The Existence Property among Set Theories

Michael Rathjen

Department of Pure Mathematics University of Leeds

Eighth Panhellenic Logic Symposium

Ioannina

July 4th 2011

Intuitionism

- Intuitionism
- The Existence Property and other properties

- Intuitionism
- The Existence Property and other properties
- The Existence Property and Collection

Existentialism

Existentialism

All flavors of constructivism seem to demand that:

Existentialism

All flavors of constructivism seem to demand that:

The correctness of an existential claim $(\exists x \in A)\varphi(x)$ is to be guaranteed by warrants from which both an object $x_0 \in A$ and a further warrant for $\varphi(x_0)$ are constructible.

Bishop: Man and God

Bishop: Man and God

When a man proves a positive integer to **exist**, he should show how to **find it**.

Bishop: Man and God

When a man proves a positive integer to **exist**, he should show how to **find it**.

If God has mathematics of his own that needs to be done, let him do it himself.

• Philosophical Reasons: Brouwer, Dummett, Martin-Löf,...

- Philosophical Reasons: Brouwer, Dummett, Martin-Löf,...
- Computational content: Witness and program extraction from proofs.

- Philosophical Reasons: Brouwer, Dummett, Martin-Löf,...
- Computational content: Witness and program extraction from proofs.
- Intuitionistically proved theorems hold in more generality:
 The internal logic of topoi is intuitionistic logic.

- Philosophical Reasons: Brouwer, Dummett, Martin-Löf,...
- Computational content: Witness and program extraction from proofs.
- Intuitionistically proved theorems hold in more generality:
 The internal logic of topoi is intuitionistic logic.
- Axiomatic Freedom Adopt axioms that are classically refutable but intuitionistically preserve algorithmic truth (E.g. All $f : \mathbb{R} \to \mathbb{R}$ are continuous).

Not formalized: Brouwer 1907 (philosophical basis), 1918 (mathematical starting point)

Not formalized: Brouwer 1907 (philosophical basis),

1918 (mathematical starting point)

Heyting 1930: intuitionistic predicate logic and arithmetic

Not formalized: Brouwer 1907 (philosophical basis), 1918 (mathematical starting point)

Heyting 1930: intuitionistic predicate logic and arithmetic

Negative translation: **Kolmogorov** 1925, **Gentzen** and **Gödel** 1933.

Kleene's 1945 realizability for HA

a realizer of	has the form
A atomic	any <i>e</i> providing <i>A</i> is true.
$A \wedge B$	(a,b), where a is a realizer of A
	and b is a realizer of B .
$A \lor B$	(0, a), where a is a realizer of A,
	or $(1, b)$, where b is a realizer of B
$\exists x B(x)$	(n,b) , where b is a realizer of $B(\bar{n})$.

Kleene's 1945 realizability

a realizer of

 $A \rightarrow B$

 $\neg A$

 $\forall x B(x)$

has the form

e, where e is the Gödel number of a Turing machine M_e such that M_e halts with a realizer for B whenever a realizer of A is run on M_e . any e providing there is **no** realizer for A. e, where e is a Gödel number of a Turing machine M_e such that M_e outputs a realizer for $A(\bar{n})$ when run on n.

Basic Assumptions

Let T be a theory whose language, L(T), encompasses the language of set theory. Moreover, for simplicity, we shall assume that L(T) has a constant ω denoting the set of von Neumann natural numbers and for each n a constant \bar{n} denoting the n-th element of ω .

The Disjunction Property

The Disjunction Property

• T has the disjunction property, DP, if whenever

$$T \vdash \psi \lor \theta$$

holds for sentences ψ and θ of T, then

$$T \vdash \psi$$
 or $T \vdash \theta$.

The Existence Property

The Existence Property

T has the numerical existence property, NEP, if whenever

$$T \vdash (\exists x \in \omega) \phi(x)$$

holds for a formula $\phi(x)$ with at most the free variable x, then

$$T \vdash \phi(\bar{n})$$

for some *n*.

The Existence Property

 T has the numerical existence property, NEP, if whenever

$$T \vdash (\exists x \in \omega) \phi(x)$$

holds for a formula $\phi(x)$ with at most the free variable x, then

$$T \vdash \phi(\bar{n})$$

for some n.

T has the existence property, EP, if whenever

$$T \vdash \exists x \phi(x)$$

holds for a formula $\phi(x)$ having at most the free variable x, then there is a formula $\vartheta(x)$ with exactly x free, so that

$$T \vdash \exists ! x \vartheta(x)$$
 and $T \vdash \exists x [\vartheta(x) \land \phi(x)].$

 Gödel (1932) observed that intuitionistic propositional logic has the DP.

- Gödel (1932) observed that intuitionistic propositional logic has the DP.
- Gentzen (1934): Intuitionistic predicate logic has the DP and EP.

- Gödel (1932) observed that intuitionistic propositional logic has the DP.
- Gentzen (1934): Intuitionistic predicate logic has the DP and EP.
- Kleene (1945): HA has the DP and NEP.

- Gödel (1932) observed that intuitionistic propositional logic has the DP.
- Gentzen (1934): Intuitionistic predicate logic has the DP and EP.
- Kleene (1945): HA has the DP and NEP.
- Joan Moschovakis (1965): DP, NEP and EP for (many) systems of intuitionistic analysis.

 Ignoring the trivial counterexamples, classical theories never have the **DP** or the **NEP**.

- Ignoring the trivial counterexamples, classical theories never have the **DP** or the **NEP**.
- Z (Zermelo set theory), ZF, and ZF are known not to have the EP.

- Ignoring the trivial counterexamples, classical theories never have the **DP** or the **NEP**.
- Z (Zermelo set theory), ZF, and ZF are known not to have the EP.
- **ZFC** proves that $\mathbb R$ is well-orderable, but it cannot prove that there is a **definable** well-ordering of $\mathbb R$.

 Nevertheless, fragments of the EP, known as uniformization properties, sometimes hold.

- Nevertheless, fragments of the EP, known as uniformization properties, sometimes hold.
 - (Kondo, Addison) If $\mathbf{ZF} \vdash \exists x \in \mathbb{R} \ \varphi(x)$ and $\varphi(x)$ is Σ_2^1 , then $\mathbf{ZF} \vdash \exists ! x \in \mathbb{R} \ \vartheta(x)$ and $\mathbf{ZF} \vdash \exists x \in \mathbb{R} \ [\vartheta(x) \land \varphi(x)]$ for some Σ_2^1 formula ϑ .

- Nevertheless, fragments of the EP, known as uniformization properties, sometimes hold.
 - (Kondo, Addison) If $\mathbf{ZF} \vdash \exists x \in \mathbb{R} \ \varphi(x)$ and $\varphi(x)$ is Σ_2^1 , then $\mathbf{ZF} \vdash \exists ! x \in \mathbb{R} \ \vartheta(x)$ and $\mathbf{ZF} \vdash \exists x \in \mathbb{R} \ [\vartheta(x) \land \varphi(x)]$ for some Σ_2^1 formula ϑ .
 - (Feferman, Lévy) **EP** fails for Π_2^1 in **ZF** and **ZFC**.

- Nevertheless, fragments of the EP, known as uniformization properties, sometimes hold.
 - (Kondo, Addison) If $\mathbf{ZF} \vdash \exists x \in \mathbb{R} \ \varphi(x)$ and $\varphi(x)$ is Σ_2^1 , then $\mathbf{ZF} \vdash \exists ! x \in \mathbb{R} \ \vartheta(x)$ and $\mathbf{ZF} \vdash \exists x \in \mathbb{R} \ [\vartheta(x) \land \varphi(x)]$ for some Σ_2^1 formula ϑ .
 - **②** (Feferman, Lévy) **EP** fails for Π_2^1 in **ZF** and **ZFC**.
 - **③** (Y. Moschovakis) **ZF** + Projective Determinacy has the **projective existence property** ($\varphi(x)$, $\vartheta(x)$ projective).

Classical theories and EP

Classical theories and EP

Reasonable classical set theories can have the full EP.

Classical theories and EP

Reasonable classical set theories can have the full EP.

Theorem

An extension T of **ZF** has the **EP** if and only if T proves that all sets are ordinal definable, i.e., $T \vdash V = OD$.

CST based on intuitionistic logic

CST based on intuitionistic logic

Many sorted system: numbers, sets, functions

CST based on intuitionistic logic

Many sorted system: numbers, sets, functions

CST based on intuitionistic logic

Many sorted system: numbers, sets, functions

Axioms (simplified)

* Extensionality

CST based on intuitionistic logic

Many sorted system: numbers, sets, functions

- **Axioms** (simplified)
- Extensionality
- Pairing, Union, Infinity (or N is a set)

CST based on intuitionistic logic

Many sorted system: numbers, sets, functions

- * Extensionality
- Pairing, Union, Infinity (or N is a set)
- Bounded Separation

CST based on intuitionistic logic

Many sorted system: numbers, sets, functions

- Extensionality
- Pairing, Union, Infinity (or N is a set)
- Bounded Separation
- Exponentiation: $A, B \text{ sets} \Rightarrow A^B \text{ set.}$

CST based on intuitionistic logic

Many sorted system: numbers, sets, functions

- Extensionality
- Pairing, Union, Infinity (or N is a set)
- Bounded Separation
- **Exponentiation**: $A, B \text{ sets} \Rightarrow A^B \text{ set}$.
- Replacement

* Extensionality

- Extensionality
- Pairing, Union, Infinity

- * Extensionality
- Pairing, Union, Infinity
- Full Separation
- Powerset

- * Extensionality
- Pairing, Union, Infinity
- Full Separation
- Powerset
- # Collection

$$(\forall x \in a) \exists y \ \varphi(x,y) \rightarrow \exists b \ (\forall x \in a) \ (\exists y \in b) \ \varphi(x,y)$$

- * Extensionality
- Pairing, Union, Infinity
- Full Separation
- Powerset
- **# Collection**

$$(\forall x \in a) \exists y \ \varphi(x,y) \rightarrow \exists b \ (\forall x \in a) \ (\exists y \in b) \ \varphi(x,y)$$

* Set Induction

$$(\mathit{IND}_{\in}) \quad \forall a \, (\forall x \in a \, \varphi(x) \, \rightarrow \, \varphi(a)) \, \rightarrow \, \forall a \, \varphi(a),$$

- * Extensionality
- Pairing, Union, Infinity
- Full Separation
- Powerset
- # Collection

$$(\forall x \in a) \exists y \ \varphi(x,y) \rightarrow \exists b \ (\forall x \in a) \ (\exists y \in b) \ \varphi(x,y)$$

* Set Induction

$$(\mathit{IND}_{\in}) \quad \forall a \ (\forall x \in a \ \varphi(x) \ \rightarrow \ \varphi(a)) \ \rightarrow \ \forall a \ \varphi(a),$$

Myhill's IZF_B:

IZF with Replacement instead of Collection

* Extensionality

- * Extensionality
- Pairing, Union, Infinity

- * Extensionality
- Pairing, Union, Infinity
- Bounded Separation

- * Extensionality
- · Pairing, Union, Infinity
- Bounded Separation
- Exponentiation

- * Extensionality
- Pairing, Union, Infinity
- Bounded Separation
- Exponentiation
- **# Strong Collection**

$$(\forall x \in a) \exists y \ \varphi(x,y) \rightarrow \\ \exists b \ [(\forall x \in a) (\exists y \in b) \ \varphi(x,y) \land (\forall y \in b) (\exists x \in a) \ \varphi(x,y)]$$

- * Extensionality
- · Pairing, Union, Infinity
- Bounded Separation
- Exponentiation
- **# Strong Collection**

$$(\forall x \in a) \exists y \ \varphi(x,y) \rightarrow \\ \exists b \ [(\forall x \in a) (\exists y \in b) \ \varphi(x,y) \ \land \ (\forall y \in b) (\exists x \in a) \ \varphi(x,y)]$$

* Set Induction scheme

 Explicit set existence axioms: e.g. Separation, Replacement, Exponentiation

- Explicit set existence axioms: e.g. Separation, Replacement, Exponentiation
- Non-explicit set existence axioms: e.g. in classical set theory Axioms of Choice

- Explicit set existence axioms: e.g. Separation, Replacement, Exponentiation
- Non-explicit set existence axioms: e.g. in classical set theory Axioms of Choice
- Non-explicit set existence axioms in intuitionistic set theory: e.g. Axioms of Choice, (Strong) Collection, Subset Collection, Regular Extension Axiom

Some History

Let **IZF**_R result from **IZF** by replacing Collection with Replacement, and let **CST** be Myhill's constructive set theory.

Some History

Let **IZF**_R result from **IZF** by replacing Collection with Replacement, and let **CST** be Myhill's constructive set theory.

Theorem 1. (Myhill) IZF_R and CST have the DP, NEP, and the EP.

Some History

Let **IZF**_R result from **IZF** by replacing Collection with Replacement, and let **CST** be Myhill's constructive set theory.

Theorem 1. (Myhill) IZF_R and CST have the DP, NEP, and the EP.

Theorem 2. (Beeson)
IZF has the DP and the NEP.

Some History

Let **IZF**_R result from **IZF** by replacing Collection with Replacement, and let **CST** be Myhill's constructive set theory.

Theorem 1. (Myhill) IZF_R and CST have the DP, NEP, and the EP.

Theorem 2. (Beeson)
IZF has the DP and the NEP.

Theorem 3. (Friedman, Scedrov) **IZF** does not have the **EP**.

Realizability Theorem

Realizability with truth.

Theorem: (R)

For every theorem θ of **CZF**, there exists an application term s such that

CZF
$$\vdash$$
 $(s \Vdash_t \theta)$.

Moreover, the proof of this soundness theorem is effective in that the application term s can be effectively constructed from the CZF proof of θ .

The Main Theorem

The Main Theorem

Theorem: (R)

The **DP** and the **NEP** hold true for CZF, CZF + REA and CZF + Large Set Axioms.

One can also add Subset Collection and the following choice principles:

 AC_{ω} , DC, RDC, PAx.

The Main Theorem

Theorem: (R)

The **DP** and the **NEP** hold true for CZF, CZF + REA and CZF + Large Set Axioms.

One can also add Subset Collection and the following choice principles:

 AC_{ω} , DC, RDC, PAx.

Theorem:

The **DP** and the **NEP** hold true for **IZF**, **IZF** + **REA** and **IZF** + Large Set Axioms.

One can also add AC, DC, RDC, PAx.

This notion of realizability is very robust.

- This notion of realizability is very robust.
 - Adding Powerset or other axioms to CZF doesn't change the results.

- This notion of realizability is very robust.
 - Adding Powerset or other axioms to CZF doesn't change the results.
 - It can be adapted to other PCAs, e.g. the second Kleene algebra to show that provable functions on Baire space are continuous.

- This notion of realizability is very robust.
 - Adding Powerset or other axioms to CZF doesn't change the results.
 - It can be adapted to other PCAs, e.g. the second Kleene algebra to show that provable functions on Baire space are continuous.

References:

- This notion of realizability is very robust.
 - Adding Powerset or other axioms to CZF doesn't change the results.
 - It can be adapted to other PCAs, e.g. the second Kleene algebra to show that provable functions on Baire space are continuous.

References:

 R.: The disjunction and related properties for constructive Zermelo-Fraenkel set theory. Journal of Symbolic Logic 70 (2005) 1233–1254.

- This notion of realizability is very robust.
 - Adding Powerset or other axioms to CZF doesn't change the results.
 - It can be adapted to other PCAs, e.g. the second Kleene algebra to show that provable functions on Baire space are continuous.

References:

- R.: The disjunction and related properties for constructive Zermelo-Fraenkel set theory. Journal of Symbolic Logic 70 (2005) 1233–1254.
- R.: Metamathematical Properties of Intuitionistic Set Theories with Choice Principles. In: S. B. Cooper, B. Löwe, A. Sorbi (eds.): New Computational Paradigms: Changing Conceptions of What is Computable (Springer, New York, 2008) 287–312.

Collection is

 $\forall x \in a \exists y A(x,y) \rightarrow \exists b \forall x \in a \exists y \in b A(x,y).$

Collection is

$$\forall x \in a \exists y A(x,y) \rightarrow \exists b \forall x \in a \exists y \in b A(x,y).$$

This is in IZF equivalent to

$$\exists b \ [\forall x \in a \ \exists y \ A(x,y) \ \rightarrow \ \forall x \in a \ \exists y \in b \ A(x,y)]$$

Collection is

$$\forall x \in a \exists y A(x,y) \rightarrow \exists b \forall x \in a \exists y \in b A(x,y).$$

This is in **IZF** equivalent to

$$\exists b \ [\forall x \in a \ \exists y \ A(x,y) \ \rightarrow \ \forall x \in a \ \exists y \in b \ A(x,y)]$$

• Let B(z) be a formula expressing that z is an uncountable cardinal. Let $B^*(z)$ result from B(z) by replacing every atomic subformula D of B(z) by

$$D \vee \forall uv(u \in v \vee \neg u \in v).$$

Collection is

$$\forall x \in a \exists y A(x,y) \rightarrow \exists b \forall x \in a \exists y \in b A(x,y).$$

This is in **IZF** equivalent to

$$\exists b \ [\forall x \in a \ \exists y \ A(x,y) \ \rightarrow \ \forall x \in a \ \exists y \in b \ A(x,y)]$$

• Let B(z) be a formula expressing that z is an uncountable cardinal. Let $B^*(z)$ result from B(z) by replacing every atomic subformula D of B(z) by

$$D \vee \forall uv(u \in v \vee \neg u \in v).$$

EP fails for **IZF** for the following instance:

$$\exists y \left[\forall x \in 1 \ \exists z \ B^*(z) \ \rightarrow \ \forall x \in 1 \ \exists z \in y \ B^*(z) \right].$$

Problems

Problems

 (Beeson 1985) Does any reasonable set theory with Collection have the existential definability property?

The Weak Existence Property

The Weak Existence Property

T has the **weak existence property**, **wEP**, if whenever

$$T \vdash \exists x \phi(x)$$

holds for a formula $\phi(x)$ having at most the free variable x, then there is a formula $\vartheta(x)$ with exactly x free, so that

$$T \vdash \exists! x \, \vartheta(x),$$

$$T \vdash \forall x [\vartheta(x) \to \exists u \, u \in x],$$

$$T \vdash \forall x [\vartheta(x) \to \forall u \in x \, \phi(u)].$$

We would like to have unlimited application of sets to sets,
 i.e. we would like to assign a meaning to the symbol

$${a}(x)$$

where a and x are sets.

We would like to have unlimited application of sets to sets,
 i.e. we would like to assign a meaning to the symbol

$${a}(x)$$

where a and x are sets.

Known as E-recursion or set recursion

We would like to have unlimited application of sets to sets,
 i.e. we would like to assign a meaning to the symbol

$${a}(x)$$

where a and x are sets.

- Known as E-recursion or set recursion

$$exp(a,b) = {}^{a}b$$

computable as well.

We would like to have unlimited application of sets to sets,
 i.e. we would like to assign a meaning to the symbol

$${a}(x)$$

where a and x are sets.

- Known as E-recursion or set recursion

$$exp(a,b) = {}^{a}b$$

computable as well.

• Classically, E_{\wp} -computability is related to **power recursion**, where the power set operation is regarded to be an initial function. Notion studied by Yiannis Moschovakis and Larry Moss.

Realizability with sets of witnesses

We use the expression $a \neq \emptyset$ to convey the positive fact that the set a is inhabited, that is $\exists x \ x \in a$.

We define a relation

$$a \Vdash_{\mathfrak{wt}} B$$

between sets and set-theoretic formulae.

$$a \bullet f \Vdash_{\mathfrak{wt}} B$$

will be an abbreviation for

$$\exists x[a \bullet f \simeq x \land x \Vdash_{\mathfrak{wt}} B]$$

 $a \Vdash_{\mathfrak{wt}} A$ iff A holds true, whenever A is an atomic formula

$$a \Vdash_{\mathfrak{wt}} A \wedge B$$
 iff $\jmath_0 a \Vdash_{\mathfrak{wt}} A \wedge \jmath_1 a \Vdash_{\mathfrak{wt}} B$

$$a \Vdash_{\mathfrak{wt}} A \lor B$$
 iff $a \neq \emptyset \land (\forall d \in a)([\jmath_0 d = 0 \land \jmath_1 d \Vdash_{\mathfrak{wt}} A] \lor [\jmath_0 d = 1 \land \jmath_1 d \Vdash_{\mathfrak{wt}} B])$

$$a \Vdash_{\mathfrak{wt}} \neg A$$
 iff $\neg A \land \forall c \neg c \Vdash_{\mathfrak{wt}} A$

$$a \Vdash_{\mathfrak{wt}} A \to B \quad \text{iff} \quad (A \to B) \, \wedge \, \forall c \, \big[c \Vdash_{\mathfrak{wt}} A \, \to \, a \bullet c \Vdash_{\mathfrak{wt}} B \big]$$

$$a \Vdash_{\mathfrak{wt}} (\forall x \in b) A \text{ iff } (\forall c \in b) a \bullet c \Vdash_{\mathfrak{wt}} A[x/c]$$

$$a \Vdash_{\mathfrak{wt}} (\exists x \in b) A \text{ iff } a \neq \emptyset \land (\forall d \in a)[\jmath_0 d \in b \land \jmath_1 d \Vdash_{\mathfrak{wt}} A[x/\jmath_0 d]$$

$$a \Vdash_{\mathfrak{wt}} \forall x A$$
 iff $\forall c \ a \bullet c \Vdash_{\mathfrak{wt}} A[x/c]$

$$a \Vdash_{\mathfrak{wt}} \exists x A$$
 iff $a \neq \emptyset \land (\forall d \in a) \jmath_1 d \Vdash_{\mathfrak{wt}} A[x/\jmath_0 d]$

 $a \Vdash_{mf} A$ iff A holds true, whenever A is an atomic formula $a \Vdash_{\mathfrak{w}\mathfrak{t}} A \wedge B$ iff $\jmath_0 a \Vdash_{\mathfrak{w}\mathfrak{t}} A \wedge \jmath_1 a \Vdash_{\mathfrak{w}\mathfrak{t}} B$ $a \Vdash_{\mathsf{mt}} A \vee B$ iff $a \neq \emptyset \wedge (\forall d \in a)([\jmath_0 d = 0 \wedge \jmath_1 d \Vdash_{\mathsf{mt}} A] \vee$ $[j_0d = 1 \land j_1d \Vdash_{\mathfrak{wt}} B]$ $a \Vdash_{mt} \neg A$ iff $\neg A \land \forall c \neg c \Vdash_{mt} A$ $a \Vdash_{\mathfrak{wt}} A \to B$ iff $(A \to B) \land \forall c [c \Vdash_{\mathfrak{wt}} A \to a \bullet c \Vdash_{\mathfrak{wt}} B]$ $a \Vdash_{\mathfrak{wt}} (\forall x \in b) A \text{ iff } (\forall c \in b) a \bullet c \Vdash_{\mathfrak{wt}} A[x/c]$ $a \Vdash_{\mathsf{mt}} (\exists x \in b) A \text{ iff } a \neq \emptyset \land (\forall d \in a)(\jmath_0 d \in b \land \jmath_1 d \Vdash_{\mathsf{mt}} A[x/\jmath_0 d]$ $a \Vdash_{\mathsf{mf}} \forall x A$ iff $\forall c \ a \bullet c \Vdash_{\mathsf{mf}} A[x/c]$ $a \Vdash_{\mathsf{mt}} \exists x A$ iff $a \neq \emptyset \land (\forall d \in a) \ \jmath_1 d \Vdash_{\mathsf{mt}} A[x/\jmath_0 d]$ 4 D > 4 B > 4 B > 4 B > 9 Q P

 $\Vdash_{\mathfrak{wt}} B \text{ iff } \exists a a \Vdash_{\mathfrak{wt}} B.$

If we use indices of E_{\wp} -recursive functions rather than E_{\exp} -recursive functions, we notate the corresponding notion of realizability by $a \Vdash_{\mathfrak{w}\mathfrak{t}}^{\wp} B$.

$$\Vdash_{\mathfrak{wt}} B \text{ iff } \exists a a \Vdash_{\mathfrak{wt}} B.$$

If we use indices of E_{\wp} -recursive functions rather than E_{\exp} -recursive functions, we notate the corresponding notion of realizability by $a \Vdash_{\mathfrak{wt}}^{\wp} B$.

Corollary

$$\Vdash_{\mathfrak{wt}} B \text{ iff } \exists a a \Vdash_{\mathfrak{wt}} B.$$

If we use indices of E_{\wp} -recursive functions rather than E_{\exp} -recursive functions, we notate the corresponding notion of realizability by $a \Vdash_{\mathfrak{wt}}^{\wp} B$.

Corollary

(i)
$$\mathbf{CZF} \vdash (\Vdash_{\mathfrak{wt}} B) \rightarrow B$$
.

$$\Vdash_{\mathfrak{wt}} B \text{ iff } \exists aa \Vdash_{\mathfrak{wt}} B.$$

If we use indices of E_{\wp} -recursive functions rather than E_{\exp} -recursive functions, we notate the corresponding notion of realizability by $a \Vdash_{\mathfrak{wt}}^{\wp} B$.

Corollary

(i)
$$\mathbf{CZF} \vdash (\Vdash_{\mathfrak{wt}} B) \rightarrow B$$
.

(ii)
$$\mathsf{CZF} + \mathsf{Pow} \vdash (\Vdash^{\wp}_{\mathfrak{wt}} B) \rightarrow B.$$

A variant of wEP, dubbed wEP', is the following: if

$$T \vdash \forall u \exists x A(u, x)$$

holds for a formula A(u, x) having at most the free variables u, x, then there is a formula B(u, x) with exactly u, x free, so that

$$T \vdash \forall u \exists ! x B(u, x),$$

$$T \vdash \forall u \forall x [B(u, x) \rightarrow \exists z z \in x],$$

$$T \vdash \forall u \forall x [B(u, x) \rightarrow \forall z \in x A(u, z)].$$

A variant of wEP, dubbed wEP', is the following: if

$$T \vdash \forall u \exists x A(u, x)$$

holds for a formula A(u, x) having at most the free variables u, x, then there is a formula B(u, x) with exactly u, x free, so that

$$T \vdash \forall u \exists ! x B(u, x),$$

$$T \vdash \forall u \forall x [B(u, x) \rightarrow \exists z z \in x],$$

$$T \vdash \forall u \forall x [B(u, x) \rightarrow \forall z \in x A(u, z)].$$

Theorem CZF and $\mathbf{CZF} + \mathbf{Pow}$ both have the weak existence property. Indeed, they both satisfy the stronger property \mathbf{wEP}' .

THEOREM If

$$\mathbf{CZF} \vdash \exists x \, A(x)$$

then one can effectively construct a Σ^E formula B(y) such that

CZF
$$\vdash \exists ! y B(y)$$

$$\mathbf{CZF} \vdash \forall y [\, B(y) \to \exists x \ x \in y]$$

$$\mathbf{CZF} \vdash \forall y \, [B(y) \to \forall x \in y \, A(x)]$$

THEOREM If

$$\mathsf{CZF} + \mathsf{Pow} \vdash \exists x \, A(x)$$

then one can effectively construct a Σ^P formula B(y) such that

CZF + Pow
$$\vdash \exists ! y \ B(y)$$

CZF + Pow $\vdash \forall y [\ B(y) \rightarrow \exists x \ x \in y]$
CZF + Pow $\vdash \forall y [\ B(y) \rightarrow \forall x \in y \ A(x)]$

Conservativity

Conservativity

THEOREM

CZF is conservative over **IKP**(\mathcal{E}) for Σ^E sentences.

Conservativity

THEOREM

CZF is conservative over **IKP**(\mathcal{E}) for $\Sigma^{\mathcal{E}}$ sentences.

THEOREM

CZF + **Pow** is conservative over **IKP**(\mathcal{P}) for Σ^{P} sentences.

Theorem 1: CZF has the existence property.

Theorem 1: CZF has the existence property.

Theorem 2: CZF + Pow has the existence property.

Theorem 1: CZF has the existence property.

Theorem 2: CZF + Pow has the existence property.

Conjecture 3: CZF + Subset Collection does **not** have the weak existence property.