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Distributed Databases

Chapter 21, Part B
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Introduction

❖ Data is stored at several sites, each managed 
by a DBMS that can run independently.

❖ Distributed Data Independence: Users 
should not have to know where data is 
located (extends Physical and Logical Data 
Independence principles).

❖ Distributed Transaction Atomicity: Users 
should be able to write Xacts accessing 
multiple sites just like local Xacts.
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Recent Trends

❖ Users have to be aware of where data is 
located, i.e.,  Distributed Data Independence 
and Distributed Transaction Atomicity are 
not supported.

❖ These properties are hard to support 
efficiently.

❖ For globally distributed sites, these properties 
may not even be desirable due to 
administrative overheads of making location 
of data transparent.
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Types of Distributed Databases

❖ Homogeneous: Every site runs same type of 
DBMS.

❖ Heterogeneous: Different sites run different
DBMSs (different RDBMSs or even non-
relational DBMSs).

DBMS1 DBMS2 DBMS3

Gateway
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Distributed DBMS Architectures

❖ Client-Server

❖ Collaborating-Server

CLIENT CLIENT

SERVER SERVER SERVER

QUERY

SERVER

SERVER

SERVER
QUERY

Client ships query 
to single site.  All query
processing at server.

- Thin vs. fat clients.
- Set-oriented 
communication,
client side caching.

Query can span multiple
sites.  
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Storing Data 

❖ Fragmentation
– Horizontal: Usually disjoint.
– Vertical: Lossless-join; tids.

❖ Replication
– Gives increased availability.
– Faster query evaluation.
– Synchronous vs. Asynchronous.

◆ Vary in how current copies are.

TID

t1

t2

t3
t4

R1

R1 R2

R3

SITE A

SITE B
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Distributed Catalog Management

❖ Must keep track of how data is distributed 
across sites.

❖ Must be able to name each replica of each 
fragment.  To preserve local autonomy:
– <local-name, birth-site>

❖ Site Catalog: Describes all objects (fragments, 
replicas) at a site + Keeps track of replicas of 
relations created at this site.
– To find a relation, look up its birth-site catalog.
– Birth-site never changes, even if relation is moved.
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Distributed Queries

❖ Horizontally Fragmented: Tuples with rating 
< 5 at Shanghai, >= 5 at Tokyo.
– Must compute SUM(age), COUNT(age) at both sites.
– If WHERE contained just S.rating>6, just one site.

❖ Vertically Fragmented: sid and rating at 
Shanghai, sname and age at Tokyo, tid at both.
– Must reconstruct relation by join on tid, then 

evaluate the query.

❖ Replicated: Sailors copies at both sites.
– Choice of site based on local costs, shipping costs.

SELECT AVG(S.age)
FROM Sailors S
WHERE S.rating > 3

AND S.rating < 7
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Distributed Joins

❖ Fetch as Needed, Page NL, Sailors as outer:
– Cost: 500 D + 500 * 1000 (D+S)
– D is cost to read/write page; S is cost to ship page.
– If query was not submitted at London, must add 

cost of shipping result to query site.
– Can also do INL at London, fetching matching 

Reserves tuples to London as needed.

❖ Ship to One Site: Ship Reserves to London.
– Cost: 1000 S + 4500 D (SM Join; cost = 3*(500+1000))
– If result size is very large, may be better to ship both 

relations to result site and then join them!

Sailors Reserves

LONDON PARIS

500 pages 1000 pages
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Semijoin
❖ At London, project Sailors onto join columns and 

ship this to Paris.
❖ At Paris, join Sailors projection with Reserves.

– Result is called reduction of Reserves wrt Sailors.

❖ Ship reduction of Reserves to London.
❖ At London, join Sailors with reduction of Reserves.
❖ Idea: Tradeoff the cost of computing and shipping 

projection and computing and shipping projection 
for cost of shipping full Reserves relation.

❖ Especially useful if there is a selection on Sailors, 
and answer desired at London.
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Bloomjoin

❖ At London, compute a bit-vector of some size k:
– Hash join column values into range 0 to k-1.
– If some tuple hashes to I, set bit I to 1 (I from 0 to k-1).
– Ship bit-vector to Paris.

❖ At Paris, hash each tuple of Reserves similarly, and 
discard tuples that hash to 0 in Sailors bit-vector.
– Result is called reduction of Reserves wrt Sailors.

❖ Ship bit-vector reduced Reserves to London.
❖ At London, join Sailors with reduced Reserves.
❖ Bit-vector cheaper to ship, almost as effective.
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Distributed Query Optimization

❖ Cost-based approach; consider all plans, pick 
cheapest; similar to centralized optimization.
– Difference 1:  Communication costs must be 

considered.
– Difference 2: Local site autonomy must be 

respected.
– Difference 3: New distributed join methods.

❖ Query site constructs global plan, with suggested 
local plans describing processing at each site.
– If a site can improve suggested local plan, free to do so.
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Updating Distributed Data

❖ Synchronous Replication: All copies of a 
modified relation (fragment) must be 
updated before the modifying Xact commits.
– Data distribution is made transparent to users.

❖ Asynchronous Replication: Copies of a 
modified relation are only periodically 
updated; different copies may get out of 
synch in the meantime.
– Users must be aware of data distribution.
– Current products follow this approach.
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Synchronous Replication

❖ Voting: Xact must write a majority of copies to 
modify an object; must read enough copies to be 
sure of seeing at least one most recent copy.
– E.g., 10 copies; 7 written for update; 4 copies read.
– Each copy has version number.
– Not attractive usually because reads are common.

❖ Read-any Write-all: Writes are slower and reads 
are faster, relative to Voting.
– Most common approach to synchronous replication.

❖ Choice of technique determines which locks to set.
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Cost of Synchronous Replication

❖ Before an update Xact can commit, it must 
obtain locks on all modified copies.
– Sends lock requests to remote sites, and while 

waiting for the response, holds on to other locks!
– If sites or links fail, Xact cannot commit until they 

are back up.
– Even if there is no failure, committing must follow 

an expensive commit protocol with many msgs.

❖ So the alternative of asynchronous replication is 
becoming widely used.
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Asynchronous Replication

❖ Allows modifying Xact to commit before all 
copies have been changed (and readers 
nonetheless look at just one copy).
– Users must be aware of which copy they are 

reading, and that copies may be out-of-sync for 
short periods of time.

❖ Two approaches:  Primary Site and Peer-to-
Peer replication.
– Difference lies in how many copies are 

``updatable’’ or ``master copies’’.
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Peer-to-Peer Replication

❖ More than one of the copies of an object can be a 
master in this approach.

❖ Changes to a master copy must be propagated 
to other copies somehow.

❖ If two master copies are changed in a conflicting 
manner, this must be resolved. (e.g., Site 1: Joe’s 
age changed to 35; Site 2: to 36)

❖ Best used when conflicts do not arise:
– E.g., Each master site owns a disjoint fragment.
– E.g., Updating rights owned by one master at a time.
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Primary Site Replication

❖ Exactly one copy of a relation is designated the 
primary or master copy.  Replicas at other sites 
cannot be directly updated.
– The primary copy is published.
– Other sites subscribe to (fragments of) this 

relation; these are secondary copies.
❖ Main issue:  How are changes to the primary copy 

propagated to the secondary copies?
– Done in two steps.  First, capture changes made 

by committed Xacts; then apply these changes.
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Implementing the Capture Step

❖ Log-Based Capture: The log (kept for recovery) 
is used to generate a Change Data Table (CDT).
– If this is done when the log tail is written to disk, 

must somehow remove changes due to subsequently 
aborted Xacts.

❖ Procedural Capture: A procedure that is 
automatically invoked (trigger; more later!) 
does the capture; typically, just takes a 
snapshot.

❖ Log-Based Capture is better (cheaper, faster) 
but relies on proprietary log details.
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Implementing the Apply Step
❖ The Apply process at the secondary site periodically 

obtains (a snapshot or) changes to the CDT table 
from the primary site, and updates the copy.
– Period can be timer-based or user/application defined.

❖ Replica can be a view over the modified relation!
– If so, the replication consists of incrementally updating 

the materialized view as the relation changes.

❖ Log-Based Capture plus continuous Apply 
minimizes delay in propagating changes.

❖ Procedural Capture plus application-driven Apply 
is the most flexible way to process changes.
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Data Warehousing and Replication

❖ A hot trend: Building giant “warehouses” of 
data from many sites.
– Enables complex decision support queries

over data from across an organization.
❖ Warehouses can be seen as an instance of 

asynchronous replication.
– Source data typically controlled by different DBMSs; 

emphasis on “cleaning” data and removing 
mismatches ($ vs. rupees) while creating replicas.  

❖ Procedural capture and application Apply best 
for this environment.
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Distributed Locking
❖ How do we manage locks for objects across 

many sites?  
– Centralized: One site does all locking.

◆ Vulnerable to single site failure.

– Primary Copy: All locking for an object 
done at the primary copy site for this object.

◆ Reading requires access to locking site as well as 
site where the object is stored.

– Fully Distributed: Locking for a copy done 
at site where the copy is stored.

◆ Locks at all sites while writing an object.
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Distributed Deadlock Detection
❖ Each site maintains a local waits-for graph.
❖ A global deadlock might exist even if the 

local graphs contain no cycles:

T1 T1 T1T2 T2 T2

SITE A SITE B GLOBAL

❖ Three solutions:  Centralized (send all local graphs 
to one site); Hierarchical (organize sites into a 
hierarchy and send local graphs to parent in the 
hierarchy); Timeout (abort Xact if it waits too long).
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Distributed Recovery

❖ Two new issues:
– New kinds of failure, e.g., links and remote 

sites.
– If “sub-transactions” of an Xact execute at 

different sites, all or none must commit.  
Need a commit protocol to achieve this.

❖ A log is maintained at each site, as in a 
centralized DBMS, and commit protocol 
actions are additionally logged.
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Two-Phase Commit (2PC)
❖ Site at which Xact originates is coordinator; other 

sites at which it executes are subordinates.
❖ When an Xact wants to commit:

← Coordinator sends prepare msg to each subordinate.
↑ Subordinate force-writes an abort or prepare log record 

and then sends a no or yes msg to coordinator.
→ If coordinator gets unanimous yes votes, force-writes a 

commit log record and sends commit msg to all subs.  
Else, force-writes abort log rec, and sends abort msg.

↓ Subordinates force-write abort/commit log rec based 
on msg they get, then send ack msg to coordinator.

° Coordinator writes end log rec after getting all acks.
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Comments on 2PC

❖ Two rounds of communication:  first, voting; then, 
termination. Both initiated by coordinator.

❖ Any site can decide to abort an Xact.
❖ Every msg reflects a decision by the sender; to 

ensure that this decision survives failures, it is 
first recorded in the local log.

❖ All commit protocol log recs for an Xact contain
Xactid and Coordinatorid.  The coordinator’s 
abort/commit record also includes ids of all 
subordinates.
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Restart After a Failure at a Site
❖ If we have a commit or abort log rec for Xact T, but 

not an end rec, must redo/undo T.
– If this site is the coordinator for T, keep sending 

commit/abort msgs to subs until acks received.

❖ If we have a prepare log rec for Xact T, but not 
commit/abort, this site is a subordinate for T.
– Repeatedly contact the coordinator to find status of T, 

then write commit/abort log rec; redo/undo T; and write 
end log rec.

❖ If we don’t have even a prepare log rec for T, 
unilaterally abort and undo T.
– This site may be coordinator!  If so, subs may send msgs.
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Blocking

❖ If coordinator for Xact T fails, subordinates 
who have voted yes cannot decide whether to 
commit or abort T until coordinator recovers.
– T is blocked.
– Even if all subordinates know each other 

(extra overhead in prepare msg) they are 
blocked unless one of them voted no.
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Link and Remote Site Failures

❖ If a remote site does not respond during the 
commit protocol for Xact T, either because the 
site failed or the link failed:
– If the current site is the coordinator for T, 

should abort T.
– If the current site is a subordinate, and has 

not yet voted yes, it should abort T.
– If the current site is a subordinate and has 

voted yes, it is blocked until the 
coordinator responds.



Database Management Systems, 2nd Edition. R. Ramakrishnan and Johannes Gehrke 30

Observations on 2PC

❖ Ack msgs used to let coordinator know when 
it can “forget” an Xact; until it receives all
acks, it must keep T in the Xact Table.

❖ If coordinator fails after sending prepare
msgs but before writing commit/abort log
recs, when it comes back up it aborts the Xact.

❖ If a subtransaction does no updates, its 
commit or abort status is irrelevant.
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2PC with Presumed Abort

❖ When coordinator aborts T, it undoes T and 
removes it from the Xact Table immediately.
– Doesn’t wait for acks; “presumes abort” if Xact not in

Xact Table.  Names of subs not recorded in abort log 
rec.

❖ Subordinates do not send acks on abort.
❖ If subxact does not do updates, it responds to 

prepare msg with reader instead of yes/no.
❖ Coordinator subsequently ignores readers.
❖ If all subxacts are readers, 2nd phase not needed.
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Summary

❖ Parallel DBMSs designed for scalable 
performance.  Relational operators very well-
suited for parallel execution.
– Pipeline and partitioned parallelism.

❖ Distributed DBMSs offer site autonomy and 
distributed administration.  Must revisit 
storage and catalog techniques, concurrency 
control, and recovery issues.


