Graph similarity

Laura Zager and George Verghese
EECS, MIT

March 2005
Words you won’t hear today

- impedance matching
- thyristor
- oxide layer
- VARs
Some quick definitions

\[G(V, E) \] \hspace{1cm} \text{a graph } G

- \(V \) \hspace{1cm} \text{the set of vertices or nodes}
- \(E \subset V \times V \) \hspace{1cm} \text{the set of edges – can be directed or undirected.}

\[
\begin{bmatrix}
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

a directed graph and its node-node adjacency matrix
Graph theory: some perspective

The Königsberg bridge problem
(18th c.)

The Four Color Theorem
(1976)
Graph theory: some perspective

The Königsberg bridge problem
(18th c.)

The Four Color Theorem
(1976)

Erdös and Rényi random graph models
(1959)
The Königsberg bridge problem
(18th c.)

The Four Color Theorem
(1976)

Erdős and Rényi random graph models
(1959)

present and future:
graphs that arise in the natural world
Applications

- Comparing biological networks
 - Deriving phylogenetic trees from metabolic pathway data [Heymans, Singh, 2003].

- Social network mapping
 - Small world phenomena [Milgram, 1967; Watts, 1999].

- Web searching
 - Improving searching results using WWW structure [Kleinberg, 1999].

- Chemical structure matching
 - Finding similar structures in a chemical database [Hattori et al., 2003].
Applications

- Comparing biological networks
 - Deriving phylogenetic trees from metabolic pathway data [Heymans, Singh, 2003].

- Social network mapping
 - Small world phenomena [Milgram, 1967; Watts, 1999].

- Web searching
 - Improving searching results using WWW structure [Kleinberg, 1999].

- Chemical structure matching
 - Finding similar structures in a chemical database [Hattori et al., 2003].

one common thread: similarity
Notions of similarity

- Isomorphism – identifying a *bijection* between the nodes of two graphs which preserves (directed) adjacency.

Notions of similarity

- Isomorphism – identifying a *bijection* between the nodes of two graphs which preserves (directed) adjacency.

Notions of similarity

- Edit distance – given a cost function on *edit operations* (e.g. addition/deletion of nodes and edges), determine the *minimum cost transformation* from one graph to another.

Notions of similarity

- **edit distance**
- **isomorphism**
 - Maximum common subgraph – identifying the ‘largest’ isomorphic subgraphs of two graphs.
 - Minimum common supergraph – identifying the ‘smallest’ graph that contains both graphs.

Notions of similarity

- Statistical methods – assessing aggregate measures of graph structure (e.g. degree distribution, diameter, betweenness measures).

- Albert, Barabasi, Reviews of Modern Physics, 2002
Notions of similarity

- Iterative methods:
 Two graph elements (e.g., edges or nodes) are similar if their neighborhoods are similar.

- Jeh & Widom, 8th *Intl. Conf. on Knowledge Discovery and Data Mining*, 2002.
- Melnik, Garcia-Molina, 18th *Intl. Conf. on Data Engineering*, 2002.
Motivated by demands of web searching

Step 1: Use text-based search methods to identify a candidate graph containing relevant websites and their neighbors.
Kleinberg, 1999

- Relevant search results might be:
 - Hubs – pages which *point to* many good authorities
 - Authorities – pages which *are pointed to* by many good hubs

- Step 2: Compute hub and authority scores for every node in the candidate graph.
Kleinberg, 1999

- Denote:
 - $x_{1p}(k) = \text{hub score of node } p \text{ at iteration } k$
 - $x_{2p}(k) = \text{authority score of node } p \text{ at iteration } k$

- Update rule:

 $$x_{2p}(k + 1) = \sum_{q:(q,p) \in E} x_{1q}(k)$$

 i.e. the sum of hub scores of nodes that point to node p

 $$x_{1p}(k + 1) = \sum_{q:(p,q) \in E} x_{2q}(k)$$

 i.e. the sum of authority scores of nodes that are pointed to by node p

- Normalize the scores so that $\sum_p x_{ip} = 1$ and repeat.
Kleinberg, 1999

- Denote:
 - $x_{1p}(k)$ = hub score of node p at iteration k
 - $x_{2p}(k)$ = authority score of node p at iteration k

- Update rule:

 $$x_{2p}(k + 1) = \sum_{q:(q,p) \in E} x_{1q}(k)$$
 i.e. the sum of hub scores of nodes that point to node p

 $$x_{1p}(k + 1) = \sum_{q:(p,q) \in E} x_{2q}(k)$$
 i.e. the sum of authority scores of nodes that are pointed to by node p

- Normalize the scores so that $\sum_p x_{ip} = 1$ and repeat.
Kleinberg, 1999

- Denote:
 - $x_{1p}(k)$ = hub score of node p at iteration k
 - $x_{2p}(k)$ = authority score of node p at iteration k

- Update rule:
 - Stack the scores $x_{1p}(k)$ into a vector $[x_1]_k$, then stack $[x_1]_k$ and $[x_2]_k$.
 - Let B be the node-node adjacency matrix of the candidate graph. Then:

$$
\begin{bmatrix}
 x_1 \\
 x_2
\end{bmatrix}_{k+1} =
\begin{bmatrix}
 0 & B \\
 B' & 0
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 x_2
\end{bmatrix}_k
$$
Kleinberg, 1999

Blondel, Van Dooren, et al., 2004*

- Views Kleinberg’s iteration as a comparison between the web graph and a *hub-authority graph*:

```
1
hub node
```

```
2
authority node
```

\[
A = \begin{bmatrix}
0 & 1 \\
0 & 0 \\
\end{bmatrix}
\]

- Observe that the matrix form of Kleinberg’s update can be written as follows:

\[
\begin{bmatrix}
x_1 \\
x_2 \\
\end{bmatrix}_{k+1} = \begin{bmatrix}
0 & B \\
B' & 0 \\
\end{bmatrix}\begin{bmatrix}
x_1 \\
x_2 \\
\end{bmatrix}_k = \left(A \otimes B + A' \otimes B' \right)\begin{bmatrix}
x_1 \\
x_2 \\
\end{bmatrix}_k
\]

- Is this generalizable to any two graphs \(G_A \) and \(G_B \)?

A first step toward generalizing Kleinberg’s approach: consider comparing the graph G_B to the following graph using a similar update:

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

1. hub node
2. central node
3. authority node

$$x_{1p}(k + 1) = \sum_{q : (p, q) \in E} x_{2q}(k)$$

$$x_{2p}(k + 1) = \sum_{q : (q, p) \in E} x_{1q}(k) + \sum_{q : (p, q) \in E} x_{3q}(k)$$

$$x_{3p}(k + 1) = \sum_{q : (q, p) \in E} x_{2q}(k)$$
A first step toward generalizing Kleinberg’s approach: consider comparing the graph G_B to the following graph using a similar update:

$$A = \begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{bmatrix}$$

1. **hub node**
2. **central node**
3. **authority node**

\[
x_{1p}(k+1) = \sum_{q:(p,q)\in E} x_{2q}(k)
\]
\[
x_{2p}(k+1) = \sum_{q:(q,p)\in E} x_{1q}(k) + \sum_{q:(p,q)\in E} x_{3q}(k)
\]
\[
x_{3p}(k+1) = \sum_{q:(q,p)\in E} x_{2q}(k)
\]
A first step toward generalizing Kleinberg’s approach: consider comparing the graph G_B to the following graph using a similar update:

$$\begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{bmatrix}$$

$$x_{1p}(k + 1) = \sum_{q:(p,q)\in E} x_{2q}(k)$$

$$x_{2p}(k + 1) = \sum_{q:(q,p)\in E} x_{1q}(k) + \sum_{q:(p,q)\in E} x_{3q}(k)$$

$$x_{3p}(k + 1) = \sum_{q:(q,p)\in E} x_{2q}(k)$$
A first step toward generalizing Kleinberg’s approach: consider comparing the graph G_B to the following graph using a similar update:

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

1. **Hub node**
2. **Central node**
3. **Authority node**

$$x_{1p}(k+1) = \sum_{q:(p,q) \in E} x_{2q}(k)$$

$$x_{2p}(k+1) = \sum_{q:(q,p) \in E} x_{1q}(k) + \sum_{q:(p,q) \in E} x_{3q}(k)$$

$$x_{3p}(k+1) = \sum_{q:(q,p) \in E} x_{2q}(k)$$
A first step toward generalizing Kleinberg’s approach: consider comparing the graph G_B to the following graph using a similar update:

\[
\begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{bmatrix}
\]

\[
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}_{k+1} = \begin{bmatrix}
0 & B & 0 \\
B' & 0 & B \\
0 & B' & 0
\end{bmatrix} \begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}_k = (A \otimes B + A' \otimes B') \begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}_k
\]

(use this construction for automatic synonym extraction)
In general, the nodes of two graphs G_A and G_B can be compared via the following update:

$$\bar{x}_{k+1} = (A \otimes B + A' \otimes B')\bar{x}_k$$

Ex.

<table>
<thead>
<tr>
<th>nodes</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.443</td>
<td>0.104</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0.280</td>
<td>0.396</td>
<td>0.086</td>
</tr>
<tr>
<td>3</td>
<td>0.086</td>
<td>0.396</td>
<td>0.280</td>
</tr>
<tr>
<td>4</td>
<td>0.222</td>
<td>0.049</td>
<td>0.222</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0.104</td>
<td>0.443</td>
</tr>
</tbody>
</table>
Coupled edge and node scoring

- **Idea:** use this iterative approach to assign *edge similarity scores* as well as *node similarity scores*.

- **Couple the definitions in the following manner:**
 \[
 x_{ij} = \text{similarity between node } i \text{ in } G_B \text{ and node } j \text{ in } G_A \\
 = \text{sum of pairwise similarities between adjacent edges}
 \]

 \[
 y_{ij} = \text{similarity between edge } i \text{ in } G_B \text{ and edge } j \text{ in } G_A \\
 = \text{sum of similarities of source and terminal nodes}
 \]
Coupled edge and node scoring

- Idea: use this iterative approach to assign edge similarity scores as well as node similarity scores.
- Couple the definitions in the following manner:

\[x_{ij} = \text{similarity between node } i \text{ in } G_B \text{ and node } j \text{ in } G_A \]
\[= \text{sum of pairwise similarities between adjacent edges} \]
\[y_{ij} = \text{similarity between edge } i \text{ in } G_B \text{ and edge } j \text{ in } G_A \]
\[= \text{sum of similarities of source and terminal nodes} \]
Coupled edge and node scoring

- Idea: use this iterative approach to assign edge similarity scores as well as node similarity scores.
- Couple the definitions in the following manner:
 \[x_{ij} = \text{similarity between node } i \text{ in } G_B \text{ and node } j \text{ in } G_A \]
 \[= \text{sum of pairwise similarities between adjacent edges} \]
 \[y_{ij} = \text{similarity between edge } i \text{ in } G_B \text{ and edge } j \text{ in } G_A \]
 \[= \text{sum of similarities of source and terminal nodes} \]
Coupled edge and node scoring

- Idea: use this iterative approach to assign *edge similarity scores* as well as *node similarity scores*.
- Couple the definitions in the following manner:

 \[x_{ij} = \text{similarity between node } i \text{ in } G_B \text{ and node } j \text{ in } G_A \]
 \[y_{ij} = \text{sum of pairwise similarities between adjacent edges} \]

 \[y_{ij} = \text{similarity between edge } i \text{ in } G_B \text{ and edge } j \text{ in } G_A. \]
 \[= \text{sum of similarities of source and terminal nodes} \]

\[
\bar{x}_{k+1} = \left[A_S \otimes B_S + A_T \otimes B_T \right] \bar{y}_k
\]

\[
\bar{y}_{k+1} = \left[A_S' \otimes B_S' + A_T' \otimes B_T' \right] \bar{x}_k
\]

\[
\begin{align*}
[A_s]_{ij} &= \begin{cases}
1 & s(j) = i \\
0 & \text{else}
\end{cases} \\
[A_t]_{ij} &= \begin{cases}
1 & t(j) = i \\
0 & \text{else}
\end{cases}
\end{align*}
\]
Example

Blondel, Van Dooren, et al. similarity scores

<table>
<thead>
<tr>
<th>nodes</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.443</td>
<td>0.104</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0.280</td>
<td>0.396</td>
<td>0.086</td>
</tr>
<tr>
<td>3</td>
<td>0.086</td>
<td>0.396</td>
<td>0.280</td>
</tr>
<tr>
<td>4</td>
<td>0.222</td>
<td>0.049</td>
<td>0.222</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0.104</td>
<td>0.443</td>
</tr>
</tbody>
</table>

Coupled model similarity scores

<table>
<thead>
<tr>
<th>nodes</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.324</td>
<td>0.054</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0.177</td>
<td>0.587</td>
<td>0.018</td>
</tr>
<tr>
<td>3</td>
<td>0.018</td>
<td>0.587</td>
<td>0.177</td>
</tr>
<tr>
<td>4</td>
<td>0.127</td>
<td>0.010</td>
<td>0.127</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0.054</td>
<td>0.324</td>
</tr>
</tbody>
</table>
Application: Graph Matching

- Assign a correspondence between nodes and/or edges of each graph to maximize some performance criteria.
 - The Approach: apply Hungarian algorithm to node similarity matrix to maximize the sum of matched scores.
Application: Graph Matching

- Task: subgraph matching
 - Generate a random graph, G.
 - Select a subgraph, S.
 - Compute the node similarity matrices between G and S.
 - Apply the Hungarian algorithm to `best' match the nodes of S to those in G by finding a matching that maximizes the sum of matched scores.
 - Record successes for nodes that are matched with their original identifier.
Application: Graph Matching

- Task: subgraph matching
 - Generate a random graph, G
 - Select a subgraph, S
 - Compute the node similarity matrices between G and S
 - Apply the Hungarian algorithm to `best' match the nodes of S to those in G by finding a matching the maximizes the sum of matched weights.
 - Record successes for nodes that are matched with their original identifier

Yields a lower bound on the success of the matching process
Application: Graph Matching

- Using local edge similarity to improve scores:

\[x_{aa'} \]

\[x_{aa'}^* = x_{aa'} + m_{aa'} \]
Application: Graph Matching

Average Proportion of Correctly Matched Nodes
(Graph Size = 15 Nodes, Connectivity = 0.5)
Application: Graph Matching

- Exploring the impact of node labeling:

![Graph Matching Diagram]
Application: Graph Matching

Average Proportion of Correctly Matched Nodes
(Graph Size = 15 Nodes, Connectivity = 0.5)
Current/future work

- How does graph structure (e.g., cycles, paths, completeness) impact similarity scores?
- What can be inferred about a pair of graphs from a similarity measurement?
- What kinds of tasks is this measure appropriate for?
Acknowledgments

- George Verghese, MIT
- Sandip Roy, WSU
- Paul Van Dooren, Université catholique de Louvain

Work supported by a NSF Graduate Research Fellowship.