
Architectural decisions and
highlights for the Weekly Restaurant
Evaluation example
PV, 2015-12-03

This is a simple document explaining the basic packages of the project. We start with the
view part, then move to the business logic part and end with the data model part. Other
structures are of course possible; several improvements have been omitted; many chances
for extensions are present; and of course, you have to think about this stuff too – hopefully,
you will put your hands to work and improve it.

Any bugs are solely my fault. If you find any, plz., let me know.

Fig. 1. Package diagram of the Weekly Restaurant Evaluation project

userViews
The simple user interaction class (SimpleTryUserMain) comes with a simple main method
that shows the basic functionality. See that there is a single dependency to the MainEngine
and no other dependency (in principle, this cannot happen all the time; sometimes you
cannot avoid dependencies to lower level packages). See how minimal the task of the client
is and how we avoid adding any logic to it (this is a case with a thin client and a strong back-
end application).

The rest of the classes involve a JavaFX GUI (Food for thought). The alternative main
method is at ApplicationMainGUI class. See how the simple tasks are part of the start()
method without any difference from the simple main method.

For you: if interested, you need to spend some time with JavaFX, the latest GUI platform of
Java. Although JFX is still in its infancy, the model used by JavaFX is fairly representative of
modern GUI platforms. Try for example, to add a bar chart on the employee evaluations or
salaries. If NOT interested, you can stick to the SimpleTryUSerMain class.

mainEngine
The MainEngine implements all the major use cases of the program: (i) load all data, (ii)
compute all stats and (iii) create reports.

Observe how frugal we are with this class. We do not export almost anything else (see next).

I have added a couple of methods to the main engine to allow the JavaFX GUI communicate
with it. This is due to the fact that the JavaFX part requires observable lists of dishes and
employees, so we populate them.

Observe how we added the JavaFX part as a parameter in the methods getDishes() and
getEmployees(). This is how the engine part is independent from the “upper level” (here:
GUI) package: we inject a parameter in the method of the lower-level, depended-upon class
(here: main engine). Then, the parameter gets populated inside the method => there is no
need for the lower-level class to know who is calling the method, or any other info. Thus, all
the dependencies point downwards and no cycles are introduced in the package diagram.
The price to pay was the injection of a dependency from the “lower-level” class to the
dataModel classes involved in the parameter (here we would not avoid it anyway, but in
other cases, it can be a price to pay).

reportingEngines
Part of the business logic with a clear abstract coupling mechanism: an interface + a factory
to be reused by the callers.

dataLoad
This is another business-logic package that comes with two “sub-parts”. The “upper-level”
part involves the implementation of the Full Data Load functionality and is the façade that
links the internals of the class to the main engine. This is why the Full Data Loader family has
(i) an interface + (ii) a factory + (iii) an interface implementation class.

The functionality of loading each of the three files is delegated to a dedicated data loader.
Observe the “Template Method” pattern here: there is a generic Abstract Record Loader
class that performs the same task (open a record file, read line by line, and, for each line,
split the line via a tokenizer to an array of strings and pass it to an object creation method,
for an object to be created) independently of which file/target class it is addressing. The

specifics are handled by the abstract constructObject() method that is overloaded by the
concrete subclasses of AbstractRecordLoader, one per target class. Observe the use of
generics here (there are some typing constraints that prevent simpler solutions).

For you: how would you perform abstract coupling here? How can we reduce coupling?

dataModel
Observe the Abstract Class Employee along with (a) its subclasses and (b) its factory.

Employee and EmployeeFactory provide a clear case of abstract coupling with the rest of the
program (you can observe how we avoid referring to the subclasses at the
dataLoad.EmployeeLoader class)

WeeklyStats is a helpful class with static statistics that enables to compute ChefDeCuisine
salary and avoid linking the class to the MainEngine at the same time.

Food for thought: how would this task be facilitated if the weekly stats class was not there?

Other material
Input and output files are found in the respective folders. The requirements document is
found in the respective folder. Some ObjectAid ucls class diagrams accompany the
application.

For you: how would you perform testing here? Documentation?

