
Database Management Systems, 2nd Edition. R. Ramakrishnan and Johannes Gehrke 1

Distributed Databases

Chapter 21, Part B

Database Management Systems, 2nd Edition. R. Ramakrishnan and Johannes Gehrke 2

Introduction

❖ Data is stored at several sites, each managed
by a DBMS that can run independently.

❖ Distributed Data Independence: Users
should not have to know where data is
located (extends Physical and Logical Data
Independence principles).

❖ Distributed Transaction Atomicity: Users
should be able to write Xacts accessing
multiple sites just like local Xacts.

Database Management Systems, 2nd Edition. R. Ramakrishnan and Johannes Gehrke 3

Recent Trends

❖ Users have to be aware of where data is
located, i.e., Distributed Data Independence
and Distributed Transaction Atomicity are
not supported.

❖ These properties are hard to support
efficiently.

❖ For globally distributed sites, these properties
may not even be desirable due to
administrative overheads of making location
of data transparent.

Database Management Systems, 2nd Edition. R. Ramakrishnan and Johannes Gehrke 4

Types of Distributed Databases

❖ Homogeneous: Every site runs same type of
DBMS.

❖ Heterogeneous: Different sites run different
DBMSs (different RDBMSs or even non-
relational DBMSs).

DBMS1 DBMS2 DBMS3

Gateway

Database Management Systems, 2nd Edition. R. Ramakrishnan and Johannes Gehrke 5

Distributed DBMS Architectures

❖ Client-Server

❖ Collaborating-Server

CLIENT CLIENT

SERVER SERVER SERVER

QUERY

SERVER

SERVER

SERVER
QUERY

Client ships query
to single site. All query
processing at server.

- Thin vs. fat clients.
- Set-oriented
communication,
client side caching.

Query can span multiple
sites.

Database Management Systems, 2nd Edition. R. Ramakrishnan and Johannes Gehrke 6

Storing Data

❖ Fragmentation
– Horizontal: Usually disjoint.
– Vertical: Lossless-join; tids.

❖ Replication
– Gives increased availability.
– Faster query evaluation.
– Synchronous vs. Asynchronous.

◆ Vary in how current copies are.

TID

t1

t2

t3
t4

R1

R1 R2

R3

SITE A

SITE B

Database Management Systems, 2nd Edition. R. Ramakrishnan and Johannes Gehrke 7

Distributed Catalog Management

❖ Must keep track of how data is distributed
across sites.

❖ Must be able to name each replica of each
fragment. To preserve local autonomy:
– <local-name, birth-site>

❖ Site Catalog: Describes all objects (fragments,
replicas) at a site + Keeps track of replicas of
relations created at this site.
– To find a relation, look up its birth-site catalog.
– Birth-site never changes, even if relation is moved.

Database Management Systems, 2nd Edition. R. Ramakrishnan and Johannes Gehrke 8

Distributed Queries

❖ Horizontally Fragmented: Tuples with rating
< 5 at Shanghai, >= 5 at Tokyo.
– Must compute SUM(age), COUNT(age) at both sites.
– If WHERE contained just S.rating>6, just one site.

❖ Vertically Fragmented: sid and rating at
Shanghai, sname and age at Tokyo, tid at both.
– Must reconstruct relation by join on tid, then

evaluate the query.

❖ Replicated: Sailors copies at both sites.
– Choice of site based on local costs, shipping costs.

SELECT AVG(S.age)
FROM Sailors S
WHERE S.rating > 3

AND S.rating < 7

Database Management Systems, 2nd Edition. R. Ramakrishnan and Johannes Gehrke 9

Distributed Joins

❖ Fetch as Needed, Page NL, Sailors as outer:
– Cost: 500 D + 500 * 1000 (D+S)
– D is cost to read/write page; S is cost to ship page.
– If query was not submitted at London, must add

cost of shipping result to query site.
– Can also do INL at London, fetching matching

Reserves tuples to London as needed.

❖ Ship to One Site: Ship Reserves to London.
– Cost: 1000 S + 4500 D (SM Join; cost = 3*(500+1000))
– If result size is very large, may be better to ship both

relations to result site and then join them!

Sailors Reserves

LONDON PARIS

500 pages 1000 pages

Database Management Systems, 2nd Edition. R. Ramakrishnan and Johannes Gehrke 10

Semijoin
❖ At London, project Sailors onto join columns and

ship this to Paris.
❖ At Paris, join Sailors projection with Reserves.

– Result is called reduction of Reserves wrt Sailors.

❖ Ship reduction of Reserves to London.
❖ At London, join Sailors with reduction of Reserves.
❖ Idea: Tradeoff the cost of computing and shipping

projection and computing and shipping projection
for cost of shipping full Reserves relation.

❖ Especially useful if there is a selection on Sailors,
and answer desired at London.

Database Management Systems, 2nd Edition. R. Ramakrishnan and Johannes Gehrke 11

Bloomjoin

❖ At London, compute a bit-vector of some size k:
– Hash join column values into range 0 to k-1.
– If some tuple hashes to I, set bit I to 1 (I from 0 to k-1).
– Ship bit-vector to Paris.

❖ At Paris, hash each tuple of Reserves similarly, and
discard tuples that hash to 0 in Sailors bit-vector.
– Result is called reduction of Reserves wrt Sailors.

❖ Ship bit-vector reduced Reserves to London.
❖ At London, join Sailors with reduced Reserves.
❖ Bit-vector cheaper to ship, almost as effective.

Database Management Systems, 2nd Edition. R. Ramakrishnan and Johannes Gehrke 12

Distributed Query Optimization

❖ Cost-based approach; consider all plans, pick
cheapest; similar to centralized optimization.
– Difference 1: Communication costs must be

considered.
– Difference 2: Local site autonomy must be

respected.
– Difference 3: New distributed join methods.

❖ Query site constructs global plan, with suggested
local plans describing processing at each site.
– If a site can improve suggested local plan, free to do so.

Database Management Systems, 2nd Edition. R. Ramakrishnan and Johannes Gehrke 13

Updating Distributed Data

❖ Synchronous Replication: All copies of a
modified relation (fragment) must be
updated before the modifying Xact commits.
– Data distribution is made transparent to users.

❖ Asynchronous Replication: Copies of a
modified relation are only periodically
updated; different copies may get out of
synch in the meantime.
– Users must be aware of data distribution.
– Current products follow this approach.

Database Management Systems, 2nd Edition. R. Ramakrishnan and Johannes Gehrke 14

Synchronous Replication

❖ Voting: Xact must write a majority of copies to
modify an object; must read enough copies to be
sure of seeing at least one most recent copy.
– E.g., 10 copies; 7 written for update; 4 copies read.
– Each copy has version number.
– Not attractive usually because reads are common.

❖ Read-any Write-all: Writes are slower and reads
are faster, relative to Voting.
– Most common approach to synchronous replication.

❖ Choice of technique determines which locks to set.

Database Management Systems, 2nd Edition. R. Ramakrishnan and Johannes Gehrke 15

Cost of Synchronous Replication

❖ Before an update Xact can commit, it must
obtain locks on all modified copies.
– Sends lock requests to remote sites, and while

waiting for the response, holds on to other locks!
– If sites or links fail, Xact cannot commit until they

are back up.
– Even if there is no failure, committing must follow

an expensive commit protocol with many msgs.

❖ So the alternative of asynchronous replication is
becoming widely used.

Database Management Systems, 2nd Edition. R. Ramakrishnan and Johannes Gehrke 16

Asynchronous Replication

❖ Allows modifying Xact to commit before all
copies have been changed (and readers
nonetheless look at just one copy).
– Users must be aware of which copy they are

reading, and that copies may be out-of-sync for
short periods of time.

❖ Two approaches: Primary Site and Peer-to-
Peer replication.
– Difference lies in how many copies are

``updatable’’ or ``master copies’’.

Database Management Systems, 2nd Edition. R. Ramakrishnan and Johannes Gehrke 17

Peer-to-Peer Replication

❖ More than one of the copies of an object can be a
master in this approach.

❖ Changes to a master copy must be propagated
to other copies somehow.

❖ If two master copies are changed in a conflicting
manner, this must be resolved. (e.g., Site 1: Joe’s
age changed to 35; Site 2: to 36)

❖ Best used when conflicts do not arise:
– E.g., Each master site owns a disjoint fragment.
– E.g., Updating rights owned by one master at a time.

Database Management Systems, 2nd Edition. R. Ramakrishnan and Johannes Gehrke 18

Primary Site Replication

❖ Exactly one copy of a relation is designated the
primary or master copy. Replicas at other sites
cannot be directly updated.
– The primary copy is published.
– Other sites subscribe to (fragments of) this

relation; these are secondary copies.
❖ Main issue: How are changes to the primary copy

propagated to the secondary copies?
– Done in two steps. First, capture changes made

by committed Xacts; then apply these changes.

Database Management Systems, 2nd Edition. R. Ramakrishnan and Johannes Gehrke 19

Implementing the Capture Step

❖ Log-Based Capture: The log (kept for recovery)
is used to generate a Change Data Table (CDT).
– If this is done when the log tail is written to disk,

must somehow remove changes due to subsequently
aborted Xacts.

❖ Procedural Capture: A procedure that is
automatically invoked (trigger; more later!)
does the capture; typically, just takes a
snapshot.

❖ Log-Based Capture is better (cheaper, faster)
but relies on proprietary log details.

Database Management Systems, 2nd Edition. R. Ramakrishnan and Johannes Gehrke 20

Implementing the Apply Step
❖ The Apply process at the secondary site periodically

obtains (a snapshot or) changes to the CDT table
from the primary site, and updates the copy.
– Period can be timer-based or user/application defined.

❖ Replica can be a view over the modified relation!
– If so, the replication consists of incrementally updating

the materialized view as the relation changes.

❖ Log-Based Capture plus continuous Apply
minimizes delay in propagating changes.

❖ Procedural Capture plus application-driven Apply
is the most flexible way to process changes.

Database Management Systems, 2nd Edition. R. Ramakrishnan and Johannes Gehrke 21

Data Warehousing and Replication

❖ A hot trend: Building giant “warehouses” of
data from many sites.
– Enables complex decision support queries

over data from across an organization.
❖ Warehouses can be seen as an instance of

asynchronous replication.
– Source data typically controlled by different DBMSs;

emphasis on “cleaning” data and removing
mismatches ($ vs. rupees) while creating replicas.

❖ Procedural capture and application Apply best
for this environment.

Database Management Systems, 2nd Edition. R. Ramakrishnan and Johannes Gehrke 22

Distributed Locking
❖ How do we manage locks for objects across

many sites?
– Centralized: One site does all locking.

◆ Vulnerable to single site failure.

– Primary Copy: All locking for an object
done at the primary copy site for this object.

◆ Reading requires access to locking site as well as
site where the object is stored.

– Fully Distributed: Locking for a copy done
at site where the copy is stored.

◆ Locks at all sites while writing an object.

Database Management Systems, 2nd Edition. R. Ramakrishnan and Johannes Gehrke 23

Distributed Deadlock Detection
❖ Each site maintains a local waits-for graph.
❖ A global deadlock might exist even if the

local graphs contain no cycles:

T1 T1 T1T2 T2 T2

SITE A SITE B GLOBAL

❖ Three solutions: Centralized (send all local graphs
to one site); Hierarchical (organize sites into a
hierarchy and send local graphs to parent in the
hierarchy); Timeout (abort Xact if it waits too long).

Database Management Systems, 2nd Edition. R. Ramakrishnan and Johannes Gehrke 24

Distributed Recovery

❖ Two new issues:
– New kinds of failure, e.g., links and remote

sites.
– If “sub-transactions” of an Xact execute at

different sites, all or none must commit.
Need a commit protocol to achieve this.

❖ A log is maintained at each site, as in a
centralized DBMS, and commit protocol
actions are additionally logged.

Database Management Systems, 2nd Edition. R. Ramakrishnan and Johannes Gehrke 25

Two-Phase Commit (2PC)
❖ Site at which Xact originates is coordinator; other

sites at which it executes are subordinates.
❖ When an Xact wants to commit:

← Coordinator sends prepare msg to each subordinate.
↑ Subordinate force-writes an abort or prepare log record

and then sends a no or yes msg to coordinator.
→ If coordinator gets unanimous yes votes, force-writes a

commit log record and sends commit msg to all subs.
Else, force-writes abort log rec, and sends abort msg.

↓ Subordinates force-write abort/commit log rec based
on msg they get, then send ack msg to coordinator.

° Coordinator writes end log rec after getting all acks.

Database Management Systems, 2nd Edition. R. Ramakrishnan and Johannes Gehrke 26

Comments on 2PC

❖ Two rounds of communication: first, voting; then,
termination. Both initiated by coordinator.

❖ Any site can decide to abort an Xact.
❖ Every msg reflects a decision by the sender; to

ensure that this decision survives failures, it is
first recorded in the local log.

❖ All commit protocol log recs for an Xact contain
Xactid and Coordinatorid. The coordinator’s
abort/commit record also includes ids of all
subordinates.

Database Management Systems, 2nd Edition. R. Ramakrishnan and Johannes Gehrke 27

Restart After a Failure at a Site
❖ If we have a commit or abort log rec for Xact T, but

not an end rec, must redo/undo T.
– If this site is the coordinator for T, keep sending

commit/abort msgs to subs until acks received.

❖ If we have a prepare log rec for Xact T, but not
commit/abort, this site is a subordinate for T.
– Repeatedly contact the coordinator to find status of T,

then write commit/abort log rec; redo/undo T; and write
end log rec.

❖ If we don’t have even a prepare log rec for T,
unilaterally abort and undo T.
– This site may be coordinator! If so, subs may send msgs.

Database Management Systems, 2nd Edition. R. Ramakrishnan and Johannes Gehrke 28

Blocking

❖ If coordinator for Xact T fails, subordinates
who have voted yes cannot decide whether to
commit or abort T until coordinator recovers.
– T is blocked.
– Even if all subordinates know each other

(extra overhead in prepare msg) they are
blocked unless one of them voted no.

Database Management Systems, 2nd Edition. R. Ramakrishnan and Johannes Gehrke 29

Link and Remote Site Failures

❖ If a remote site does not respond during the
commit protocol for Xact T, either because the
site failed or the link failed:
– If the current site is the coordinator for T,

should abort T.
– If the current site is a subordinate, and has

not yet voted yes, it should abort T.
– If the current site is a subordinate and has

voted yes, it is blocked until the
coordinator responds.

Database Management Systems, 2nd Edition. R. Ramakrishnan and Johannes Gehrke 30

Observations on 2PC

❖ Ack msgs used to let coordinator know when
it can “forget” an Xact; until it receives all
acks, it must keep T in the Xact Table.

❖ If coordinator fails after sending prepare
msgs but before writing commit/abort log
recs, when it comes back up it aborts the Xact.

❖ If a subtransaction does no updates, its
commit or abort status is irrelevant.

Database Management Systems, 2nd Edition. R. Ramakrishnan and Johannes Gehrke 31

2PC with Presumed Abort

❖ When coordinator aborts T, it undoes T and
removes it from the Xact Table immediately.
– Doesn’t wait for acks; “presumes abort” if Xact not in

Xact Table. Names of subs not recorded in abort log
rec.

❖ Subordinates do not send acks on abort.
❖ If subxact does not do updates, it responds to

prepare msg with reader instead of yes/no.
❖ Coordinator subsequently ignores readers.
❖ If all subxacts are readers, 2nd phase not needed.

Database Management Systems, 2nd Edition. R. Ramakrishnan and Johannes Gehrke 32

Summary

❖ Parallel DBMSs designed for scalable
performance. Relational operators very well-
suited for parallel execution.
– Pipeline and partitioned parallelism.

❖ Distributed DBMSs offer site autonomy and
distributed administration. Must revisit
storage and catalog techniques, concurrency
control, and recovery issues.

