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ABSTRACT
In this paper, we address the problem of evaluating his-
torical queries on graphs. To this end, we investigate the
use of graph deltas, i.e., a log of time-annotated graph op-
erations. Our storage model maintains the current graph
snapshot and the delta. We reconstruct past snapshots by
applying appropriate parts of the graph delta on the current
snapshot. Query evaluation proceeds on the reconstructed
snapshots but we also propose algorithms based mostly on
deltas for efficiency. We introduce various techniques for
improving performance, including materializing intermedi-
ate snapshots, partial reconstruction and indexing deltas.

1. INTRODUCTION
In recent years, there has been increased interest in graph

structures representing real-world networks such as social
networks, citation and hyperlink networks as well as biology
and computer networks. In this paper, we focus on social
network graphs. Such graphs are characterized by large-
scale, since the number of participating nodes reaches mil-
lions. Social graphs are also highly dynamic, since the cor-
responding social networks constantly evolve through time.

An interesting problem in this setting is supporting his-
torical queries. By historical queries, we refer to queries
that involve the state of the graph at any time interval in
the past. For instance, consider queries about the popular-
ity (e.g., number of friends) of a user at some specific time
in the past, about how this popularity changed over time
as well as queries about the diameter of a network over a
time period. Historical queries are important when study-
ing graphs that change through time for various applications
such as version maintenance and monitoring and analyzing
the evolution of the graph.

However, most recent research mainly addresses the prob-
lems introduced by the large-scale of social graphs [4, 5, 7]
and ignores the temporal aspects by focusing on queries that
involve only the current graph snapshot. In this paper, we
introduce a framework for supporting historical queries that
involve one or more graph snapshots. To this end, we pro-
pose a general model for incorporating information about
how a graph changes through time based on graph deltas.
A graph delta is a log of time-annotated graph update oper-
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ations such as the addition and removal of nodes and edges.
At each time instant, we store a current snapshot of the
graph plus the graph delta that records the changes that
have occurred. By applying the graph delta on the snapshot,
any past snapshot can be reconstructed. We also discuss ma-
terializing intermediate snapshots to improve performance.

The evaluation of historical queries is based on a two-
phase plan that first reconstructs the snapshot or snapshots
that are required to evaluate the query. We address the high
cost of snapshot reconstruction by proposing query plans
that rely only or mostly on the delta when this is possible.
Furthermore, for node-centric queries, i.e., queries that ac-
cess only parts of the graph, we introduce partial snapshot
reconstruction that constructs only the subgraph required to
evaluate the query. Finally, we show how building indexes
on deltas can further improve efficiency.

The rest of this paper is organized as follows. Section 2
introduces our model for storing time-evolving graphs. Sec-
tion 3 presents a classification of historical queries and query
plans for their evaluation. Section 4 reports experimental re-
sults. Section 5 summarizes related work, while Section 6
concludes the paper.

2. MODEL
We model a social network as an undirected graph, G =

(V,E). Each graph node vi ∈ V corresponds to a user ui

of the social network. Edges (vi, vj) ∈ E capture social
relationships (i.e., friendship) between users ui and uj that
correspond to nodes vi and vj ∈ V respectively.

Note that our model supports symmetrical social rela-
tionships between users, such as friendship in Facebook. If
we consider asymmetrical relationships such as the ones in
Twitter, then the graph representing the network is directed
as the edges capturing the “follower” and “following” rela-
tionships in the network are also directed, i.e., ui can “fol-
low” uj , while uj does not “follow” ui. In the rest of the
paper, we focus on undirected graphs but our algorithms
can be easily adopted to account for directed graphs.

Our model for capturing the evolution of the social net-
work through time is based on the use of graph snapshots
and graph deltas.

2.1 Snapshots and Deltas
We consider an element, node or edge, of a graph G as

valid for the time periods for which the corresponding item
(user or friendship) of the social network it represents is
also valid. Each node vi ∈ V is valid for the time periods
for which the corresponding user ui participates in the so-
cial network represented by the graph. Similarly, each edge
(vi, vj) ∈ E is valid for the time periods that the correspond-
ing users ui and uj are friends in the network.

Definition 1 (Graph Snapshot). A graph snapshot
of a graph G, at a time point t, is defined as the graph SGt =



(V ′, E′), where V ′ ⊆ V and E′ ⊆ E, such that vi ∈ V ′, if
and only if, vi is valid at time point t and (vi, vj) ∈ E′, if
and only if, (vi, vj) is valid at time point t.

Graph G captures the social network as it evolves. Any
update in the social network is directly reflected on G. A
graph snapshot SGt of G can be simply viewed as an in-
stance of G frozen at time point t, capturing the state of G
at this specific time point.

We focus on the structure of the social network and thus
consider the following four basic update operations that af-
fect its structure: (1) the addition of a new user ui in the
social network, (2) the creation of a new friendship rela-
tionship between two users ui and uj that were not friends,
(3) the removal of an existing user ui and (4) the deletion
of an existing friendship relationship between two users ui

and uj that were friends. The corresponding operations in
G = (V,E) are:

1. addNode(vi) that adds a new node vi in V .
2. addEdge(vi, vj) that creates a new edge (vi, vj) between

vi and vj in E.
3. remNode(vi) that deletes vi from V and all edges that

involve vi from E.
4. remEdge(vi, vj) that deletes edge (vi, vj) from E.

Given two graph snapshots SGtk and SGtl of a graph
G, we maintain in deltas the operations that, if applied to
SGtk , produce SGtl . In the spirit of [8], let us consider first,
deltas as sets.

Definition 2 (Delta). Given two snapshots SGtk =
(Vk, Ek) and SGtl = (Vl, El) of a graph G, delta ∆tk,tl is a
set of operations with the following properties:

1. ∀ vi, s.t., vi /∈ Vk and vi ∈ Vl, addNode(vi) ∈ ∆tk,tl .
2. ∀ vi, s.t., vi ∈ Vk and vi /∈ Vl, remNode(vi) ∈ ∆tk,tl .
3. ∀ (vi, vj), s.t., (vi, vj) /∈ Ek and (vi, vj) ∈ El,

addEdge(vi, vj) ∈ ∆tk,tl .
4. ∀ (vi, vj), s.t., (vi, vj) ∈ Ek, (vi, vj) /∈ El, vi ∈ Vl and vj

∈ Vl, remEdge(vi, vj) ∈ ∆tk,tl .

These are the only operations that appear in ∆tk,tl .

∆tk,tl is the unique minimal set needed for deriving SGtl

from SGtk , since it does not contain any redundant opera-
tions and all its operations are necessary for producing SGtl .

Lemma 1. ∆tk,tl is unique and minimal.

Applying deltas on graph snapshots is denoted using ◦:
∆tk,tl ◦ SGtk = SGtl . We say that a delta ∆tk,tl is a for-
ward delta, if tk < tl, i.e., when it includes operations to be
applied on an older snapshot to create a more recent one.

In our current approach, we record all update operations.
Thus, our deltas may contain redundant operations. For ex-
ample, consider an edge (vi, vj) that represents a friendship
relationship created between ui and uj and later deleted.
We maintain both corresponding addEdge and remEdge op-
erations, since we want to be able to retrieve all snapshots,
including the one when (ui, uj) was valid. We maintain such
deltas as sets of operations annotated with the time point
at which the operation occurred. Updates are recorder as
they happen in the social network, “forward” in time. We
call such deltas Interval Deltas.

Definition 3 (Interval Delta). For a graph G and
a time interval [t0, tcur], an interval delta ∆[t0,tcur ] is a set

of pairs, (op, t), such that a pair (op, t) ∈ ∆[t0,tcur], if and

only if, operation op appeared in G at time point t ∈ [t0, tcur].

In the rest of this paper, we refer to interval deltas as
deltas for simplicity as this is the only type of deltas we use

Algorithm 1 ForRec(SGt0 ,∆[t0,tcur ], t
′)

Input: SGt0 , ∆[t0,tcur], t
′ ∈ [t0, tcur ]

Output: SGt′

1: t := t0
2: copy SGt0 to SGt′

3: Start from the end of ∆[t0,tcur ]

4: while t < t′ do
5: Read next operation op and its time t in ∆[t0,tcur]

6: if op = addNode(vi) then
7: add new node vi in SGt′

8: else if op = addEdge(vi, vj) then

9: Find vi and vj in SGt′

10: add new edge (vi, vj)
11: else if op = remNode(vi) then
12: Find vi in SGt′

13: Remove vi from SGt′

14: else
15: Find vi and vj in SGt′

16: remove edge (vi, vj)
17: end if
18: end while
19: return SGt′ ;

in our approach. Since we record all update operations in
the time interval, our deltas are not minimal. As explained,
redundant information is required for being able to retrieve
a snapshot for any time point in the interval. Formally, we
want to ensure that our deltas are complete.

Definition 4 (Complete Delta). A delta ∆[t0,tcur]

is complete, if given the graph snapshot SGt0 , we can derive
any snapshot SGt′ , t

′ ∈ [t0, tcur], by applying the operations
ops of ∆[t0,tcur] for which t < t′, that is if we apply ∆[t0,t′] ⊆
∆[t0,tcur]:

∆[t0,t′] ◦ SGt0 = SGt′

For complete deltas, to reconstruct any snapshot, we just
need an initial snapshot and the delta. Algorithm 1 presents
the reconstruction process, assuming for simplicity, that op-
erations in the deltas are ordered by time.
Inverted Deltas. So far we have considered only a forward
application of deltas. Let us now consider the case where we
want to move“backwards” in time. That is, given a snapshot
SGtk at tk, we want to retrieve a snapshot SGtl at tl, where
tl < tk. To achieve this, we define an inverted delta and
apply this delta on SGk.

Definition 5 (Inverted Delta (∆̄)). Given a graph
snapshot SGtcur and ∆[t0,tcur], we define the inverted Delta,

∆̄[t0,tcur], to be the set of operations such that:

for each t′ ∈ [t0, tcur], ∆̄[t′,tcur ] ◦ SGtcur = SGt′

and ∆̄[t′,tcur] ⊆ ∆̄[t0,tcur].

To invert our deltas, we apply the reverse operation for
each of the operations they include. In particular:

1. addNode(vi) = remNode(vi).

2. addEdge(vi, vj) = remEdge(vi, vj).

3. remNode(vi) = addNode(vi).

4. remEdge(vi, vj) = addEdge(vi, vj).

All operations can be inverted as long as the necessary infor-
mation is maintained in the forward delta. In particular, to
maintain a complete delta that is also invertible, we make the
following assumption. Before recording any remNode(vi)
in the delta, we record first remEdge(vi, vj) operations, for
each edge of vi, annotated with the same time point as the
remNode(vi) operation.

Algorithm 2 presents the backward reconstruction proce-
dure that given a graph snapshot derives a previous one by
inverting the delta file.



Algorithm 2 BackRec(SGtcur ,∆[t0,tcur], t
′)

Input: SGtcur , ∆[t0,tcur ], t
′ ∈ [t0, tcur]

Output: SGt′

1: t := tcur
2: copy SGtcur to SGt′

3: Open ∆[t0,tcur] and start reading from its beginning

4: while t > t′ do
5: Read next operation op and its time t in ∆[t0,tcur ]

6: Apply op at SGt′

7: end while
8: return SGt′ ;

2.2 Storage and Maintenance
We maintain forward, complete and invertible deltas. Let

us now discuss issues regarding the efficient reconstruction
of snapshots using such deltas.

Theorem 1. For a graph G, given a delta ∆[t0,tcur], if
the delta is complete and invertible, to reconstruct a graph
snapshot of G at any time point t ∈ [t0, tcur], it suffices to
maintain only one graph snapshot.

Proof. Let SGt, t ∈ [t0, tcur], be the graph snapshot we
maintain. For a time point tk ∈ [t0, tcur] such that tk > t,
we reconstruct SGtk with forward reconstruction by apply-
ing ∆[t,tk] ⊆ ∆[t0,tcur ] on SGt. For a time point tl ∈ [t0, tcur]
such that tl < t, we reconstruct SGtl with backward recon-
struction by applying ∆̄[tl,t] ⊆ ∆̄[t0,tcur] on SGt.

Thus, based on Theorem 1, to capture the evolution of G
and support historical queries, it suffices to maintain either
the original graph snapshot SGt0 , since with forward recon-
struction, we can derive any snapshot SGt, or the current
graph snapshot SGtcur , since with backward reconstruction,
we can derive again any SGt. The only difference between
these two approaches is the cost required for reconstructing
SGt.

If we assume that the cost of applying either the delta
or the inverted delta on a snapshot is the same, the main
factor that influences the reconstruction cost is the amount
of operations (and their type) that we need to apply on the
given snapshot. Therefore, it is easy to see that maintaining
the original snapshot SGt0 is more appropriate when we ex-
pect more queries about the past, while maintaining SGtcur

is more appropriate when we expect queries about the more
recent past to be more popular.

In our work, we follow the second approach, since this
approach supports queries on the current graph snapshot
more efficiently. Thus, we maintain the current snapshot
SGtcur and ∆[t0,tcur]. As updates occur in G, we need to
update both the current snapshot and the delta. Algorithm
3 describes the update procedure. It uses an additional tem-
porary delta that records the updates on G until the next
time unit and then applies this delta on the current snap-
shot to derive the next current snapshot. The algorithm is
applied anew for the next time unit, and so on.
Materializing Snapshots. While maintaining a single
snapshot and the delta suffices for reconstructing any graph
snapshot in the time interval covered by the delta, such re-
construction may not be efficient. As time progresses and
more update operations occur, deltas grow in size and ap-
plying large parts of them to reconstruct past snapshots may
become very costly. For instance, if we want to reconstruct
the original graph snapshot, we have to apply the entire
delta file that may include update operations that have oc-
curred in a social network over months or even years.

To improve efficiency, we propose materializing and main-
taining intermediate graph snapshots in addition to the cur-
rent snapshot SGtcur . Let S be the sequence, SGti1

, . . .

Algorithm 3 Update(G,SGtcur ,∆[t0,tcur])

Input: G,SGtcur , ∆[t0,tcur]

Output: SGtcur+1
,∆[t0,tcur+1]

1: Initialize ∆′

[tcur,tcur+1]

2: while Time point t ∈ [tcur, tcur+1] do
3: for all Update operations op on G in t ∈ [tcur, tcur+1] do
4: Record (op, t) in ∆′

[tcur,tcur+1]

5: end for
6: end while
7: SGtcur+1

= ∆′

[tcur,tcur+1]
◦ SGtcur

8: Append ∆′

[tcur,tcur+1]
at the end of ∆[t0,tcur] to get

∆[t0,tcur+1]

9: return SGtcur+1
,∆[t0,tcur+1]

;

SGtim
, SGtcur , m ≥ 1, of the available materialized snap-

shots. To reconstruct a snapshot SGtk , we would like to
start our reconstruction from the snapshot in this sequence
that would result in the most efficient reconstruction. We
consider different approaches on how to select the most ap-
propriate snapshot, SGtl ∈ S, for reconstructing a snapshot
SGtk .

Time-based selection. Given the sequence S of materialized
snapshots, the snapshot SGtl is defined as the one closest in
time to tk, i.e., the one with the smallest |tk − tl| value over
all tl ∈ [t0, tcur] for which we have materialized snapshots
available.

Operation-based selection. Given the sequence S of mate-
rialized snapshots, the snapshot SGtl is defined as the one
for which the operations in the delta (∆[tl,tk], if tl < tk, or
∆[tk,tl] if tl > tk) that need to be applied on SGtl to derive
SGtk are the minimum over all the other deltas correspond-
ing to the other snapshots in S.

Regardless of the selection method chosen, depending on
whether tl < tk or tl > tk, we need to apply respectively
forward or backward reconstruction using the corresponding
part of the delta.

Time-based selection can be applied more efficiently, as
we only need to determine the snapshot closest in time to
SGtk . However, if the update operations are not uniformly
distributed through time, as is usually the case in social
networks where churns of activity occur often, the selected
snapshot SGtl is not the most appropriate one.

On the other hand, operation-based selection requires that
we measure the number of operations on the corresponding
∆[tl,tk] if tl < tk or ∆[tk,tl] if tl > tk which induces an
additional cost. However, this selection guarantees that the
selected snapshot yields the best cost for the reconstruction
process as it requires the minimum number of operations to
be applied.

To facilitate this process, we may also assume that deltas
are split into disjoint intervals. In particular, along with
each snapshot SGij in the sequence of materialized snap-
shots, we may maintain a delta ∆[tij−1

,tij
] reporting the

update operations from the snapshot preceding it in the se-
quence.
Discussion. An important issue that arises is when do
we materialize a graph snapshot, i.e., how do we select the
time points at which we materialize the next snapshot in the
sequence.

A straightforward approach is to materialize snapshots
periodically, e.g., take one snapshot per hour, day or month.
However, this solution has the same problem with the time-
based selection of snapshots, i.e., it assumes that changes in
a social graph occur uniformly through time.

Similarly to operation-based selection, an alternative ap-



proach is to determine whether to materialize the next snap-
shot or not based on the amount of update operations that
have occurred. Thus, time periods with many changes would
be represented with more snapshots than time periods with
fewer changes.

Finally, snapshot materialization can be based on the sim-
ilarity between snapshots. If two snapshots in successive
time periods are similar, then we do not need to material-
ize both, whereas, if they differ significantly, then we could
materialize both. While at first, this approach seems simi-
lar to determining the next materialized snapshot based on
the number of update operations, they are not the same.
A snapshot may not be very different from a previous one,
even if many operations have occurred, if such operations
reverse themselves, e.g. the same nodes join and leave the
graph repeatedly.

3. EVALUATING HISTORICAL QUERIES
So far, we have discussed the problem of reconstructing

snapshots, given one or more materialized graph snapshots
and deltas. In this section, we address the problem of eval-
uating historical queries.

3.1 Query Types
Historical graph queries can be categorized along two di-

mension: time and the part of the graph they involve. With
regards to the time dimension, queries can be further distin-
guished into point queries and range queries. Point queries
refer to a single point in time, for example, what is the de-
gree of node vi at tk, that may correspond to asking for the
number of friends that user ui had at this specific time in
the past. Range queries refer to a time interval or a set of
time intervals and can be further classified as differential or
aggregate. Differential range queries evaluate how much a
measure changes during a time interval. An example such
query is asking how much the degree of node vi changed in
[tk, tl], that may correspond to asking about the change of
popularity of user ui in this time interval. Finally, aggregate
range queries evaluate an aggregate function over a time in-
terval. An example such query is looking for the average
degree of node vi in [tk, tl], that may correspond to asking
for the average number of friends that user ui had in this
interval.

With regards to the part of the graph, we distinguished
queries as either node-centric or global queries [4]. Node-
centric queries are queries that involve one or a few nodes
of the graph. The degree query that we have used as an ex-
ample for the time dimension is a node-centric query. The
main characteristic of such queries is that their evaluation
does not require traversing the entire graph but only access-
ing a subgraph targeted by the query. Other node-centric
queries include neighborhoods, induced subgraphs, and K-
core queries. Global queries are queries that refer to prop-
erties of the entire graph. Example global queries include
PageRank-based queries, the discovery of connected compo-
nents and estimating the diameter and the degree distribu-
tion. Table 1 summarizes our query classification.

3.2 Query Processing
Next, we present different plans for evaluating historical

queries in [t0, tcur] on a graph G given the current graph
snapshot SGcur and its delta, ∆[t0,tcur ].

3.2.1 Two-Phase Query Plan
A general strategy for evaluating any historical query q

for any time point or range in [t0, tcur] is to reconstruct
the required graph snapshots that are determined by the
query and then evaluate q on them. Thus, the query pro-
cessing plan is a two-phase plan that involves (1) a snap-

shot reconstruction phase and (2) a query processing phase.
During snapshot reconstruction, backwards reconstruction
is applied on SGtcur to acquire the snapshots required for
evaluating q. The query processing phase takes as input the
graph snapshots generated by the first phase, evaluates q on
them and combines the results if needed so as to derive the
final query result. This is the most general plan and can be
used to evaluate all types of queries as indicated in Table 2.

For example for point, node-centric queries that ask for
evaluating a measure m for a node vi (e.g., m may be be
the degree of vi) at time point tk, the two-phase query plan
is defined as follows.

Input: SGtcur , ∆[t0,tcur], tk ∈ [t0, tcur ], vi
Output: m(vi)

1: SGtk=BackRec(SGtcur , ∆[t0,tcur], tk)

2: evaluate m(vi) on SGtk

3: return m(vi);

Now, consider a point range query with range [tk, tl] ⊆
[t0, tcur]. For a point differential query (e.g., how much the
degree of vi has changed in [tk, tl]), the query plan requires
the construction of two snapshots. Note that the second
snapshot, SGtl , is reconstructed based on the first recon-
structed snapshot SGtl to avoid applying the same part of
∆[t0,tcur] twice on the current graph.

Input: SGtcur , ∆[t0,tcur], [tk, tl] ⊆ [t0, tcur ], vi
Output: d

1: SGtl=BackRec(SGtcur , ∆[t0,tcur], tk)

2: SGtk=BackRec(SGtl , ∆[t0,tcur], tl)

3: evaluate mk(vi) on SGtk

4: evaluate ml(vi) on SGtl

5: d = |mk(vi)−ml(vi)|
6: return d;

Let us now consider an aggregate range node-centric query
(e.g., the average degree of vi in [tk, tl]) denoted by F (m(vi)).
This query requires the construction of a snapshot for each
time unit in the time interval so as to compute the average
between all values of m(vi) in this time range.

Input: SGtcur , ∆[t0,tcur], [tk, tl] ⊆ [t0, tcur ], vi
Output: F (m(vi))

1: for all t ∈ [tk, tl] do
2: SGt=BackRec(SGtcur , ∆[t0,tcur], t)

3: evaluate mt(vi) on SGt

4: end for
5: apply aggregation function F on all mt(vi)
6: return F (m(vi));

Similar algorithms can be used for global queries.
For simplicity, we have assumed that reconstruction uses

only the current graph snapshot. If materialized snapshots
are maintained, the only difference is that a selection phase
is applied before the reconstruction phase. During the se-
lection phase, we determine the most appropriate snapshot
to be used for reconstruction and based on this selection
whether to use forward or backward reconstruction. If more
than one snapshot need to be reconstructed for query pro-
cessing, then a different selection and reconstruction pro-
cedure may be used for each one of them. An interesting
problem in this case is re-using reconstructed snapshots. A
simple example was shown for point range queries.

The two-phase query plan can be used to evaluate all types
of historical queries. However, the reconstruction of snap-
shots can be costly. Next, we consider alternative plans for
specific query types that avoid this phase.



Table 1: Examples of query types
X
X
X
X
X
X
X
X

Time
Graph

Node-centric Global

Point the degree of vi at tk the diameter of G at tk

Range
Differential how much the degree of vi changed in [tk, tl] how much the diameter of G changed in [tk, tl]
Aggregate average degree of vi in [tk, tl] average diameter of G in [tk, tl]

Table 2: Query processing
Query Types Query Plans

Two Delta Hybrid
Phase only

Point
Node-centric X X

Global X

Range Node-centric X X X

differential Global X

Range Node-centric X X

aggregate Global X

3.2.2 Delta-Only Query Plan
With delta-only query plans, a query is evaluated directly

on the deltas. No snapshot reconstruction is required. Fur-
thermore, there is no need to access any of the snapshots.
Such plans are applicable to differential range node-centric
queries (Table 2). For such queries one can compute how
much a measure has changed by accessing the correspond-
ing update operations in the delta file for the given time
interval.

For instance, consider a range differential node-centric
query asking for the difference in the degree of node vi in
[tk, tl]. This query can be evaluated with a delta-only plan,
if one just counts the add and remove edge operations that
involve vi in ∆[tk,tl].

3.2.3 Hybrid Query Plan
Finally, we consider hybrid plans. Such plans access both

the current snapshot and the delta, but do not require the
reconstruction of any graph snapshots.

These plans are applicable to point and aggregate range
node-centric queries (Table 2). For instance, consider an ag-
gregate range node-centric query, e.g., asking for the average
degree of vi in [tk, tl]. The hybrid plan evaluates the degree
of vi on SGcur and then traverses ∆[tk,tl] to compute the
degree at each time unit in the requested range. Then, its
average is computed.

Note, that there are cases in which more than one pass
of the ∆[tk,tl] may be required to evaluate a node-centric
measure. For instance, consider a query for the average
degree of the induced subgraph of vi in [tk, tl], where the
induced subgraph of vi is the subgraph formed by vi and its
neighbors. By traversing the delta, we may add new nodes
in the subgraph and therefore need to go back and include
edges of these specific new nodes that have not been included
initially, as they were not part of the original subgraph.

3.3 Delta Indexing and Optimizations
As pointed out, snapshot reconstruction is the most costly

phase in our query plans and we would rather avoid it when-
ever possible. For queries for which reconstruction cannot
be avoided, we present techniques that improve its efficiency.

3.3.1 Partial Reconstruction
The difference between node-centric and global queries

is that node-centric queries do not require traversing the
entire graph but are targeted to one or a few nodes. Let
G′ = (V ′, E′) be the sub-graph of G that a node-centric

query q needs to access. Then, instead of reconstructing
the snapshots SGt that q requires of the entire graph G,
it suffices to reconstruct the corresponding snapshots of the
subgraph G′. During snapshot reconstruction, all add and
remove operations involving nodes and edges such that vi /∈
V ′ and (vi, vj) /∈ E′ are ignored. Multiple passes of the delta
may be required to determine all elements to be included in
the snapshots.

3.3.2 Indexing
To further improve efficiency during reconstruction, we

propose building indexes on the delta. Indexing also im-
proves delta-based query plans by enabling faster access to
specific parts of the delta. Indexing may improve perfor-
mance significantly, especially considering that the size of a
delta grows constantly though time.
Temporal Index. Snapshot reconstruction and query pro-
cessing usually require applying or accessing a part ∆[tk,tl] ⊆
∆[t0,tcur] of the delta file to reconstruct graph snapshots or
evaluate a query. Therefore, using a temporal index im-
proves the efficiency of these procedures by enabling faster
access to the desired parts of the delta.
Node-centric Index. Besides temporal indexing, another
option is to apply node-centric indexing to enable the ef-
ficient location of all operations associated with a specific
node. A node-centric index improves the evaluation of node-
centric queries for all three query plans that we have dis-
cussed. It also facilitates partial reconstruction.

4. PRELIMINARY EVALUATION
The efficiency of processing historical queries depends on

the underlying storage model. In our initial implementa-
tion, deltas are stored in append-only files. Any materialized
graph snapshots are stored in a native graph database. We
also maintain an in-memory node-centric index on the delta
file. The use of a native graph database results in faster ex-
ecution of graph queries, but it does not support any form
of locality.

The goal of this preliminary evaluation is to present some
initial quantitative results regarding the efficiency of the pro-
posed query plans. To this end, we run a node-centric query
that asks for the degree of a random node v at time point
t. We evaluate the following four different plans: (a) a two-
phase query plan without indexing (two-phase), (b) a hybrid
query plan without indexing (hybrid), (c) a two-phase ap-
proach with indexing (two-phase-index) and (d) a hybrid
approach with indexing (hybrid-index). For the two-phase
approach, we used partial reconstruction. We also used only
the current snapshot and backward reconstruction (no ad-
ditional materialized snapshots were used).

We generate graphs that are scale-free, in an effort to
mimic the form of online social network graphs. To generate
scale-free graph snapshots, we use the method in [11] that
extends the Barabasi algorithm [1] for generating successive
scale-free graphs. Table 3 summarizes the characteristics of
the synthetic dataset. All algorithms are implemented in
Java. The experiments were run on a Linux Machine with
2.8GHz Dual Core Intel and 4GB of memory. As our native
graph database, we used Neo4j 1.

1http://neo4j.org



Table 3: Synthetic dataset
number of inserted nodes 5063
number of inserted edges 41067
number of removed edges 18280

size of delta file 64410 operations/1.3 MB
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Figure 1: Run time in ms for executing a degree
query at different time points (time measured in op-
erations).

Figure 1 reports the run time in milliseconds for exe-
cuting the query at different time points. The time in the
x-axis (measured in number of operations) proceeds back-
wards (i.e., point 0 corresponds to the current snapshot).
The more time passes from the current snapshot, the more
expensive is to evaluate the query, since reconstructing the
past snapshot requires the application of more operations.
The two-phase algorithm takes the most amount of time,
due to the cost of the reconstruction phase. This phase
is especially expensive, since in Neo4j, any modification to
stored data is associated with a transaction and is flashed
directly to disk. The usage of a node-centric index on the
delta file leads to significant gains for both the two-phase
and the hybrid approach.

5. RELATED WORK
There is a large body of work on temporal data manage-

ment including relational databases (see, for example [10]
and [12] for excellent surveys on the topic), RDF (e.g., [3])
and XML documents (e.g., [8], [2]). Although maintaining
deltas has also been used in such cases, the large scale and
the logical model, being in our case a graph, introduces new
problems.

Collecting a sequence of versions of XML documents from
the web is considered in [8]. The difference between two
consecutive versions is computed and represented by com-
plete deltas based on persistent identifiers assigned to each
XML node, while only the current version of the document
is maintained. To avoid the overhead of applying deltas to
retrieve previous versions, in [2], they merge all versions of
XML data into one hierarchy where an element appearing
in multiple versions is stored only once along with a times-
tamp. To handle temporal RDF data, temporal reasoning is
incorporated into RDF in [3], thus yielding temporal RDF
graphs. Semantics were also defined for these graphs which
include the notion of temporal entailment as well as a syntax
to incorporate this framework into standard RDF graphs by
adding temporal labels. Clearly, our approach is different in
that it considers time with respect to graph evolution.

Numerous algorithms and data structures have been pro-
posed for processing graph queries on large graphs. GBASE
[4] and Pregel [7] are two general graph management sys-
tems that work in parallel and distributed settings and sup-
port large-scale graphs for various applications. GBASE is
based on a common underlying primitive of several graph
mining operations, which is shown to be a generalized form
of matrix-vector multiplication [5], while Pregel is based
on a sequence of supersteps that are applied in parallel by

each node executing the same user-defined function that ex-
presses the logic of a given algorithm and are separated by
global synchronization points. In future work, we plan to
explore such techniques for reconstructing snapshots in par-
allel.

The most relevant to our work is perhaps the historical
graph structure recently proposed in [11]. The authors con-
sider a sequence of graphs produced as the graph evolves
over time. Since the graphs in the sequence are very similar
to each other, they propose computing graph representatives
by clustering similar graphs and then storing appropriate
differences from these representatives, instead of storing all
graphs. Our approach is different in that we want to sup-
port a broad range of historical queries, not just queries that
involve a single snapshot graph.

There is also a large body of work that studies the evolu-
tion of real-world networks over time. In [6], it was shown
that for a variety of real-world networks, graph density in-
creases following a power-low and the graph diameter shrinks.
Works on specific networks such as Flickr [9] and Facebook
[13] also study network growth and their results can be ex-
ploited to enrich our model.

6. CONCLUSIONS
In this paper, we presented a model for capturing graph

evolution through time based on the use of graph snapshots
and deltas. We showed how by maintaining only the current
graph snapshot and a delta, we can reconstruct any past
graph snapshot. Then, we introduced a general two-phase
query plan based on snapshot reconstruction to evaluate any
historical query as well as a couple of more efficient plans
that avoid reconstruction for specific queries. Finally, we
presented preliminary experimental results.
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