Modeling Multidimensional Databases, Cubes and Cube Operations

Panos Vassiliadis
National Technical University of Athens

Abstract

On-Line Analytical Processing (OLAP) is a trend in database technology, which was recently introduced and has attracted the interest of a lot of research work. OLAP is based on the multidimensional view of data, supported either by multidimensional databases (MOLAP) or relational engines (ROLAP).

In this paper we propose a model for multidimensional databases. Dimensions, dimension hierarchies and cubes are formally introduced. We also introduce cube operations (changing of levels in the dimension hierarchy, function application, navigation etc.). The approach is based on the notion of the base cube, which is used for the calculation of the results of cube operations. We focus our approach on the support of series of operations on cubes (i.e. the preservation of the results of previous operations and the applicability of aggregate functions in a series of operations).

Furthermore, we provide a mapping of the multidimensional model to the relational model and to multidimensional arrays.

1. Introduction

In recent database trends, data warehouses come to fill a gap in the field of querying large, distributed and frequently updated systems. Most researchers and developers share the same general vision of what a data warehouse is [19], [31]. Data are extracted from several data sources, cleansed, customized and inserted into the data warehouse. The logical structure and semantics of the data, or else Enterprise Model, is stored in an Information Directory. Next, the data warehouse data can be filtered, aggregated and stored in smaller specialized data stores, usually called data marts. Users query the data marts and/or the data warehouse, mostly through On Line Analytical Processing (OLAP) applications. The main characteristics of such applications are (a) multidimensional view of data, and (b) data analysis, through interactive and/or navigational querying of data [6].

The multidimensional view of data considers that information is stored in a multi-dimensional array (sometimes called a Hypercube, or Cube). A Cube is a group of data cells arranged by the dimensions of the data [13]. A dimension is defined in [13] as "a structural attribute of a cube that is a list of members, all of which are of a similar type in the user's perception of the data". Each dimension has an associated hierarchy of levels of aggregated data i.e. it can be viewed from different levels of detail (for example, Time can be detailed as Year, Month, Week, or Day). Measures (which are also known as variables, metrics, or facts) represent the real measured values [6].

To motivate the work describing this paper, let us use a running example of a bookstore company. When considering the sales of this company, three are the major dimensions: Time, Geography and Item, while we consider Sales as the measure of the multidimensional cube. The dimensions, along with their dimension levels are depicted in Figure 1, where the upper levels of each hierarchy point to the lower levels:

![Figure 1. Dimensions and dimension levels](image)

Navigation is a term used to describe the processes employed by users to explore a cube interactively, by

![Figure 2. Item dimension](image)

![Figure 3. Geography dimension](image)
manipulating the multidimensionally viewed data [6], [13]. Possible operations which can be applied are: Aggregation (or Consolidation, or Roll-up) which corresponds to summarization of data for the higher level of a hierarchy, Roll Down (or Drill down, or Drill through) which allows for navigation among levels of data ranging from higher level summary (up) to lower level summary or detailed data (down), Selection (or Screening, or Filtering or Dicing) whereby a criterion is evaluated against the data or members of a dimension in order to restrict the set of retrieved data, Slicing which allows for the selection of all data satisfying a condition along a particular dimension and Pivoting (or Rotation) throughout which one can change of the dimensional orientation of the cube, e.g. swapping the rows and columns, or moving one of the row dimensions into the column dimension, etc. [6], [13].

Two are the basic architectures for storing data in an OLAP database: ROLAP and MOLAP. ROLAP (Relational OLAP) [3] is based on a relational database server, extended with capabilities such as extended aggregation and partitioning of data [8]. The schema of the database can be a star, snowflake, or fact constellation schema [3]. On the other hand, MOLAP (Multidimensional OLAP) is based on "pure" Multidimensional Databases (MDDs), which logically store data in multidimensional arrays, which are heavily compressed and indexed, in the physical level, for space and performance reasons.

The main motivation of this paper is to provide a formal model for multidimensional databases. Since multidimensional databases are defined in terms of dimensions (which are organized in dimension hierarchies), the model represents them formally. Furthermore, classical OLAP operations, such as roll-up, slice, dice etc. are also represented by the model. We also provide a mapping to relational databases and multidimensional arrays. We make a serious design choice: since querying is done in an interactive way, we give emphasis to the tracking of series of operations, performed in a navigational way.

The major contribution of the paper is the modeling of cubes, dimensions and cube operations, in the context of series of operations. This formalization is currently used, in this paper, for a direct modeling of the usual OLAP operations. Instead of mapping OLAP operations to complex and complicated "relational", or "calculus-like" queries, we directly model them, in a straightforward fashion. To our knowledge, the modeling of the drill-down operation is introduced for the first time in our model. Since engines are based on relational technology, or multidimensional arrays, we also provide a direct mapping of cubes and their operations for each of these formalisms, so that both data warehouse designers and the engines themselves can take advantage of it.

The rest of this paper is organized as follows: in section 2 we present related work in the fields of models and algebras for data warehouse and OLAP applications. In section 3 we provide a model for multidimensional databases and cubes. In section 4 we provide a relational mapping of the aforementioned model and a mapping to multidimensional arrays. In section 5, we present the conclusions of our work and possible future extensions.

2. Related work

Research has followed the evolution of industrial products in the field of OLAP. The datacube operator was introduced in [8]. There have also been efforts to model multidimensional databases. In [1], a model for multidimensional databases is introduced. The model is characterized from its symmetric treatment of dimensions and measures. A set of minimal (but rather complicated) operations is also introduced dealing with the construction and destruction of cubes, join and restriction of cubes and merging of cubes through direct dimensions. Furthermore, an SQL mapping is presented.

In [12] a multidimensional data model is introduced based on relational elements. Dimensions are modeled as "dimension relations", practically annotating attributes with dimension names. The cubes are modeled as functions from the Cartesian product of the dimensions to the measure and are mapped to "grouping relations" through an applicability definition. A grouping algebra is presented, extending existing relational operators and introducing new ones, such as ordering and grouping to prepare cubes for aggregations. Furthermore, a multidimensional algebra is presented, dealing with the construction and modification of cubes as well as with aggregations and joins.

In [9] n-dimensional tables are defined and a relational mapping is provided through the notion of completion. An algebra (and an equivalent calculus) is defined with classical relational operators as well as restructuring, classification and summarization operators. The expressive power of the algebra is demonstrated through the expression of operators like the data cube operator and monotone roll-up.

In [2] multidimensional databases are considered to be composed from sets of tables forming denormalized star schemata. Attribute hierarchies are modeled through the introduction of functional dependencies in the attributes of the dimension tables. Nevertheless, this work is focused on the selection of an optimal set of materialized views, for the efficient querying and update of a data warehouse, and not in the modeling of cubes or cube operations.

In [4], a multidimensional database is modeled through the notions of dimensions and f-tables. Dimensions are constructed from hierarchies of dimension levels, whereas f-tables are repositories for the factual data. Data are characterized from a set of roll-up functions, mapping the instances of a dimension level to instances of another dimension level. A query language is the focus of this work: a calculus for f-tables along with scalar and aggregate functions is presented, basically oriented to the formulation of aggregate queries. In [5] the focus is on the modeling of multidimensional databases:
the basic model remains practically the same, whereas ER modeling techniques are given for the conceptual modeling of the multidimensional database.

In statistical databases [17], quite a lot of similar work has been done in the past. In [17] a comparison of work done in statistical and multidimensional databases is presented. The comparison is made with respect to application areas, conceptual modeling, data structure representation, operations, physical organization aspects and privacy issues. The basic conclusion of this comparison is that the two areas have a lot of overlap, with statistical databases emphasizing on conceptual modeling and OLAP emphasizing on physical organization and efficient access.

In [14] a data model for statistical databases is introduced. The model is based on "summary tables" and operators defined on them such as construction/destruction, concatenation/extraction, attribute splitting/merging and aggregation operators. The underlying algebra is a subset of the algebra described in [15]. Furthermore, physical organization and implementation issues are discussed. [14] is very close to practical OLAP operations, although discussed in the context of summary tables.

In [16] a functional model ("Mefisto") is presented. Mefisto is based on the definition of a data structure, called "statistical entity" and on operations defined on it like summarization, classification, restriction and enlargement.

In all of the aforementioned approaches the relationship of the proposed operators to real OLAP operations, such as roll-up, drill-down, slice and dice seems to be weak: it is either discussed informally for a subset of operators [1], indirectly dealt through the introduction of aggregation [12], [9], or in a different context [14], [16]. [2] and [5] are basically dealing with the modeling of cubes. The best approach seems to be given in [5]; yet a direct mapping to OLAP operations is not provided. Furthermore, apart from [16], series of operations are not directly dealt with. Finally, to our knowledge, no explicit modeling of the drill-down operation exists.

3. A model of multidimensional space and cubes

3.1. Multidimensional space

Let $\Omega$ be the space of all dimensions. For each dimension $D$, there exist a set of $\text{levels}(D)$, denoted as $\text{levels}(D)$. A dimension is a lattice $(\mathcal{L}, \preceq)$ of levels. Each path in the lattice of a dimension hierarchy, beginning from its least upper bound and ending in its greatest lower bound is called a dimension path. Each dimension path is a linear, totally ordered list of levels. We extend the notion of the function $\text{levels}$, for dimension paths: $\text{levels}(D_i) = \{l_i \}$. The total order allows us to use comparison operators for the dimension levels. For instance, if we consider the dimension path $[\text{year, month, day}]$, then $\text{day} \preceq \text{month} \preceq \text{year}$, whereas for the dimension path $[\text{year, week, day}]$, $\text{day} \preceq \text{week} \preceq \text{year}$ holds. A dimension $D$ consists of a set of dimension paths, $\text{paths}(D)$. In the case of linear dimensions, where there is a single dimension path in the dimension, we will use the terms dimension and dimension path interchangeably.

Let $\Psi$ be the space of all dimension levels. We can find the dimension where a dimension level belongs to, through the operator $h: h(DL_i) = D$ if $DL_i \in \text{levels}(D)$. We impose the restriction that a dimension level belongs to exactly one dimension. Furthermore, we can find the rank of a dimension level in a dimension path, through the function $\text{level}(DL_i) = k$, when $DL_i = \text{levels}(D_{i\ell})[k]$ (in other words, $DL_i$ is the $k$-th level of the dimension path $D_{i\ell}$, starting the enumeration from the lowest levels).

For each dimension level there is a set of values belonging to it (e.g. dimension level "city" has "Athens", "Paris", "Rome"... as values). We define $\text{dom}(DL_i)$ as the set of all the values of a dimension level $DL_i$. Let $\mathcal{V}$ be the space of all values. A dimension level is atomic if its domain is a subset of $\mathcal{V}$. If the domain of a dimension level is a subset of $\mathcal{P}(\mathcal{V})$ (the power set of $\mathcal{V}$) then the dimension level is multi-valued. We use bag semantics for multi-valued dimension levels. As in [15], we use the prefix "*" for multi-valued attributes.

A value $x$, can have ancestors and descendants. Let $x$ belong to a specific dimension level $L_i$; then, there are specific instances related to $x$, at higher (lower) dimension levels, corresponding to more general (detailed) terms, that is

$$\text{ancestor}(x, DL_i) = y, y \in \text{dom}(DL_i), DL_i \preceq DL$$

and

$$\text{descendant}(x, DL_i) = \{x_1, x_2, ..., x_k, x_{k+1}, ... \}, x_1, x_2, ..., x_k \in \text{dom}(DL_i), DL \preceq DL_i$$

For example, if we consider the dimension path $[\text{year, month, day}]$ then ancestor(FEB 1997, year) = 1997 and descendant(FEB 1997, day) = [1 FEB 1997, 2 FEB 1997, ..., 28 FEB 1997]. We will assume the following properties for the ancestor relationship:

1. $\text{ancestor}(x, DL_i) = y$, if $x \in \text{dom}(DL_i)$
2. if $x = \text{ancestor}(y, DL_i)$ and $y = \text{ancestor}(x, DL_i)$, then $x = y$
3. if $x = \text{ancestor}(y, DL_i)$ and $y = \text{ancestor}(z, DL_i)$, then $x = \text{ancestor}(z, DL_i)$

The third property guarantees that when more than possible paths exist from $z$ to $x$, in the dimension level lattice, then all these paths are consistent.

3.2. Cubes

In this section we shall introduce the notion of cubes, basic cubes and multidimensional databases. The cubes are the basic entities of the model, whereas basic cubes are cubes with the most detailed data. A multidimensional database is a set of dimensions, dimension levels and a basic cube.
We define a basic_cube $C_b$ as a 3-tuple $<D_b, L_b, R_b>$, where:
- $D_b = \langle D_1, D_2, \ldots, D_n, M \rangle$ is a list of dimensions (with $M \in \Omega$), which represents the measure of the cube.
- $L_b = \langle DL_{b_1}, DL_{b_2}, \ldots, DL_{b_n}, *ML \rangle$ is a list of dimension levels ($DL_{b_i}, *ML \in \Psi$). $ML$ is the dimension level of the measure of the cube. We demand that all the dimension levels are at the lowest level among their respective dimensions ($\forall DL_{b_i} \in L_b : \text{level}(i) = 1$). We also demand that $ML$ is multi-valued.
- $R_b$ is a set of cell data - i.e. a set of tuples of the form $x = [x_1, x_2, \ldots, x_n, *m]$, where $\forall i \in [1, \ldots, n], x_i \in \text{dom}(DL_{b_i})$ and $*m \in \text{dom}*ML$.

We define a Cube $C$ as a 4-tuple $<D, L, C_b, R>$, where:
- $D = \langle D_1, D_2, \ldots, D_n, M \rangle$ is a list of dimensions (with $M \in \Omega$), which represents the measure of the cube. We will denote it as measure_dimension($C$).
- $L = \langle DL_1, DL_2, \ldots, DL_n, *ML \rangle$ is a list of dimension levels ($DL_1, *ML \in \Psi$). $*ML$ is the dimension level of the measure of the cube. We denote it as measure_dimension_level($C$). We demand that $\forall DL_i \in L, \text{level}(i) = C$. As it will be shown from the cube operations, we also demand that $*ML$ is multi-valued.
- $C_b$ is a basic_cube. We will call $C_b$, the base_cube of $C$ ($C_b = \text{base_cube}(C)$). The data of $C_b$ can be used for the calculation of the contents of $C$. Furthermore, we impose the restriction that $\forall d \in C.D 3 d' \in C_b.D : d = d'$. In other words, all the dimensions of a cube must exist in its basic_cube.
- $R$ is a set of cell data - i.e. a set of tuples of the form as a tuple $x = [x_1, x_2, \ldots, x_n, *m]$, where $\forall i \in [1, \ldots, n], x_i \in \text{dom}(DL_i)$ and $*m \in \text{dom}*ML$.

We can consider basic cubes as cubes. We extend the definition of a basic cube $C_b$ to be a 4-tuple $<D_b, L_b, C_b, R_b>$ - i.e. we define a basic cube to be the base_cube of itself.

We define a Multidimensional Database as a couple $<D, C_b>$. $D$ is a set of dimensions and $C_b$ is a basic cube, the dimensions of which belong to $D$.

Cell data are the data of a cube. Each cell is defined by a set of values and a measure, which is also a value. Thus, a cell $x$ is a tuple $x = [x_1, x_2, \ldots, x_n, *m]$. We introduce the following shortcut notations:
- $\text{dimensions}(x) = \langle x_1, x_2, \ldots, x_n \rangle$.
- $\text{measure}(x) = *m$.
- $\text{dimensions}(x)(i) = x_i$, where $C = \langle D, L, C_b, R \rangle \land (x \in R)$.
- $\text{dimensions}(x)(d) = x_d$, where $C = \langle D, L, C_b, R \rangle \land d \in D \land d = \text{level}(i) \land (x \in R)$.

In our running example, let us consider that a basic_cube for the bookstore company is instantiated as shown in Figure 4.

Intuitively, it might strike the reader as strange the fact that we define a cube in terms of another cube and that we practically provide two data sets (R and $C_b$, $R_b$) for the instantiation of a single cube. Nevertheless, there are two major reasons for which we choose to follow this specific approach:

**Figure 4. Basic Cube = <D0, L0, Basic_Cube, R0>, D0 = <Time, Item, Geography, Sales>, L0 = <Day, Product, Region, Sales>, R0 is shown in the above table**

First, the definition of the data of a cube in terms of its basic_cube enables the direct and correct evaluation of its contents. A specific example will help us clarify this statement. Suppose, that we summarize the sales of Figure 4 at the month level. Suppose then, that we would like to see the average sales at the year level. This result cannot be directly calculated from the result of the previous cube. The existing algebras that we know of [1], [12], [LR97] would not take this problem into account, or would assume that the operation will be disallowed by the system [16]. Since this kind of sequences of operations is typical for OLAP applications, the correctness of the result of the operations of the cube can be guaranteed, by referring to the relevant data of the most basic granularity.

Secondly, all the aforementioned algebras cannot deal directly with drill-down operations (i.e. with navigation to lower levels of dimension hierarchies). This is obvious, since a sum cannot be analyzed to its components unless a join operation with a cube of the required granularity takes place. As it can easily be anticipated, the definition of a cube in terms of a basic cube enables the drilling-down without possibly costly join operations with other cubes. As it will be shown in the sequel, in the case of the relational mapping of our model (which can be used for ROLAP), joins actually take place; yet they are made between a fact table and the tables representing the dimensions of the cube. Techniques like star-join [7] can be employed to optimize this kind of operations.

3.3. Cube operations

The definition of a cube is accompanied with the definition of cube operations. We categorize cube operations into simple ones, such as level_climbing, function_application, projection, dicing and complex ones, such as navigation and slicing, which are defined on top of the simple ones. We do not deal with pivoting since we consider it to be just a reorganization of the presentation of the data, rather than a modification of
their value or structure. Each one of the operations results in a new cube, when applied to an existing cube. Slicing and navigation apply aggregate functions to the data of the cube. The set of allowed aggregate functions is \( \{ \text{sum, avg, count, min, rank(n), no-operation} \} \). All of them are the well known relational aggregate functions, except for no-operation which means that no function is applied on the data of the cube and rank(n) which returns the first \( n \)-components of an aggregated set of values which can be ordered. In the sequel we will suppose that the original cube \( C = <D, L, C_U, R>_c, D = <D_1, D_2, \ldots, D_n, M>_D, L = <D_L, D_{L2}, \ldots, D_{Ln}, \text{ML}>, C_U = <D_U, L_U, C_U, R_U> \) and that the new cube \( C' \), which is the result of the operations is \( C = <D', L', C', R'> \).

**Level-Climbing.** Let \( d \) be a set of dimensions belonging to \( C \) and \( d_l \) the set of the corresponding dimension levels of \( C \). Without loss of generality we assume that \( d \) consists of the last \( k \) dimensions of \( D \). Let also \( d_{old} \) be the original dimension levels of \( C \), belonging to \( d : a_{old} = (D_{L1}, L_{L1}, \ldots, D_{Lk}, L_{Lk}) \). Then, \( C' = \text{Level-Climbing}(C, d, d_{old}) = \text{LC}(C, d, d_{old}) \) is defined as follows:

\[
D' = D, L' = L - d_{old}, C' = C_U, \quad \text{and} \quad R' = \{ x | \exists y \in R: \text{dimensions}(x)(D_i) = \text{dimensions}(y)(D_i), \forall D_i \in d, d_i \in [d, dl], d_i \in \text{levels}(D_i) \land \text{measure}(x) = \text{measure}(y), \text{if } M \in d \}.
\]

We impose the restrictions that \( d, dl \) are consistent with each other and that for all the dimension levels of \( d \), the respective dimension levels of \( d_{old} \) belong to the same dimension path and are of lower or equal level (for example, one cannot perform Level-Climbing between months and weeks). Intuitively, Level-Climbing is the replacement of all values of a set of dimensions with values of dimension levels of higher level. In Figure 3, an example of the Level-Climbing operation is presented:

**Function-Application.** Let \( f \) be a function belonging to \( \{ \text{sum, avg, count, min, rank(n), no-operation} \} \). Then, \( C' = \text{Functorion-Application}(C, f) = \text{Fun}(C, f) \) is defined as follows:

\[
D' = D, L' = L - d, C' = C_U, \quad \text{and} \quad R' = \{ x | \exists y \in R: \text{dimensions}(x)(D_i) = \text{dimensions}(y)(D_i), \forall D_i \in d, d_i \in [d, dl], d_i \in \text{levels}(D_i) \land \text{measure}(x) = f(\text{measure}(y)) \}.
\]

Intuitively, Function-application is the application of a specific function to the measure of a cube.

**Projection.** Let \( d \) be a projected dimension. \( C' = \text{Projection}(C, d) = \pi(C, d) \) is then defined, as follows:

\[
D' = D - d, L' = L - DL, DL \in \text{levels}(d), DL \in L, C' = <D_1, D_2, \ldots, D_{n-1}, D_n, M>_c, \quad \text{where}, \quad D_i = D_i - d, \quad L_i = L_i - \text{levels}(d)(1), \quad \text{and} \quad R_i = \{ x | \forall y \in R_i: \text{dimensions}(x)(D_i) = \text{dimensions}(y)(D_i), \forall D_i \not\in d, d_i \in [d, dl], d_i \in \text{levels}(D_i) \land \text{measure}(x) = \text{measure}(y) \}.
\]

Intuitively, projection is the deletion of a dimension both from the cube and its base_cube.

**Navigation.** Let \( d \) be the dimension over which we navigate, \( dl \) the target level of the navigation and \( f \) the applied aggregate function. Suppose that the dimension \( d \) is the \( i \)-th element of \( D \). Then, we define \( C' = \text{Navigation}(C, d, dl, f) = \text{N}(C, d, dl, f) \) as follows:

\[
C' = \text{Navigation}(C, d, dl, f) = \text{F}(\text{P}(\text{LC}(C_U, \{ D_1, D_2, \ldots, d_i, \ldots, D_n \}, L_i, C_U, R_U), f))
\]

The purpose of the navigation operator is to take a cube from a specific state, change the level of a specific dimension, pack the result and produce a new cube with a new state, through the use of an aggregate function. The dimensions of the new cube are the dimensions of the old one. The dimension levels are also the same, except for the one of the dimension where we change level. Notice
that the restrictions imposed by Level-Climbing, regarding the position of the respective dimension levels in the dimension lattice, still hold. Furthermore, the base-cube remains the same. The Navigation is performed at the level of the base-cube, for reasons that will be best illustrated in the following example:

\[ C_3 = \text{Navigate(Basic-Cube, Geography, Region, no-operation)} \]

\[ C_4 = \text{Navigate}(C_3, \text{Time, Year, sum}) \]

\[ C_5 = \text{Navigate}(C_4, \text{Time, Month, avg}) \]

<table>
<thead>
<tr>
<th>Time</th>
<th>Item</th>
<th>Geography</th>
<th>Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997-01-01</td>
<td>&quot;Report to El Greco&quot;</td>
<td>Europe</td>
<td>15.11</td>
</tr>
<tr>
<td>1997-01-01</td>
<td>&quot;Ace of Spades&quot;</td>
<td>Europe</td>
<td>8</td>
</tr>
<tr>
<td>1997-02-06</td>
<td>&quot;Symposium&quot;</td>
<td>Europe</td>
<td>7</td>
</tr>
<tr>
<td>1997-02-18</td>
<td>&quot;Karamazof brothers&quot;</td>
<td>Europe</td>
<td>5</td>
</tr>
<tr>
<td>1997-02-18</td>
<td>&quot;Report to El Greco&quot;</td>
<td>Europe</td>
<td>2</td>
</tr>
<tr>
<td>1997-03-03</td>
<td>&quot;Karamazof brothers&quot;</td>
<td>Europe</td>
<td>4.10</td>
</tr>
<tr>
<td>1997-03-28</td>
<td>&quot;Symposium&quot;</td>
<td>Europe</td>
<td>5</td>
</tr>
<tr>
<td>1996-10-12</td>
<td>&quot;Report to El Greco&quot;</td>
<td>Europe</td>
<td>7</td>
</tr>
<tr>
<td>1996-05-06</td>
<td>&quot;Piece of Mind&quot;</td>
<td>Asia</td>
<td>10</td>
</tr>
<tr>
<td>1996-10-07</td>
<td>&quot;Piece of Mind&quot;</td>
<td>Asia</td>
<td>7</td>
</tr>
<tr>
<td>1996-03-28</td>
<td>&quot;Karamazof brothers&quot;</td>
<td>Asia</td>
<td>12</td>
</tr>
<tr>
<td>1996-01-01</td>
<td>&quot;Karamazof brothers&quot;</td>
<td>Asia</td>
<td>40</td>
</tr>
</tbody>
</table>

Figure 7. \( C_3 = \text{Navigation(Basic-Cube, Geography, Region, no-operation)} \), \( C_3 = \langle D_3, L_3, C_3, R_3 \rangle \), \( D_3 = \langle \text{Time, Item, Geography, Sales} \rangle \), \( L_3 = \langle \text{Day, Product, Region, Sales} \rangle \), \( C_3 = \text{Basic-Cube, } R_3 \) is shown in the above table.

<table>
<thead>
<tr>
<th>Time</th>
<th>Item</th>
<th>Geography</th>
<th>Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997-01-01</td>
<td>&quot;Report to El Greco&quot;</td>
<td>Europe</td>
<td>28</td>
</tr>
<tr>
<td>1997-02-02</td>
<td>&quot;Ace of Spades&quot;</td>
<td>Europe</td>
<td>8</td>
</tr>
<tr>
<td>1997-02-18</td>
<td>&quot;Symposium&quot;</td>
<td>Europe</td>
<td>19</td>
</tr>
<tr>
<td>1996-10-12</td>
<td>&quot;Report to El Greco&quot;</td>
<td>Europe</td>
<td>7</td>
</tr>
<tr>
<td>1996-05-06</td>
<td>&quot;Piece of Mind&quot;</td>
<td>Asia</td>
<td>10</td>
</tr>
<tr>
<td>1996-10-07</td>
<td>&quot;Piece of Mind&quot;</td>
<td>Asia</td>
<td>7</td>
</tr>
<tr>
<td>1996-03-28</td>
<td>&quot;Karamazof brothers&quot;</td>
<td>Asia</td>
<td>52</td>
</tr>
</tbody>
</table>

Figure 8. \( C_4 = \text{Navigation(C3, Time, Year, sum)} \), \( C_4 = \langle D_4, L_4, C_4, R_4 \rangle \), \( D_4 = \langle \text{Time, Item, Geography, Sales} \rangle \), \( L_4 = \langle \text{Year, Product, Region, Sales} \rangle \), \( C_4 = \text{Basic-Cube, } R_4 \) is shown in the above table.

Dicing. Let \( d \) be the dimension over which we perform the dicing, \( \sigma \) a formula consisting of a dimension, an operator and a value \( v \). We assume that \( v \) belongs to the values of the dimension level of \( d \) in \( C \) and that \( \sigma \) is applicable to \( d \) (in the sense presented in [15]) -i.e. that \(<, =) are applied to atomic dimension levels and \((\equiv, <, \equiv)\) to multi-valued ones). Let \( \sigma(v) \) be of the form \( d \) op \( v \). Then, \( C' = Dicing(C, d, \sigma(v)) \) is defined as follows:

\[
D' = D, L' = L, \\
C_b' = \langle D_b', L_b', C'_b, R'_b \rangle, \text{ where } \\
R'_b = \{ \langle x, I(x) \rangle \in C_b, R_b, x[d]: \sigma(x) = \text{true} \}
\]

Intuitively, dicing is a simple form of selection. Yet, it has its impact both on the cube itself and its base-cube. We are allowed to check for descendants of \( v \) in the base-cube, since each dimension path ends at a dimension level of the lowest granularity and the base-cube is in the lowest possible granularity for all levels.

Slicing. Let \( d \) be the dimension which we slice and \( f \) the applied aggregate function. We define Slicing as follows:

\[
C' = Slicing(C, d, f) = \langle P(x(LC(C_b, D_1, D_2, \ldots, D_n, D_1, L_1, L_2, \ldots, L_n, f)) \}
\]

The purpose of the slicing operator is to take a cube from a specific state, cut out a specified dimension and aggregate over the rest of the dimensions, using an aggregation function. Notice that all the restrictions of Level-Climbing implicitly hold. Without really affecting the Slicing operation. In Figures 10, 11, an example of the Slicing operation is presented.

In this section we have defined cubes and cube operations for a multidimensional model. Since in practice, the multidimensional view of data is supported from multidimensional (MOLAP) or relational (ROLAP) engines, in the following section we will provide a mapping of the structures and the operations of the multidimensional model, to the relational model and to multidimensional arrays.
4. A mapping of the multidimensional model to an extended relational data model

In this section we map multidimensional cubes, defined in Section 3, to relational tables. For this purpose we will base our approach on the extended relational model and algebra proposed in [15]. Atomic vs. set-valued attributes (with bag semantics) are introduced. Apart from the classical relational operations, operations such as packing (\(P_X(t)\)) (merging tuples with the same values for several attributes into one tuple) and function_application (\(f(X,f(t))\)) (application of a function \(f\) to a multi-valued attribute \(*X\)) are introduced. A more detailed presentation for the employed model can be found in [18].

The motivation for the relational mapping is double: on the one hand, the engine performing ROLAP must be able to map multidimensional to relational entities and on the other hand, the data warehouse administrator can be helped to check out whether a relational database fulfills the requirements to model a cube (and vice versa - what kind of database one needs to construct in order to be able to map a cube to relational tables).

At the end of the section a mapping of our multidimensional model to multidimensional arrays (used as logical structures in engines performing MOLAP) is also presented.

4.1. Mapping of cubes to relations

To map multidimensional cubes to relations we need as prerequisite, the existence of two mapping functions \(a\) and \(\lambda\). The function \(a\) maps a dimension level to an attribute of a relation, whereas \(\lambda\) is its inverse and maps an attribute to a dimension level. We say that a dimension level \(DL\) represents an attribute \(A\), and vice versa, if \(a(DL) = A\) and consequently \(\lambda(A) = DL\).

A dimension level can be mapped to more than one attributes. The reason for this is that in both star and snowflake schemata, which are common for data warehousing and ROLAP applications, two columns - possibly related by foreign key constraints - in two different tables, may represent the same entity, due to normalization. Furthermore, we make the assumption that an attribute and a dimension level which can be mapped to one another, have the same structure (simple vs. set-valued) and domain.

Definition 1. A relation \(r\), defined over a relation scheme \(R(A_1, A_2, ..., A_k)\), represents a dimension path \(D\) (denoted also as \(r = R_\beta(D)\)) iff

1. \(\forall DL \in \text{levels}(D) \exists A \in R: a(DL) = A\)
2. \(\forall A \in R \exists DL \in \text{levels}(D): \lambda(A) = DL\)
3. If \(DL\) is the lowest level of \(D\), \(\forall \delta \in \text{dom}(DL), \forall A, \exists \delta \in \text{dom}(DL): \tau[\delta] = \text{ancestors}(\delta(A))\)
4. \(\forall t \in r, \forall A \in R, \exists \delta \in \text{dom}(DL): \tau[\delta] = \text{ancestors}(\delta(A))\)

Intuitively, for a table to represent a dimension path, there must be a one to one mapping between the table columns and the dimension levels of the dimension path (items (1), (2) in definition 1). The instantiation of the table is such, that for every value of the lowest granularity there is a tuple with all its ancestors (item 3). Furthermore, we require that the table contains no more tuples than those needed to represent the values (item 4). The tables representing dimension paths are denormalized structures, commonly employed in star schemata in data warehouses; they are usually encountered with the name dimension tables. For example, the dimension Geography, which comprises of a single dimension path, can be represented using the table in Figure 12.

Figure 12. Geography dimension as a table

From the definition of the ancestor operator, and its transitivity property it follows easily that if we consider the values of two attributes of the same tuple, they are characterized from an ancestor relationship between them.

Definition 2. A relation \(r\), defined over a relation scheme \(R = (A_1, A_2, ..., A_k)\), is the base_cube_table of a cube \(C = \langle D, L, C_{base}, R \rangle\) (denoted also as \(r = R_\beta(C)\)) iff

1. \(\forall DL \in C_{base}, \exists A \in R: DL = \lambda(A)\)
2. $\forall x = <x_1, x_2, \ldots, x_k, \ast x_0> \in C_{base}, R_{base}, \exists t \in r: t(x) = t(d(DL)), x = dom(DL)$

3. $\forall t \in r, t = <a_1, a_2, \ldots, a_k, \ast a_0>, \exists x, x \in C_{base}, R_{base}, t[A_i] = x[A(DL)], a_i \in A_i$

**Definition 3.** A relation $r$ defined over a relation scheme $R = (A_1, A_2, \ldots, A_k)$ is the **cube_table** of a cube $C = <D, L, C_{base}, R>$ (denoted also as $r = R_C(C)$) iff:

1. $\forall DL \in C_L, \exists A_i \in R: DL = A_i(DL)$
2. $\forall x = <x_1, x_2, \ldots, x_k, \ast x_0> \in C.R, \exists t \in r: t(x) = t(d(DL)), x = dom(DL)$
3. $\forall t \in r, t = <a_1, a_2, \ldots, a_k, \ast a_0>, \exists x, x \in C.R, t[A_i] = x[A(DL)], a_i \in A_i$

Intuitively, we define a table to be a **cube_table** of a cube if the dimension levels of the cube can be mapped to attributes of the table. The measure which is also a dimension- is included in this definition (item 1 in definition 3). The contents of a table should be such, that all cells in the result of the cube have an equivalent tuple in the table (item 2 in definition 3). Furthermore, no tuples should exist in the table, where no equivalent cell exists in the result of the cube (item 3 in definition 3). A **base_cube_table** differs from a cube_table in the fact that its attributes and data can be mapped to the base_cube of a specific cube.

**Definition 4.** A database $d$ defined over a database scheme $S$ represents a cube $C = <D, L, C_{base}, R>$ iff:

1. $\forall d_i \in D - measure\_dimension(C), \forall d_{pi} \in \text{paths}(d), \exists t_i \in d: t_i = R_d(d_{pi})$
2. $\exists t_0 \in d: t_0 = R_C(C)$
3. $\exists t_C \in d: t_C = R_C(C)$

A set of relations is the **dimension tables** of a cube, if for every cube dimension and for every dimension path of these dimensions (except for its measure) there is a relevant table in this set, representing the dimension path (item 1 in definition 4). If the **base_cube_table** of the cube also exists, then all the cube operations can be applied, by using the **base_cube_table** (item 2 in definition 4); remember that several operations in the multidimensional model have been defined with respect to the base cube. Furthermore, if there is a table in the set, being the cube_table of the specific cube, then the data of the cube can be directly accessed through the cube_table (item 3 in definition 4). In that case we say that the database represents the cube. Since we have required that the values of the dimension paths of different paths in the same dimension, are consistent with each other, then the consistency between the values of the dimension tables for the same dimension, comes natural.

The full schema for the bookstore database of our running example would be:

- **TIME_M** (YEAR, MONTH, DAY)
- **TIME_W** (YEAR, WEEK, DAY)
- **GEOGRAPHY** (REGION, COUNTRY, CITY)
- **ITEM** (CATEGORY, TYPE, PRODUCT)
- **DETAILED_SALES** (DAY, PRODUCT, CITY, SALES)

Supposing that the instantiations are performed correctly, the **TIME_M, TIME_W, GEOGRAPHY, ITEM** relations are the dimension tables, whereas the **DETAILED_SALES** relation is the **cube_table** for the **Base_Cube**.

An interesting issue is that although our definition of dimension tables is based on the notion of denormalized star schemata our mapping is also applicable to fully normalized snowflake schemata, since that the dimension table of a star schema can be considered as a view defined on the respective tables of the snowflake schema. This is formally proved in [18]. The result is dual: one can map snowflake schemata to cubes and vice versa. Furthermore, cube operations can be mapped to relational operations for a snowflake schema.

For the rest of this paper, we assume that we have a cube $C = <D, L, C_{base}, R>, D = <d_1, d_2, \ldots, d_n, M>, L = <DL_1, DL_2, \ldots, DL_m, \ast M_L>$. We also assume a database $d$ defined over the database scheme $S = (R_{C_1}, R_{C_2}, R_{D_1}, R_{D_2}, \ldots, R_{D_k})$, an instantiation of $S, s = (r_{C_1}, r_{C_2}, r_{D_1}, r_{D_2}, \ldots, r_{D_k})$, where $r_C = R_C(C)$, where $r_C$ is defined over $R_C = (A_{C_1}, A_{C_2}, \ldots, A_{C_n}, A_{M_L}), r_D = R_D(D),$ defined over $R_D = (A_{D_1}, A_{D_2}, \ldots, A_{D_m})$ and $\forall d_i \in D, r_{D_i} = R_{D_i}(d_i)$, defined over $R_{D_i} = (A_{D_i}, A_{D_2}, \ldots, A_{D_k})$.

**4.2. Relational mapping of cube operations**

In this subsection we will provide the relational mappings for the cube operations which were introduced in Section 3. For each operation we will provide a relational expression for both the cube_table and the **base_cube_table** of the resulting cube. In other words, we examine the impact a cube operation has on the cell data of both the **base_cube** and the cube itself and present tables that represent them. All formulas are fully proved in [18].

In Table 1, one can see the relation definitions for the **base_cube_table** for the results of the cube operations, where the **base_cube_table** changes. Level_Climbing, Packing, Function_Application and Navigation do not change the **base_cube** of a cube. Consequently, one would normally expect that the **base_cube_table** will not change either.

The relational mapping of the result of Projection and Slicing with respect to the **base_cube** of a cube, is the performance of a projection operation on the relevant attribute of its **base_cube_table**.

The mapping of Dicing is somewhat more complex than the mappings of other operations. With respect to the **base_cube**, what must be done is the mapping of the parameter value $v$ to its descendants, which are found at the **base_cube_table**. Consequently, we join the **base_cube** with the proper **dimension_table**, representing a dimension path which includes the respective dimension level of the diced cube, perform the selection at the result and then project the attributes of the **base_cube_table**.

As far as the **cube_tables** are concerned, we also provide a set of formulas, one for each operation. The **cube_tables** represent the actual result of an operation, expressed in a relation instance. For Level_Climbing, first we project the dimension tables to the columns corresponding to the dimension levels of the new cube.
and the columns of the old cube. The relational mapping of the result of Level_Climbing is the join of its cube_table with all the dimension tables involved in the changing of levels and the performance of a projection, in order to keep just the attributes representing the correct dimension levels.

\[ C' = \text{Projection}(C, d) \]

\[ C' = \text{Dicing}(C, d, \sigma(v)) \]

\[ C' = \text{Slicing}(C, d, f) \]

Table 1. Base_cube_table for the results of cube operations

The relational mapping of the result of Packing in a cube is the performance of a packing operation on its cube_table, on the attribute representing the measure of the cube. The relational mapping of the result of Function_application is the performance of a function_application operation on the attribute of its cube_table representing the measure of the cube. A projection on the cube_table can model the results of the Projection of a cube with respect to its cell data.

Since Navigation and Slicing have been defined as complex operations, based on other atomic operations, the application of the relational mappings of the cube operations which participate at their definition, produces the formula for the calculation of the cube_table of the product of these operations. Notice that the restrictions imposed by Level_Climbing still hold. The mapping of Dicing is just the performance of a selection on its cube_table. All formulas are presented in table 2.

4.3 A mapping of the multidimensional model to multidimensional arrays

The multidimensional model can trivially be mapped to multidimensional arrays, practically in the same way it is done in [5]. We assume that there exists a mapping function $\text{enum}(d)$ between a value $d$ of a dimension level $l$ and the set of integers. In other words, for each dimension level, we assign a unique integer to each one of its values. The assignment is done in a contiguous fashion. As a result, each value $x = [x_1, x_2, ..., x_n, *m]$, belonging to the cell data of a cube can be considered to be as the conjunction of coordinates $[\text{enum}(x_1), \text{enum}(x_2), ..., \text{enum}(x_n)]$ with value $*m$.

The cube can still be considered to be a 4-tuple $C = <D, L, C_{base}, R>$. We do not need to change the cube operations either; the only thing that changes is that we now have an additional way to refer to the cell data of the cube.

Table 2. Cube_table for the results of cube operations

In the following section, we will conclude our results and present topics for future work.

5. Conclusions and future work

In this paper we have proposed a model for multidimensional databases. Dimensions, dimension hierarchies and cubes are formally introduced in our
model. We have also introduced simple cube operations, such as level_climbing, packing, function application, projection, dicing and complex ones, such as navigation and slicing. Our approach is based on the notion of the base_cube, which can be used in the complex operations for the calculation of the results of the cube operations. A major motivation for our approach was the support of series of operations on the cubes (for example, the preservation of the results of previous operations and the applicability of aggregate functions in a series of operations). Efficiency is also targeted, so that information refinement operations (such as drill-down) are directly performed.

Furthermore, we have provided mappings of the multidimensional model (a) to the relational model, where cubes and dimensions are mapped to relations and cube operations to relational algebra operations and (b) to multidimensional arrays, through a mapping function.

Apart from the applicability to both MOLAP and ROLAP engines, a basic contribution of our approach for ROLAP engines is that although a cube is defined in terms of another cube, in its relational mapping, only the relational expressions are necessary. For example, if an OLAP tool is to perform a navigation operation, it is not obligatory that the result is always temporarily stored; the definition of a view over the base_cube_table is sufficient.

Yet, there are still issues which have not been dealt with. The relaxation of some constraints imposed throughout the definitions of the paper is a possible topic of future research (for example, the relaxation of the constraint that the dimension levels of the base_cube must be of level 1). The applicability of existing results of research on view usability [11] can also be investigated in the framework we have set (especially since a relational mapping is provided), in order to optimize the execution of the operations. For example, if Navigation is to be performed in a roll-up fashion, one could possibly use the cell data of the cube itself, rather than calculating the new result from the basic cube. Finally, it is not at all certain, that the set of cube operations that we provide is exhaustive, so extensions and new operators are a topic of future research.

Acknowledgment

The author wishes to thank Prof. Timos Sellis for many helpful and detailed comments which enabled the improvement of this paper. This research was partially supported by the European Commission funded LTR ESPRIT project "DWQ: Foundations on Data Warehouse Quality", Project No. 22469 and by the General Secretariat of Research and Technology (Greece) under the PENED program.

6. References