85%-90%]

Fig. 6. The map of a quality goal

The final step is the addition of acceptable/expected values for each quality factor,
wherever necessary. This is a crucial step for the evaluation of the current status later
on. The accepted range of values will be the basic criterion for the objective judgment
of a subjective quality goal. The outcome of this step should provide the stakeholder
with a well defined map of the problem (see also Figure 6).

With respect to the scenario of Figure 5, the map is enriched with (a) agents for the
computation of primary quality factors (e.g. the queries at the metadata repository), (b)
formulae for the computation of the derived quality factors, (c) properties of the
components such as the view definition or the size of the propagated data and (d)
acceptable ranges of values (e.g. accuracy of view 3).

After that, the only thing left is the acquisition/calculation of the specific values of
the selected quality factors, though the necessary computation. In Figure 7, a certain
instance of our exemplary map is depicted.

The acquisition of these values is performed through the use of the already defined
measuring agents. In fact, we anticipate that if the values are regularly (i.e. not on-
demand) computed and stored in the metadata repository, then their acquisition can be
done through a simple query to the metadata repository.

Transformation
Agent

View 2

View 1

View 3

Empirically:
scale = 2

Accuracy
40%

Accuracy (V3) =
size(V1)*acc(V1)+ size(V2)*acc(V2)

size(V1)+size(V2)
 = 82%

Source 2

Source 1

Analytically: Accuracy =
Accuracy(Source 1)=90%

Accuracy
90%

Analytically: Accuracy =
accuracy(S2)*accuracy(agent)
= 80%

Size=20M

Size=80M

V3=V1 V2

Accept [85%-90%]

Fig. 7. Instance of a quality map

Here we must clarify again, that several steps can be omitted. In fact, if we consider
that the metadata repository is regularly refreshed through an external agent, then some
of the intermediate steps of this process can be avoided.

3.3 The Analysis and Improvement Phase

At the end of the second phase, the map of Figure 7 is fully instantiated with actual
values. Yet, if the situation is not obviously satisfactory, the stakeholder may choose to
react against it. Although this is a process with different characteristics each time, we
can still draw some basic guidelines for the steps that can be taken. Consider for
example the case in Figure 7, where the computed accuracy for view 3 is not within the
accepted range. Obviously there must be some reaction against this undesired situation.

One of the main advantages of our approach is that if we have an understanding of
the mechanism that produces the problem, we can attack the problem directly through
the use of the inverse quality functions, which have been derived during the design
phase or detected during the evaluation phase. Again, by ‘inverse functions’ we mean
both the possible analytical functions and the inverse interrelationships in the map of
the problem.

The inverse functions in our example suggest that an increase of 10% for the
accuracy of view 3 calls for one of the following actions:

a) Use the analytical formulae directly: increase of 10% to the accuracy of views 1
and 2 (directly through the formula), which in terms implies:
• increase of the accuracy of source 1 by 10%;
• increase of the accuracy of source 2 by 5% or the accuracy of the agent by 10% or

a combination of the two.

b) Customize the reaction to the specific characteristics of the situation: Through
the use of the specific measurements one could also try to derive a plan taking into
account the sizes of the input views. For example, elementary calculations prove that it
suffices to increase the accuracy of source 2 to 45%, for the quality of the view 3 to be
in the accepted range.

Nevertheless, there is always the possibility that this kind of approach is not directly
feasible. If our understanding of the problem is not full, then steps must be taken so
that we deepen our knowledge. Moreover, it is possible that the derived solution is not
feasible -or is too costly to achieve.

In the first case we must go all the way back to the design process and try to refine
the steps of the function discovery. In the second case we must try to use the inverse
functions in order to determine which are the feasible limits of values which we can
negotiate. The negotiation process is a painful task, since one has to deal with
contradictory goals and priorities. Yet, several specific techniques exist which can be
applied to the negotiation problem. In section 5, we present as example the QFD and
the Statistical Process Control methodologies. Other examples are the experimental
design, the Taguchi quality engineering etc. [3].

4 The Data Warehouse Evolution

A DW is a very complex system whose components evolve frequently
independently of each other. Users can create new views or update old ones. Some
sources may disappear while others are added. The enterprise model can evolve with
the enterprise objectives and strategies. The technical environment changes with
products evolution and updates. Design choices at the implementation level can also
evolve to achieve users requirements and administration requirements.

In this evolving context, the re-evaluation of a goal and of the strategy to achieve is
a strict contingency in a DW environment. There are 3 main reasons for this:

(a) evolution reasons: there are natural changes happening in such a complex
environment;

(b) failure in the achievement of the desired quality, and
(c) meta-quality: we can never be sure for the quality of our measuring processes.

In the sequel we will detail the first of these reasons. DWs can evolve in many
different ways. The data stores can produce changes due to reasons of schema
evolution in logical and conceptual perspective, changes to the physical properties of
the source (e.g. location, performance etc.), insertions or deletions of a data store,
specific reasons due to their nature (e.g. in the sources, the time window for extraction
or the data entry process can change). The software components can be upgraded,
completed, debugged, etc. The propagation agents of all types (loaders/refreshers/
wrappers/mediators/source integrators) can obtain new schedules, new algorithms,
rules, physical properties, etc. Needless to say that the user requirements continuously
change, too. New requirements arise, while old ones may become obsolete, new users
can be added, priorities and expected/acceptable values change through the time, etc.
Moreover, the business rules of an organization are never the same, due to real world
changes.

As a result of evolution and errors, our goals, components, scenarios and maps are
never to be fully trusted. Each time we reuse previous results we must always consider
cases like: lack of measurement of several objects, errors in the measurement
procedure (e.g. through an agent which is not appropriate), outdated information of the
repository with respect to the DW, etc.

A way to control this evolution is to provide a complementary meta-data which
tracks the history of changes and provides a set of consistency rules to enforce when a
quality factor has to be re-evaluated. To do so, it is necessary to link quality factors to
evolution operators which affect them. The idea behind this is to enrich the meta-data
repository in order to ease the impact analysis of each evolution operator and its
consequences on the quality factor measures.

5. Related Work

There has ben much research on the definition and measurement of data quality
dimensions [18,15,17,13]. A very good review is found in [16]. The GQM
methodology is best presented in [10,2].

The TDQM methodology [14] follows the Total Quality Management approach,
adapted for the evaluation of data quality in an information system (by assuming that
each piece of produced information can be considered a product). The TDQM
methodology also follows the TQM cycle: Definition, Measurement, Analysis,
Improvement. The Definition part identifies the important quality dimensions and the
corresponding requirements. The Measurements step produces the quality metrics. The
Analysis step identifies the roots of any quality problems and their interplay, while the
Improvement step provides techniques for improving the quality of information.

Negotiation techniques enable the negotiation over the desired quality of a system.
Statistical Process Control (SPC) is one of the best tools for monitoring and improving
product and service quality [3]. SPC comprises of several techniques, such as Pareto
diagrams (used to identify the most important factors of a process), process flow
diagrams, cause and effect (or Ishikawa) diagrams, check sheets, histograms and
control charts.

Quality Function Deployment, (QFD) [5,3] is a team-based management technique,
used to map customer requirements to specific technical solutions. This philosophy is
based on the idea that the customer expectations should drive the development process
of a product. The basic tool used in QFD is the so-called "House of Quality", mapping
user expectations to technical solutions, taking into account priorities and conflicts.
However, while QFD certainly has a useful role in rough quality planning and cross-
criteria decision making, using it alone would throw away the richness of work created
by research in measuring, predicting, or optimizing individual DW quality factors.

6. Conclusions

In this paper, we deal with the problem of quality-oriented design, usage and
evolution of DWs. As explained also in previous papers we store semantically rich
meta information of a DW in our DWQ repository concerning the conceptual, logical
and physical perspective of a DW. In addition, the information on the quality of the
stored objects is recorded in the repository.

In our view, the quality of the DW is an aggregated view of the metadata and data
of the warehouse. For example, the quality of the DW depends on the quality of the
sources, the quality of the extraction process and the quality of the DW components
itself. One can think of the quality factors as materialized views over the metadata and
data of the warehouse; thus the evolution of the DW can be seen as a view
maintenance problem on the aggregated quality views. For example, if a source is
changed -- either its data or its properties (metadata) -- the quality of the source must
be recomputed. All objects and their quality which depends on this source must be
adapted to the new situation.

The application of our GQM-like methodology helps us to (a) design and (b)
maintain the knowledge about this evolution efficiently. We make extensive use of our
metadata repository, so that the information is obtained in a controlled, efficient
fashion. We have elaborated on our quality metamodel, in order to track the basic
primitives of the interrelationships between DW components and quality factors. We
also extend GQM so that we can both take advantage of the interrelationships of
components and track the full lifecycle of a stakeholders' requirement.

We exploit the dependencies and computation functions of quality factors. For
example, in the case a new source is integrated, we just have to compute the quality of
this source and recompute the DW and data mart quality using the information of the
process quality, which describes how the data is transformed and what improvement or
debasement to the data quality has been made.

In addition to the maintenance process of the quality, the inverse of the
computation functions for the quality factors can be used, to find the DW object which
has to be improved to reach a certain quality goal. This process can be compared with
the view update process in databases systems, where updates to views (here: quality
views) are translated to updates in base data (here: quality factors).

As of now, our metamodel and methodology have been validated only partially. As
future work, we plan to fully validate and refine them through the development of
software tools and application to major case studies.

Acknowledgments. This research is sponsored by the European Esprit Project "DWQ:
Foundations of Data Warehouse Quality", No. 22469. We would like to thank all our DWQ
partners who contributed to the progress of this work, and especially Prof. Matthias Jake,
Manfred Jeusfeld and Maurizio Lenzerini. Many thanks are also due to the anonymous
reviewers, for useful comments.

References

1. P.A. Bernstein, Th. Bergstraesser, J. Carlson, S. Pal, P. Sanders, D. Shutt. Microsoft
Repository Version 2 and the Open Information Model. To appear in Information Systems
24(2), 1999.

2. V. R. Basili, G.Caldiera, H. D. Rombach. The Goal Question Metric Approach. Encyclopedia
of Software Engineering - 2 Volume Set, pp 528-532, John Wiley & Sons, Inc., available at
http://www.cs.umd.edu/users/basili/papers.html, 1994

3. D. H. Besterfield, C. Besterfield-Michna, G. Besterfield, M. Besterfield-Sacre, Total Quality
Management, Prentice Hall, 1995

4. M. Bouzeghoub, F. Fabret, M. Matulovic, E. Simon. Data Warehouse Refreshment: A Design
Perspective from Quality Requirements. Technical Report D 8.5, DWQ Consortium, 1998.

5. E. B. Dean, "Quality Functional Deployment from the Perspective of Competitive
Advantage", available at http://mijuno.larc.nasa.gov/dfc/qfd.html, 1997

6. M. Jarke, M.A.Jeusfeld, C. Quix, P. Vassiliadis: Architecture and quality in data warehouses,
Proceedings CaiSE 98, Pisa, Italy, 1998.

7. M.A. Jeusfeld, C. Quix, M. Jarke: Design and Analysis of Quality Information for Data
Warehouses. In Proc. of the 17th International Conference on the Entity Relationship
Approach (ER'98), Singapore, 1998.

8. M. Jarke, Y. Vassiliou. Foundations of data warehouse quality – a review of the DWQ
project. In Proc. 2nd Intl. Conference Information Quality (IQ-97), Cambridge, Mass., 1997.

9. Metadata Coalition: Meta Data Interchange Specification, (MDIS Version 1.1), August 1997,
available at http://www.he.net/~metadata/standards/ .

10. M. Oivo, V. Basili: Representing software engineering models: the TAME goal-oriented
approach. IEEE Transactions on Software Engineering, 18, 10, 1992.

11. K. Orr. Data quality and systems theory. In Communications of the ACM, 41, 2, Feb. 1998.
12. C. Quix, M. Jarke, M. Jeusfeld, M. Bouzeghoub, D. Calvanese, E. Franconi, M. Lenzerini,

U. Sattler, P. Vassiliadis. Quality Oriented Data Warehouse Evolution. Technical Report
D9.1, DWQ Consortium, 1998.

13. G. K. Tayi, D. P. Ballou: Examining Data Quality. In Communications of the ACM, 41, 2,
Feb. 1998.

14. R. Y. Wang. A product perspective on total data quality management. In Communications
of the ACM, 41, 2, Feb. 1998.

15. R.Y. Wang, H.B. Kon, S.E. Madnick. Data Quality Requirements Analysis and Modeling.
In Proc. of 9 th International Conference on Data Engineering, pp. 670-677, IEEE Computer
Society, Vienna, Austria, 1993.

16. R.Y. Wang, V.C. Storey, C.P. Firth. A Framework for Analysis of Data Quality Research.
IEEE Transactions on Knowledge and Data Engineering, Vol. 7, No. 4, August 1995.

17. R.Y. Wang, D. Strong, L.M. Guarascio. Beyond Accuracy: What Data Quality Means to
Data Consumers. Technical Report TDQM-94-10, Total Data Quality Management Research
Program, MIT Sloan School of Management, Cambridge, Mass., 1994.

18. Y. Wand, R.Y. Wang. Anchoring Data Quality Dimensions in Ontological Foundations.
Communications of the ACM, Vol. 39, No. 11, November 1996.

