
Cooperative XPath Caching

Kostas Lillis and Evaggelia Pitoura
Computer Science Department
University of Ioannina, Greece

{klillis, pitoura}@cs.uoi.gr

ABSTRACT

Motivated by the fact that XML is increasingly being used
in distributed applications, we propose building a coopera-
tive caching scheme for XML documents. Our scheme allows
sharing cache content among a number of peers. To facilitate
sharing, a distributed prefix-based index is built based on
the queries whose results are cached. In the loosely-coupled
sharing approach, each peer stores in its local cache results
of its own queries and just publishes the associated queries
to the index. In the tightly-coupled approach, each peer is
assigned a specific part of the query space and stores in its
local cache the results of the corresponding queries. Both
approaches result in a dynamic organization of content that
evolves over time based on the query load, the number of
peers and the overall storage available. We present a num-
ber of associated design choices such as using a DHT for
distributing the prefix-based index and a proactive cache
replacement policy. We also report on a number of exper-
iments that show the benefits of cooperative caching and
highlight the pros and cons of loosely and tightly coupled
cache sharing.

Categories and Subject Descriptors

H.2 [Database Management]: Systems; H.3.4 [Information
Storage and Retrieval]: Systems and Software—distributed
systems, performance evaluation

General Terms

Performance

Keywords

XML, cache, peer-to-peer systems

1. INTRODUCTION
XML is being used widely in data exchange applications

in the Internet. As the size and number of XML documents

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’08, June 9–12, 2008, Vancouver, BC, Canada.
Copyright 2008 ACM 978­1­60558­102­6/08/06 ...$5.00.

increase, caching results of previous queries can substan-
tially reduce the communication and computational cost of
processing them in a distributing setting. Caching schemes
for XML databases usually follow a semantic approach [7,
8, 14]: cached data are not organized at the tuple, page or
document level but instead at the level of query descriptors.
In abstract terms, the answers of previous queries are stored
in cache along with the associated query analogously to ma-
terializing a view. As new queries arrive, the system checks
the cache to determine whether the query can be answered
by the cached results of some previous queries.

In many applications, such as when deploying web ser-
vices, or accessing XML sites from the web, XML documents
are queried by a number of peers in close network proxim-
ity with each other. The actual documents themselves are
located in a large number of remote data sources, thus the
cost of locating them and transferring the answers to the
peers is expected to be high. Hence, it is central that the
results of the queries of each peer can be reused to answer
subsequent queries posed by not just the same peer but also
by other peers that submit similar queries. This motivates
building a cooperative cache.

We consider two fundamental ways of sharing cache con-
tent in terms of the degree of cooperation among the par-
ticipating peers. In the loosely-coupled approach, that we
call IndexCache, each peer locally caches the results of its
own queries. A distributed index is built on top of these
local caches to facilitate sharing. Each query consults the
index to locate any peer whose cached results may be used
in answering it. In the tightly-coupled approach, that we call
DataCache, each peer is assigned a particular part of the
cache data space. The results of each query are not stored
at the peer that posed it, but instead at the peer that is
responsible for that part of the data space. While in the
IndexCache, the overall content of the cooperative cache is
influenced by the local workload of each peer, in the Dat-
aCache, the overall content is affected by the aggregated
workload over all peers.

In both approaches, caching is dynamic in the sense that
the physical organization of data changes; it shrinks and ex-
pands based on the current query load, as well as the number
of peers and the available overall storage. This leads to a
form of self-organization. Documents that are frequently
queried are indexed and can be located by looking up the
cache entries. In contradistinction, documents that are less
popular are not indexed and thus must be searched along
all, potentially remote, data sources.

A central issue is how to organize the index in the case

327

of IndexCache or the data content in the case of Data-
Cache. Both the DataCache and the IndexCache are se-
mantic caches and thus, we index them based on the queries
that describe their content. We propose using a prefix-
based index that takes advantage of the XPath pattern of
queries. To distribute the index nodes among the partici-
pating peers, we use an approach based on distributed hash
tables (DHTs). DHTs support (either directly or indirectly)
a hash-table interface of put(key, value) and get(key) [18].
More than one trie node may be assigned to a peer result-
ing in balanced load distribution. DHTs are scalable in that
both the latency of the basic operations and the local state
at each peer typically grow logarithmically with the num-
ber of peers. Also, they are equipped with advanced load-
balancing and reliability protocols.

Our cache replacement strategies exploit the subsumption
relation among queries in maintaining access statistics. We
also propose a proactive replacement scheme that is shown
to lead to a faster adaptation of cache content in cases of
rapid query workload fluctuations. In addition, our strategy
allows each peer to dynamically partition its storage among
the index nodes that are assigned to it, by letting both their
number and their size vary with the workload.

We have fully implemented both schemes on top of a DHT,
namely CHORD [18]. We present experimental results that
(a) evaluate the benefits and overheads for building a coop-
erative cache, (b) identify the conditions under which Dat-
aCache is preferable to IndexCache and vise versa, and (c)
evaluate our replacement strategies from a variety of per-
spectives.

In a nutshell, in this paper, we:

• propose and evaluate two ways of building a distributed,
self-organized, semantic XML storage scheme,

• exploit a prefix-based approach to indexing and storing
path queries that uses a DHT interface for distributing
the index among the participating peers,

• introduce appropriate replacement strategies, and

• present a thorough experimental evaluation that clari-
fies the factors that actually affect cache performance.

The rest of this paper is organized as follows. In Section
2, we introduce the problem of building a cooperative XML
cache. In Section 3, we present our basic data structure for
indexing and storing cache results. In Section 4, we describe
our replacement strategies, while in Section 5, we report our
experimental results. Section 6 includes a comparison with
related work and Section 7 our conclusions.

2. COOPERATIVE CACHE SHARING
In this section, we introduce the problem of cache sharing

and the two basic approaches for addressing it.

2.1 Problem Formulation
We assume a network of N nodes or peers, pi, 1 ≤ i ≤

N , that pose queries on XML documents. The XML doc-
uments are located at a large number of widely distributed
nodes which are not necessarily the same with the peers
posing the queries. That is, the set of peers that cooperate
in sharing their caches does not need to coincide with the
set of nodes that act as data sources. For instance, data
sources may be located in remote and disperse web sites,
correspond to wide area sensor databases [9] or constitute

distributed hierarchical directory entries [3]. Each one of
the N peers offers some storage space Cp for caching query
results. As opposed to caching for reducing the I/O or the
computational cost, caching in this setting mainly aims at
reducing the network cost. First, we save on the communi-
cation cost of locating the data sources holding the matching
documents. Then, by moving documents closer to their re-
questers, the cost of transferring any query results is also
reduced. The documents at each peer may be either stored
inside a native or a relational database or maintained out-
side the database at the application tier. Our focus in this
paper is on the dynamic organization and management of
the overall content of the cache, so that the most popular
items are indexed and stored efficiently.

Our cooperative cache is a semantic one. At any instant,
the cache contains (the results of) a set of queries, S =
{Q1, Q2, ..., Qm}. When a new query Q is posed at any of
the peers, the peer checks whether Q can be answered from
the results of the cached queries. If this is the case, there is a
cache hit. Otherwise, there is a cache miss and Q must be
answered from scratch, possibly by initiating an expensive
search for data sources having documents matching it. The
results of Q may then be added to the set of cached queries
S. To achieve efficient cache sharing among peers, the cache
content is indexed. The index is built on the set S of cached
queries.

To fully benefit from caching, query subsumption can be
exploited. We say that Q1 subsumes Q2, if the result of Q1

contains the result of Q2 and thus it can be used to answer
it. There is a lot of work on the topic of determining a sub-
sumption or containment relation between queries on XML
documents [4, 14, 15]. In this paper, we assume that Q is
an XPath query. The result of each query are the fragments
Fi of the original XML documents for which the path Pi

from the root of the document to the root of the fragment
satisfies the query. Our tests for subsumption are based on
string matching. Initially, we consider queries that are lin-
ear path expressions (containing only the child axis) each
starting from the root node of the document. Later on, we
relax this assumption to handle more general queries. To de-
termine subsumption between queries, we use the following
observation:

Claim 1. For linear path queries, query Q1 subsumes query
Q2, if Q1 is a prefix of Q2.

Proof. This results as a special case of the answerability
criteria in [14].

Using as the unit of caching simple XPath queries sim-
plifies checking for subsumptions. This leads to an efficient
implementation of distributed lookup. It also reduces the
overheads of managing the distributed cache.

2.2 Index Versus Data Sharing
With the IndexCache approach, the results of each query

are stored locally at the peer that posed it. Next, each of
these results (i.e. the corresponding query) is indexed so
that it can be located by other peers. DataCache follows
a tightly-coupled approach to cache sharing: each peer is
assigned a specific part of the query space. The results of
each query are cached at the peer which is responsible for
the corresponding part of the query space. In DataCache,
there is control over the placement of cache content and thus
there is no redundancy. In particular, the following property
holds for DataCache:

328

Property 1. In DataCache, if fragments Fi and Fj , i
6= j, are cached, there does not exist a subsumption relation
between their corresponding path expressions Pi and Pj.

DataCache induces an additional overhead of moving query
results from the peer posing the query to the peer actually
caching them. Furthermore, with IndexCache, each peer
can exploit better its own query workload temporal locality,
since it can answer some of the queries locally from its cache
without having to access the index. On the other hand, Dat-
aCache has some advantages over the local caching solution.
First, in IndexCache, very active peers may replace recently
accessed queries from their local caches, while less recently
accessed queries will remain in the caches of the less active
peers. Second, in IndexCache peers caching popular queries
will be overloaded, while in DataCache the popular content
will be distributed among a number of peers achieving bet-
ter load distribution. Third, with IndexCache the lack of
control over other peers’ caches may result in having frag-
ments whose path expressions subsume that of fragments
cached at some other peer, thus creating redundancy and
hence reducing cache space availability.

3. PREFIX­BASED XML CACHING
To support efficient substring matching for testing sub-

sumption, we use a prefix-based index. The trie nodes are
distributed among the peers forming the cache.

3.1 Distributed Prefix Trie
A trie is a tree for indexing and storing strings. Trie

nodes are labeled with prefixes of the indexed strings such
that every node corresponds to a distinct prefix of the data
domain being indexed. The actual strings are stored in the
leaf nodes with which they share a common prefix. Linear
XPath queries can be represented as strings, by considering
each element of the query as a character. In particular,
the labeling of prefix trie nodes, for a prefix trie indexing a
query set S = {Q1, Q2, . . . , Qm} is defined as follows. The
root node is labeled with the empty string. The labels of the
other nodes are defined recursively: given a node labeled /l,
its n children are labeled /l/l1, /l/l2, . . . , /l/ln, where li 6= lj ,
i 6= j, i, j = 1, . . . , n, and there are Qi, Qj ∈ S s.t. /l/li, /l/lj
are prefixes of Qi, Qj respectively. A special labeling case
involves trie leaves: given a node labeled /l, one and only one
of its leaf children can be labeled /l/NULL, where /NULL
is a dummy element, if ∃ Qi ∈ S s.t. /l = Qi. We call
such leaves NULL leaves and denote their label by Qi⊥.
NULL leaves are introduced to handle redundancy among
cache content. Their role will be made clear in Section 3.2.
It holds that:

Claim 2. Given the above labeling scheme, for each query
Q ∈ S, there exists either exactly one leaf whose label is a
prefix of Q or exactly one NULL leaf with label Q⊥.

Proof. Suppose there exist two leaves lf1 and lf2 whose
labels lb1 and lb2 are prefixes of Q. Then, either: (i) lb1 = lb2

or (ii) lb1 is a prefix of lb2 (the case of lb2 being a prefix of lb1

is similar). In case (i), lf1 and lf2 are children of the same
internal node nd. Suppose that the label of nd is l, then lb1

= l/li and lb2 = l/lj . Since lb1 = lb2, it follows that li =
lj which is not consistent to the labeling of trie nodes, thus
lb1 6= lb2. In case (ii), lf2 is a descendant of lf1. This is not
possible since trie leaves have no children. Suppose there

exist two NULL leaves, l1/NULL and l2/NULL, whose
label is Q⊥. Then it follows that l1 = l2, and that the two
NULL leaves are children of the same internal node. But
each internal node has only one NULL leaf child. Suppose
there exists one leaf lf1 whose label lb1 is a prefix of Q and
one NULL leaf lf2 whose label lb2 is Q⊥. Then lb1 is a
prefix of lb2, thus lf2 is a descendant of lf1. This is not
possible, since trie leaves have no children.

The prefix trie is constructed to adhere to the following
properties:

Property 2. (Trie Properties)

1. A query Q is indexed/stored at the unique leaf node
whose label is either a prefix of Q or Q⊥.

2. Each leaf node has a predefined storage capacity C.

3. The leaves in the subtrie of each internal node in-
dex/store queries of size at least C−k (k is a predefined
number).

4. Each trie node records the labels of its parent and
children (if any).

Property 2.1 states how queries are mapped to trie nodes.
From this property and Claim 2, it follows that the label of
each leaf is a common prefix of all queries indexed/stored in
it. Properties 2.2 and 2.3 determine how the trie adapts
to the distribution of the cached queries. When index-
ing/storing a new query, the total size of the queries in-
dexed/stored in a leaf might exceed the leaf capacity C. To
enforce Property 2.2, the node is split and its queries are
redistributed among the new nodes according to Property
2.1. When deleting a query, the total size of the queries
contained in a subtrie may drop below C − k. To enforce
Property 2.3, the whole subtrie is merged into a single leaf
containing all queries in the subtrie. Parameter k deter-
mines how aggressive merging is. We have experimentally
seen that a suitable value for k is C/2, which reduces the
number of merges and consequently the overhead induced.
Property 2.4 facilitates the lookup procedure.

Initially, the prefix trie consists of just the root node and,
as new queries are indexed/stored, nodes are created and
split according to the query distribution. Thus, the shape
of the trie depends on the distribution of cached queries; it
is deep in regions where a larger number of queries are in-
dexed/stored, and shallow in regions where fewer queries are
indexed/stored. The trie is stored at the peers that partici-
pate in the cooperative cache, by distributing its nodes using
their label as the DHT key. Thus, given a label, it is possi-
ble to locate the peer storing the corresponding trie node via
a single DHT lookup (get). The newly created leaves and
internal nodes are gradually distributed among the peers as
queries are deleted/inserted in the cache. Note, that more
than one trie node may be assigned to a peer. Any type of
DHT can be used; however, the choice of the DHT will influ-
ence some characteristics such as the operation complexity
(through the put/get interfaces), the maintenance cost and
the load and fault tolerance characteristics.

Figure 1 provides an example of how the trie is distributed
among the peers in the DHT. The leaves and the internal
nodes of the trie are assigned to the peers participating in
the DHT through its put interface, e.g. put(/A/C) assigns
leaf /A/C to peer P14. In DataCache (Figure 1(right)), the
leaves store the actual fragments. In IndexCache (Figure
1(middle)), the leaves maintain pointers to the peer that

329

/A/D/F

A

D

/A/C/L

A

C

/B/F/H
A

B
P51

P56

P8

P14

P21
P32

P38

P42

P48
P62

A

A

D

B
P51

P56

P8

P14

P21
P32

P38

P42

P48
P62

/A/D/F

/B/F/H

A

C

/A/C/L

{P14}

{P8} {P56}

A B

C D

/A/C/L /A/D/F

/B/F/H

Figure 1: A prefix trie (left) and its distribution in IndexCache (middle) and DataCache (right).

stores the corresponding fragment in its local cache; for
instance, peer P14 stores a pointer to peer P56 that has
cached the corresponding fragment.

Our trie resembles the Prefix Hash Tree (PHT) introduced
in [6]. The PHT is a binary trie built over a data set con-
sisting of binary strings. There are differences between PHT
and the prefix trie used here. First, in the prefix trie the
domain being indexed consists of XPath queries instead of
binary strings, consequently each internal node may have
more than two children. Second, the introduction of NULL
leaves due to the semantic nature of the cache significantly
differentiates the trie properties and operations.

3.2 Distributed Cache Operations
Next, we describe the basic cache operations for Index-

Cache and DataCache.

3.2.1 IndexCache Operations

In IndexCache, each peer caches locally the results of its
own queries and publishes the corresponding query in the
DHT index. When a query is posed, each peer first checks
its cache. If the results of the query can be found in its
cache, there is a local hit. Else, the peer searches the index
for relevant results cached at other peers. If such results
are found, there is a global hit, and the results are retrieved
from the caches of the peers storing them.

An important issue concerns redundancy. IndexCache of-
fers a loosely-coupled form of cache cooperation, where peers
share the content of their caches, but retain control over the
content of their own caches. Assume that peer p1 caches the
results of a query Q1, and some other peer p poses a query
Q that subsumes Q1. Peer p1 is not forced to delete the re-
sults of Q1 from its cache. Instead, p caches Q and NULL
leaves are used for inserting Q⊥ in the DHT index. This
adds some redundancy, however, p1 can still benefit from
local hits. However, if p1 itself poses a query that subsumes
Q1, then the new query replaces Q1 in the cache of p1.

We detail next, the basic cache operations, namely: look-
ing up, inserting and deleting a query.

Cache Lookup When a peer poses a query Q, it first checks
its own cache. In the case of a local cache miss, Q is looked
up in the DHT trie index. According to Property 2.1, Q
is indexed at the unique leaf whose label is either Q⊥ or a
prefix of Q. Thus, initially a DHT lookup is performed for
Q⊥. If this is not found, then the leaf lf having a prefix of
Q as a label is looked up. Since the label of lf is not known
in advance, all prefixes of Q must be looked up via the DHT.
If the outcome of the lookup for a prefix of Q is an internal
node, the labels of its children are checked. If one of them

is a NULL leaf, then its prefix is of the form Q′/NULL,
where Q′ is a prefix of Q. By Claim 1 and Property 2.1, Q′

subsumes Q, thus the pointer associated with Q′ is followed
to the peer caching it. If the outcome of a lookup for a prefix
is a leaf, then a check is performed whether the leaf indexes
Q or any other query subsuming it. In any other case, the
lookup fails. The query lookup algorithm for IndexCache is
shown in Algorithm 1.

Claim 3. The lookup operation for query Q will always
locate an answer for Q if such an answer exists in cache.

Proof. There are two cases: (i) Q is cached, or (ii) a
query Q′ which subsumes Q is cached. In case (i), by Claim
2 and Property 2.1, there exists a unique leaf lf where Q is
indexed and lf ’s label is either a prefix of Q or Q⊥. The
lookup operation initially looks up, via the DHT, Q⊥ and
next each prefix of Q, thus it will finally locate lf . In case
(ii), according to Claim 2 and Property 2.1, NULL leaves
index queries that are labels of their parents. Thus, during
lookup, when an internal node with a NULL leaf is located,
the query indexed in this leaf subsumes Q. For a NULL
leaf to index queries subsuming Q, the label of that leaf’s
parents must be a prefix of Q. Consequently, by looking up
all prefixes of Q, the lookup operation locates all the leaves
indexing queries that subsume Q until an answer is found.
A query subsuming Q may also be indexed in non-NULL
leaves. From Claim 2 and Property 2.1, there exists only one
non-NULL leaf whose label is a prefix of Q, consequently
all queries that subsume Q (are prefixes of Q) are indexed
in this leaf. Again as in case (i) this leaf is located by the
lookup operation by looking up all the prefixes of Q.

Caching a New Query In IndexCache, when caching a
query Q, a peer p stores the results of Q in its local cache and
inserts Q to the trie index. Q must be indexed at the unique
leaf lf having a prefix of Q as a label. Leaf lf is located by
looking up all prefixes of Q. This lookup may have three
outcomes: locate a leaf or an internal node having Q as a
label, or none of the above. If a leaf is located, Q is inserted
there. If an internal node having Q as a label is located, a
NULL leaf is created and Q is inserted in it. If none of the
above two cases holds, a new leaf is created. The label of
the new leaf is obtained as follows: Let ndmax be the node
with the longest label located during the lookup for prefixes
of Q, having a label of length d. The label of the new leaf
becomes the prefix of Q of length d+1, and the parent of the
leaf becomes node ndmax. The new leaf records the label of
ndmax and vice versa.

When inserting a new query in a leaf, the total size of
queries indexed at it may exceed C. In this case, the leaf

330

must be split in two or more leaves having size not greater
than C. Specifically, let x be the length of the label of the
leaf and m the position of the first element at which any
two queries indexed in this leaf differ. x − m −1 internal
nodes are created with labels of lengths from x to m − 1.
The new leaves are assigned labels corresponding to prefixes
of the cached queries consisting of m elements. The old leaf
is deleted and the queries indexed in it are redistributed
among the new leaves according to Property 2.1. The new
leaves/nodes record the labels of their parent/children. It
can be shown (proof omitted due to space limitations) that:

Claim 4. The operation of caching a new query described
above is consistent to the trie labeling definition and pre-
serves Property 2.

Algorithm 1 Cache index serial lookup.

1: node := DHTlookup(Q/NULL)
2: if node is a ”NULL” leaf then

3: if IndexCache then

4: SearchInLeaf(node)
5: else if DataCache then

6: nd := DHTlookup(leaf’s parent label)
7: SearchSubtrie(nd)
8: end if

9: end if

10: for i := L to 1 do

11: node := DHTlookup(Pi(Q))
12: if node is a leaf then

13: result := SearchInLeaf(node)
14: return result
15: else if node is internal then

16: if exists leaf child labeled Q/NULL then

17: lf := DHTlookup(Q/NULL)
18: result := SearchInLeaf(node)
19: if result 6= NULL then

20: return result
21: end if

22: end if

23: end if

24: end for

25: return NULL
26: // L is the number of elements in Q
27: // Pi(Q) is the prefix of length i of Q

3.2.2 DataCache Operations

In DataCache, along with the indexed query, each leaf
of the trie also stores the fragment answering it. There is
no distinction between local and global cache hits, since all
queries must be looked up at the DHT, so that the appropri-
ate leaves and thus peers storing relevant results are located.

As opposed to IndexCache, in DataCache, there is tight
control over the distribution of cache content, and thus, it is
possible to avoid redundancy caused by subsumption among
queries. Assume that a new query Q that subsumes some
query Q′ is inserted in cache. If Q is inserted in the same leaf
lf as Q′, then Q′ and the fragment answering it are deleted
from the leaf and replaced by Q and its associated fragment.
This does not involve any restructuring of the trie.

Consider however, the case in which the outcome of the
lookup for Q is an internal node nd. According to trie la-
beling and Property 2.1, Q is a prefix of all queries stored in
the subtrie rooted at nd, and hence subsumes them. Thus,
the set F̂ of fragments stored in the subtrie rooted at nd
is fully contained in F . There are two options for the ac-
tions to be taken for preserving Property 1: (a) merge the

subtrie rooted at nd into a leaf and store there Q and the
fragment F , and (b) create a new NULL leaf as a child of

nd with label Q⊥ and store the sub-fragment F − F̂ there.
The leaves in nd’s subtrie record the fact that parts of F are
stored in the subtrie rooted at nd. The basic advantage of
option (a) is that subsequent queries for Q are found in the
single leaf storing F , whereas, in option (b) all leaves in the
subtrie rooted at nd must be accessed, since they all store
part of the answer. On the other hand, the basic advantage
of option (b) is that fragment sizes are kept small, helping
their better distribution among the peers in the DHT, thus
improving cache performance. We evaluated experimentally
both options and have concluded that keeping the fragments
small overweights the additional cost for lookups and thus
we have adopted option (b).

It is easy to show using Claim 1 and Property 1.1 that:

Claim 5. The operation of caching a new query Q in
DataCache retains Property 1.

The query lookup is similar to that in the case of Index-
Cache, except when Q is stored in a NULL leaf (i.e. in a
subtrie of the leaf). In this case, initially a DHT lookup is
performed for Q⊥. If such a NULL leaf is located, it means
that the trie rooted at the leaf’s parent contains parts of the
fragment that answer Q. Thus, all the leaves in the subtrie
are visited to produce the final answer.

3.3 Prefix Lookup Alternatives
Prefix lookup is central for both IndexCache and Data-

Cache. There are three alternatives for looking up a query
Q of length L. The first (SP) is looking up all prefixes of Q
in parallel. The second one (SS) is looking up all prefixes
of Q sequentially, starting from the longest one. The third
technique (BI) is to use binary search on the prefix lengths
of query Q. Specifically, if the currently located prefix is an
internal node, lookup proceeds with longer prefixes. Other-
wise, if the current prefix is neither an internal node nor a
leaf, lookup proceeds with shorter prefixes.

We compare each technique based on: the number of
hops required for locating an answer (Hops), the time re-
quired for locating an answer (Response Time), the load
each technique induces on the peers maintaining the trie
(Load), and the ability of each technique to locate a result
stored/indexed in a live leaf regardless of the failure of any
other trie node (Fault Tolerance). The comparison results
are summarized in Table 1. Each prefix lookup in the DHT
takes log(N) hops, where N is the number of peers. For
estimating the response time, we assume that each lookup
takes t units at most. Regarding load balancing, in SP,
each lookup for Q issues DHT lookups for all its prefixes.
This leads to overloading peers at the upper levels of the
trie, since they are visited for more queries. The other two
techniques treat all nodes equally, thus it is expected that
they achieve better load distribution in general. Regarding
fault tolerance, assume that the result being looked up is
stored/indexed in leaf lf . Suppose that lf is alive, while an
internal node nd in the path from the root of the trie to lf
has failed. If during binary lookup performed by BI, nd’s
prefix is looked up, the lookup will conclude that there does
not exist a leaf or internal node labeled nd. Therefore, the
lookup will proceed with a shorter prefix, failing to locate
the live lf . Both SP and SS do not rely on internal nodes
to lookup the query result.

331

Table 1: Comparison of SP, SS and BI.
Hops Response Load Fault

Time Distr. Toler.

SP Θ(L · log(N)) t Poor YES
SS O(L · log(N)) O(L · log(N) · t) Good YES
BI O(log(L) · log(N)) O(log(L) · log(N) · t) Good NO

3.4 Other Queries
In this section, we extend the basic cache operations, i.e.

cache lookup and caching a new query, to handle more gen-
eral XPath queries. The basic idea is for each such query
Q to index/store both the resulting fragments using their
corresponding path as index and a description of Q. We
consider general queries in which the descendant axis (‘//’)
or the wildcard (‘*’) may appear any number of times. Let
Q = P//R (or Q = P/ ∗ /R) be such a query, where P is
a query containing only the child axis or the empty string
and R is any general query.

Let us first consider query caching. The result of Q con-
sists of a set of m fragments described by the path expres-
sions P/Fi, i = 1, .., m, where Fi are expressions containing
only the child axis. We call the expressions P/Fi component
queries of Q. To cache Q, we cache its component queries
as described previously, since they are linear path queries.
Specifically, first, we perform a lookup for P , which is the
common prefix of all the component queries. Let the out-
come of looking up P be node nq . Note that if P is the
empty string, the lookup will locate the root node of the
trie which has the empty string as a label. If nq is a leaf,
the component queries are cached in nq , since P is a prefix
of all of them. Analogously, if nq is an internal node, the
component queries are cached at the subtree rooted at nq .
In both cases, node nq records the fact that Q is cached at
it or at its subtrie. If nq was a leaf and at some later point,
it gets split, the information is passed to the new internal
node having P as a label.

For looking up a query Q = P//R (Q = P/∗/R), initially
a lookup for P is performed. If the outcome of the lookup,
i.e. nd, is a leaf, then it is checked for a record of caching Q
or a query subsuming it. If nd is an internal node which has
a record of Q or a query subsuming it being cached in the
subtrie, a broadcast is performed. For binary lookup, if nd

does not have such a record, the path from nd’s parent (if
nd is a leaf) or from nd (if nd is an internal node) to the root
is traversed until a record for a query subsuming Q is found.
For serial lookup, the internal nodes in the path to the root
are examined during the lookup for P , thus the additional
traversal of the path is not required.

The lookup cost, for a query containing the descendant
axis cached in a leaf is LP ·log(N), where LP is the length of
P . If the query is cached in a subtrie then the cost depends
on LP , the smaller LP , the higher the subtrie rooted at the
node having P as a prefix and the more internal nodes and
leaves will the broadcast visit.

4. CACHE REPLACEMENT
We assume that each peer p participating in cooperative

caching offers some fixed amount of storage, Cp, for caching.
With IndexCache, most of this storage is used by each peer p
for caching the results of its own queries, while only a small
portion is handled by the DHT for storing the part of the
trie index that is assigned to p. With DataCache, the total

/X/Y/Z

A F

B

DC J

E G H

Figure 2: Example of an XML fragment cached as
the result of query /X/Y/Z.

storage Cp of each peer p is used by the DHT for storing the
nodes and leaves of the trie along with the cached fragments
associated with the leaves that are assigned to p. We assume
that the storage required for maintaining the index is small
and replacement decisions are needed only when caching the
actual result fragments of each query.

In particular in the case of DataCache, a number of trie
leaves are assigned to each peer p. Let us assume a maximum
leaf capacity of C. At each time instance, let lp be the
number of leaves assigned to peer p and Li (Li ≤ C), 1 ≤
i ≤ lp, be the current size of each leaf assigned to p. We
make no further assumptions about the number of leaves

assigned to each peer p other than that:
Plp

i=1
Li ≤ Cp.

This allows a dynamic organization of storage among the
leaves assigned to each peer, since, depending on the query
workload, each peer may have leaves with varying sizes Li.
Furthermore, peers may have different numbers of leaves
assigned to them.

4.1 Replacement Policy
When caching a new query, the maximum capacity Cp

offered by a peer may be already occupied by previously
cached queries. In this case, one or more of these queries
must be evicted from cache to make space for the new one.
To this end, every time a cached query is used by a peer for
answering a query, its utilization value, UV , is updated.

Additionally to answering queries that are the same with
the cached ones, cached fragments are also used for answer-
ing queries which are subsumed by those cached. Hence,
access statistics for parts of a cached fragment are also main-
tained. Therefore, when replacement is needed, individual
paths of the fragment answering a query are also consid-
ered as candidates for replacement, besides the whole frag-
ment. Such a partial replacement strategy was shown to
be beneficial for caching XPath queries [7]. For example,
consider Figure 2 that represents the fragment answering
the cached query Q = /X/Y/Z. Subsequent queries Q1 =
/X/Y/Z/A/B and Q2 = /X/Y/Z/F/G will be answered
using Q, since Q subsumes both Q1 and Q2. In this case,
the UV s for the paths /X/Y/Z/A/B/C, /X/Y/Z/A/B/D,
/X/Y/Z/A/B/J and /X/Y/Z/F/G are updated.

In the case of IndexCache, cache overflow is caused, when
after a cache miss of some local query Q, a peer p whose
local cache has reached its maximum capacity Cp, attempts
to cache the result fragment of Q. In this case, all paths
in the local cache of p are examined and the one with the
smallest UV among them is chosen for replacement. This
procedure is repeated until enough space is created for the
new fragment.

Cache replacement is more involved in the case of Dat-

332

aCache. Cache overflow may be created when either (i) a
fragment is assigned to a leaf already stored at p or (ii) a
new leaf is assigned to p as a result of some split operation.
In case (i), if there is space in the leaf (that is the current
size of the leaf is smaller than C) but the peer has reached
its full capacity, we check the UV values of all fragments
of all leaves stored at p and evict those with the smallest
UV values. This allows for a better cache utilization, since
leaves get to replace their inactive queries. If, however, the
leaf has reached its maximum capacity C, the leaf is split.
In case (ii), if peer p has enough capacity, it stores the leaf.
If the peer has not enough capacity, it again searches for
victims among all entries of all leaves. Note that in this
case, even entries at the new leaf are potential candidates
for replacement, since the leaf is a result of splitting and its
entries may have small UV values.

4.2 Cache Operations Revisited
Partial replacement creates the need for some modifica-

tions of the basic cache operations. For example, suppose
that the paths /X/Y/Z/A/B/C and /X/Y/Z/A/B/D of
Figure 2 are replaced. The resulting fragment does not an-
swer query /X/Y/Z anymore, thus the distributed index
must be updated, so that the index entry for query /X/Y/Z
includes some information about the replaced paths. The
entry is deleted only if all paths of the fragment associated
with it are replaced.

Subsequent lookups for a query Q whose fragment has be-
come partial or for queries subsumed by it must determine,
through the information for the replaced paths, whether the
remaining portion of the fragment is sufficient to produce
an answer. Otherwise, we have a cache miss; the answer
is looked up in remote data sources and cached. Caching
results of such queries differs from that described in Sec-
tion 3.2. For DataCache, to avoid fragment redundancy,
the overlapping portions are stored only once. Specifically,
after a cache miss for Q, the new fragment to be cached
replaces the old, partial one. After a cache miss for a query
Q′ subsumed by Q, Q′ is not indexed. Instead the fragment
answering it updates the fragment associated to Q by filling
the space of the replaced paths. Obviously, this change in
caching new queries retains Property 1. For IndexCache, the
same actions are performed, when the query being inserted
is posed by the same peer caching the partial fragment, oth-
erwise the operation remains unchanged.

4.3 Proactive Replacement
When a specific leaf overflows, it is split, regardless of the

UV s of the paths stored/indexed in it. To avoid the over-
head of unnecessary splitting leaves containing stale (with
low UVs) paths, for DataCache, we propose their proactive
replacement. Before performing a split, each peer checks
the leaves it stores for paths that can be evicted based on
their UV s. To this end, we define a UV threshold such that
any path having a UV lower than this threshold will be re-
placed. The threshold, τ , is defined locally by each peer as
a percentage over the average (UVavg) of all the UV s of the
paths stored at a peer. Paths having UV s lower than the
τ% of UVavg are proactively evicted from cache.

The value of the threshold determines the frequency of
proactive replacement: the higher the threshold, the more
aggressive the proactive replacement. If the utilization val-
ues of all the paths at a peer are similar, then no proactive

replacement will be performed. This is desirable when all
UV s are high, but not when all UV s are low. To make proac-
tive replacement possible in the second case, the UVavg is
increased by a factor f every time proactive replacement is
performed in the peer.

5. EXPERIMENTAL EVALUATION
We have implemented both the DataCache (DC) and In-

dexCache (IC) cooperative cache frameworks. Caches are
built on top of a simple simulator of CHORD, over which the
distributed prefix trie is constructed. For the purposes of our
experiments, we used a number of synthetic tree-structured
XML documents of arbitrary complexity produced using the
Niagara-Project XML Data Generator [2]. We have also
implemented a simple parser which extracts all root-to-leaf
paths from an XML document and an XPath query gener-
ator which creates queries with different lengths along with
their results based on the previously extracted paths. The
input parameters are summarized in Table 2.

Table 2: Input parameters.
Parameter Default Value Range

of peers 100 20 - 996
Ring size 128 128 - 1024
Peer cache size 500 Kb 10 Kb - 8 Mb
Leaf size - DC 25 Kb 580 bytes - 183 Kb
Leaf size - IC 400 bytes 40 - 12800 bytes
Query length 8 elements 5 - 8 elements
Avg. entry size - DC 571 bytes 571 - 15417 bytes
Avg. entry size - IC 40 bytes 20 - 40 bytes
Merge coefficient(k) 1/2·leaf size -
Peer activity rate Uniform zipf (α = 0.4 - 1)
Local vs. global overlap No distinction 0-100%
Query overlap 80% 10-90%

We use a relatively small number of peers, since our scheme
is expected to involve peers in close network proximity with
each other. All our experiments start with an empty (cold)
cache. Regarding the lookup procedure, we use the binary
lookup algorithm unless stated differently.

5.1 Cooperative vs. Individual Caching
In this set of experiments, we evaluate the benefits of co-

operative caching over individual caching. With individual
caching, peers locally cache the results of their queries, but
do not share them with any other peer. We consider in-
dividual caching with a 50% hit ratio. Cooperative caching
improves the hit ratio, when there is overlap among the peer
queries. If at each step, we increase the overlap between the
query workloads of the peers by 10%, starting from 10% up
to 40%, our results confirm (figures not shown due to space
limitation) that the cache hit ratio increases linearly with
this overlap for both DC and IC from 50% (no overlap, only
local hits) up to 90% (50% local hits and 40% hits from the
cooperative cache). There is a similar linear dependency
with the number of peers sharing their caches. In particu-
lar, we keep the overlap among the query workloads constant
and build cooperative caches starting from 25 peers up to
100 with a step of 25. Again, the hit ratio increases linearly
from 50% when there is a single peer up to 90% when we
have all 100 peers participating in the cache.

However, cooperation comes with a cost. Cooperative
caching is built on the assumption that locating and trans-
ferring data among the peers forming the cooperative cache
is less expensive than locating and transferring data from

333

remote data sources. Locating data from remote sources
involves procedures varying in complexity from exhaustive
search to using specialized directories, which we expect to be
less efficient than locating data in the cache. Thus, here we
only consider the cost of transferring data. To quantify this,
we use the ratio ρ= BC/BI , where BC is the amount of data
transferred for answering queries from the cooperative cache
and BI the corresponding amount of data transferred when
the same queries are answered from remote hosts. BC in-
cludes constructing and maintaining the cooperative cache,
initially transferring the results from the remote sources, and
transferring data among peers participating in caching. BI

is the cost of transferring the results from the remote host,
once for each peer posing the query. Our results (Figure
3(left)) show that as the query overlap increases, ρ decreases
in both approaches, since the hit ratio increases. In partic-
ular, if the cost of transferring a bit from a remote host is
more than 3.15(1.1) times higher than transferring it from
a peer in the cache, it is cost effective to build a DataCache
(IndexCache), even for a 10% query overlap.

5.2 DataCache vs. IndexCache
We compare the performance of DataCache (DC) with

the performance of IndexCache (IC) in terms of: (a) the
cache hit ratio, (b) the hop lookup cost (hLC): the number
of hops needed for locating the leaf of the distributed pre-
fix trie that stores/indexes the results of the query, (c) the
network lookup cost (nLC): the network bandwidth needed
for transferring the final result fragment of a query to the
peer that has posed the query in the case of a hit, (d) the
maintenance cost : the overall network bandwidth required
for maintaining the cooperative caches including the net-
work bandwidth for performing leaf split/merge during in-
serting/deleting queries in cache, and (e) the query load : the
number of queries answered by each peer.

Hit Ratio The performance of DC depends on the size of
each trie leaf. We relate the size of the leaf with the size of
the queries. In particular, we assume that each query must
“fit” inside a leaf. Thus, we take the lower value of the leaf
capacity to be equal to the size of the larger query. We vary
the leaf capacity starting from this value and increasing it
by 50% at each step. Our results (Figure 3(middle)) show
that, while, as expected, the leaf capacity has no impact on
the hit ratio for IC, an increase of the leaf capacity results in
a decrease of cache hit ratio for DC. In IC, cached fragments
remain in local caches thus their distribution is only influ-
enced by the peer query workload, while in DC, the distribu-
tion of cached data depends on the underlying DHT and the
distributed prefix trie. Smaller capacity leaves mean more
splits thus better distribution of cached data among peers.
Consequently, peer caches grow more uniformly, leading to
fewer replacements, hence a higher cache hit ratio.

The main factor that influences the hit ratio of DC ver-
sus IC is the query rate imbalance among peers. Intuitively,
in the case of IC, overactive peers may generate dispropor-
tionally more queries and thus influence the content of local
caches more than less active ones. To quantify that, we cre-
ated query workloads where the portion of queries assigned
to each peer is generated according to a Zipf distribution
1/aid where id is the id of each peer in the CHORD ring
and parameter a determines the degree of skew. We vary
a from 0.4 to 1. Our results (Figure 3(right)) show that
when the query distribution is uniform, DC and IC have the

same hit ratio. As the skew increases, the hit ratio for IC
decreases due to the high number of replacements occurring
at the most active peers. These replacements cause valuable
data to be evicted from cache making the hit ratio for IC
up to about 22.4% lower than that for DC when a = 1.

Lookup Cost In the IC case, local hits are much cheaper
than global ones, since global hits require transferring re-
sults from other peers. In this set of experiments, we vary
the percentage of local overlap in the queries posed by each
peer, i.e. the portion of queries whose answer is subsumed
by queries previously posed by the same peer from 0% (no
overlap) to 100% (complete overlap). In IC, such results are
cached in the local cache of the peer. Our results (Figure
4 (left)) show that for IC as the local overlap and thus the
local hit ratio increase, hLC and nLC decrease analogously,
while for DC, they remain constant. This is expected since
in IC, the more queries overlap locally for a peer, the more
answers will be found in its local cache, thus, the fewer times
the distributed index will be accessed (less hops) and the
fewer results will be transferred from other peers’ caches
(less bandwidth).

Maintenance Cost In IC, the maintenance cost involves
just managing the distributed index, whereas in DC, the
cost includes also moving cache fragments, thus, it is con-
siderably larger. In both cases, the number of maintenance
actions (splits/merges) mainly depends on the leaf capac-
ity. We vary the leaf capacity from 1142 bytes to 73088
bytes for DC and from 80 to 5120 for IC by doubling the
leaf capacity at each step, corresponding to a variation from
1 to 64 queries indexed/stored per leaf. Our results (Fig-
ure 4 (middle)) show that the maintenance cost for DC is
≈14 times higher than that of IC because the sizes of the
leaves that are split or merged are also ≈14 times larger
(1142÷80) than those in IC. Furthermore (Figure 4 (right)),
for DC the bandwidth consumed for maintenance consti-
tutes 16.9−33.25% of the total bandwidth, while for IC only
2.6 − 6.1%. In general, the increase in leaf capacity reduces
the number of splits (which in this setting is equal in each
step for DC and IC), however this depends on the workload
which explains the fluctuation in the reported results.

Query Load Distribution While in IC cached fragments
remain in local caches, in DC the distribution of cached data
among peers is performed by the distributed prefix trie and
the underlying DHT. Thus, for IC, the query load that a peer
receives depends solely on the popularity of the fragments
that the peer caches locally, while for DC, it depends on
the popularity of the trie leaves assigned to it by the DHT.
To show this, we design an experiment for the extreme case,
where one peer queries and then caches a number of popular
fragments which are then queried by the other peers in the
system. Since the distribution in DC depends on the leaf
size, we experimented with two leaf sizes, the second one
twice the size of the first one. Our results show (Figure 5)
that for IC, the peer holding the popular fragments receives
all queries for them producing a significant load, while the
remaining peers answer 96.35% − 91.47% less queries. In
DC, for the smaller leaf size the load of answering the pop-
ular queries is distributed among all peers, so that the most
loaded peer answers 84% less queries than in IC. As the leaf
size increases, the load distribution becomes more skewed:
a smaller number of peers share most of the query load, but
still achieving a better distribution than IC.

334

5.3 Replacement
Local vs. Global Replacement Decisions In IC and
DC, replacement decisions are made based on the local view
of each peer. In IC, this view includes the results of its own
queries and in DC, the part of the query space assigned to it
through the DHT. However, the smallest local UV may not
be equal to the globally minimum UV . To investigate the
effect of this fact, we compare the performance of DC and
IC with that of a central cache, where replacement decisions
are made based on the UV values of all queries. Specifically,
we implemented a central cache with size equal to the sum
of the sizes of caches of all peers in DC or IC. The perfor-
mance metric in these experiments is the cache hit ratio with
varying leaf capacity (DC) and skew (IC). Results (Figure
6(left) and (middle)) show that in the best case (smaller
leaf capacity - 0.4 skew), the central cache has ≈7.66% bet-
ter performance than both DC and IC and as leaf size -
skew increase the difference increases up to 30%. Thus, lo-
cal replacement decisions do not significantly decrease the
performance of both approaches, for a good choice of leaf
capacity and reasonable activity rates.

Proactive Replacement As already shown, the leaf ca-
pacity significantly influences the performance of DC. To
keep the leaf capacity small and at the same time avoid the
maintenance cost, we have proposed proactive replacement.
We performed two sets of experiments which evaluate the
impact of the replacement threshold τ on the cache hit ra-
tio and on the network bandwidth overhead caused by leaf
splits. The effects of proactive replacement are more evi-
dent, when there is a shift of interest in the workload, thus
popular items become unpopular and vice versa. To model
this shift of interest, after posing a set of queries for a period
of time, the “topic of interest” of peers changes. As shown
in Figure 6(right), for 10% ≤ τ ≤ 30% the cache hit ratio re-
mains constant while the bandwidth significantly decreases
(≈35% for τ = 30%). Increasing τ further causes replace-
ment of needed paths decreasing the hit ratio. Furthermore,
the number of merges increases leading to further splits thus
reducing the decrease of the bandwidth.

5.4 Design Alternatives
NULL Leaves vs. Merging We evaluate for DC, the
factors that influence the choice between creating a “NULL”
leaf (NL) and merging the subtrie (MS) when caching a
query that subsumes the queries in the subtrie defined by
the query. These factors are the query lookup cost, i.e., the
number of hops needed for locating the leaf of the distributed
prefix trie that stores/indexes the results of the query in the
case of a hit, and the cache hit ratio.

Lookup Cost With MS, only one leaf is visited for an-
swering the subsuming query, while with NL, all leaves in
the subtrie must be visited increasing the lookup cost. This
is confirmed by our experimental results (Figure 7(left)),
where as the height of the subtrie increases, so does the
lookup cost for the broadcast.

Hit Ratio NL keeps smaller fragments in more leaves al-
lowing for their better distribution between peers. Conse-
quently, peer caches grow more uniformly, leading to fewer
replacements, hence a higher cache hit ratio. To evaluate the
above intuition, we measured the cache hit ratio for differ-
ent percentages of subsumption (10%− 50%). i.e. 10% sub-
sumption means that 10% of the cached queries are stored

in subtries subsumed by a new query. Results (Figure 7
(middle)) show that the hit ratio for MS is always smaller
than that in NL. The difference increases as the percentage
of the subsumption increases. This is expected since the
increase of the subsumption corresponds to an increase in
the number of leaves created by the merge, consequently to
more replacements due to poor fragment distribution.

Binary vs. Serial Lookup Figure 7 (right) shows the
average load of the nodes for each level of the trie during
serial parallel (SP) lookup and binary (BI) lookup. Serial
lookup visits the upper level nodes more often, thus the
peers that hold the upper level nodes receive much higher
load than those storing the lower levels.

5.5 Scalability
We evaluate the scalability of the cooperative cache with

regards to (a) the cache hit ratio, (b) the lookup cost (num-
ber of hops) and (c) the maintenance cost. For different
number of peers, we consider different ring sizes for the DHT
as follows: for 50 and 100 peers the ring size is 128 (27), for
114 and 228 peers the ring size is 256 (28), for 242 and 484
peers the ring size is 512 (29) and for 496 and 996 peers the
ring size is 1024 (210). The above numbers are chosen so
that for each ring size (e.g. 27) the ring is half-full (e.g. 50
peers) and almost full (e.g. 100 peers). By doing so, we also
show how the density of the ring influences the cache per-
formance. All participating peers pose an equal number of
queries, thus, as the number of peers increases, the overall
number of queries increases accordingly. Each peer selects
its queries from a large set of queries, using a zipf distribu-
tion with α = 1. This creates a global query overlap.

Hit Ratio For both the IC, (Figure 8 (left)) and the DC
(Figure 8(right)), the hit ratio increases with the number of
peers, since the more peers in the cache, the more storage
space is offered for caching the common, frequent queries
posed by the peers. Observe that, half-full rings in DC have
a lower hit ratio than full rings with about the same number
of peers. This is due to the fact that the more peers in the
ring, the less ring positions are assigned to each peer by the
DHT and consequently, a better distribution of fragments is
achieved.

Lookup Cost As expected, the average number of hops
required for answering a query increases with the ring size
for both DC and IC logarithmically (Figure 8 (middle)).

Maintenance Cost We measure the average maintenance
cost per peer. As expected, for any number of peers the
maintenance cost for DC is higher than that for IC (Figure
8 (right)). For both IC and DC the maintenance cost per
peer drops fast as the number of peers increases (e.g from
100 to 996 peers it drops by ≈ 90%), because of the related
increase of the hit ratio. A higher hit ratio means that fewer
new fragments are cached and thus fewer splits and merges
are generated.

5.6 Result Summary
We summarize below, some of the key findings of our ex-

perimental evaluation:
1. Cooperative caching significantly increases the cache

hit ratio compared to individual caching, if there is over-
lap in the query workload. Depending on this overlap, the
benefits of sharing surpass the maintenance overheads for
reasonable ratios of remote vs. local network bandwidth.

335

Figure 3: (left) ρ with the overlap among peer query workloads. Cache hit ratio for different leaf capacity
(middle), and for different levels of skew in the peer workload activity (right).

Figure 4: Fluctuation of hop and network lookup with the percentage of local overlap (left). Maintenance
cost with leaf capacity (middle). Percentage of network bandwidth for maintenance with leaf capacity (right).

Figure 5: Distribution of the queries answered by the peers (left) and for doubling the leaf size (right).

Figure 6: Comparison of hit ratio: central cache vs. DataCache (left) and vs. IndexCache (middle). Decrease
of cache hit ratio and the overhead caused by splits for increasing proactive replacement threshold (right).

336

Figure 7: Avg. lookup cost for broadcasting a query in NL (left). Hit ratio for NL and MS for increasing
query subsumption (middle). Avg. number of requests served by each peer during lookup (right).

Figure 8: Cooperative cache hit ratio (left), average lookup hops (middle) and averaged maintenance cost
for increasing number of peers participating in the DHT (right).

2. DataCache achieves higher hit ratios than IndexCache,
when there is substantial query imbalance among the peers.
DataCache performance depends on the number of peers
in the DHT and the leaf capacity: a small leaf capacity in-
creases the cache hit ratio and achieves a significantly better
query load balance than IndexCache, but also increases the
maintenance cost since it increases the number of mainte-
nance operations. In general, the maintenance overhead of
DataCache is more than 10 times that of IndexCache. In-
dexCache supports more efficient lookups when there is high
intra-peer locality and relatively low inter-peer locality.

3. Replacement decisions based on the local view of each
peer do not significantly deteriorate cache performance com-
pared to a global cache, under reasonable conditions. Proac-
tive replacement decreases the maintenance cost in Data-
Cache without affecting its hit ratio, when there is a change
of popularity in the query workload.

4. Caching the difference between a query and the set of
already cached queries that subsume it versus merging these
queries increases the lookup complexity, while it increases
the cache hit ratio. These effects are highly correlated to
the height of the subtrie merged.

5. Cooperative caching is scalable with the number of
peers as long as there is workload locality. For DataCache,
the size of the DHT should be close to that of the peers
participating in the cache.

6. RELATED WORK
In this paper, we present a framework for cooperative

XML caching. XML caching in a typical client-server envi-
ronment is discussed in [7, 14, 19]. XML caching, as related
to view materialization and view subsumption, has been the
focus of much current research. Here, we adapt a practi-

cal approach that uses XPath expression and the associate
fragments as the unit of caching. This reduces answerability
problems to simple prefix matching.

In terms of building a cooperative cache, perhaps the work
most related to ours is Squirrel [11]. In Squirrel, peers in
a corporate LAN environment are organized in a DHT to
form a cooperative web cache. The URL of each document
is mapped to a peer in the DHT, which is called home-
node. Two approaches are proposed for what the home-
node stores. In the home-store approach, the cached docu-
ment is stored both in the local cache of the peer and in the
home-node. In the directory approach, peers locally cache
the results of their HTTP requests and the home-node only
stores pointers to these peers. Directory resembles our In-
dexCache, while home-store resembles a hybrid combination
of IndexCache and DataCache. Besides the difference be-
tween home-directory and IndexCache-DataCache, the main
distinction of our work with regards to Squirrel stems from
the fact that we built a semantic cache. Thus, our unit of
caching is a query result as opposed to a document. Further,
there is overlap between results. These lead to the need of
building an index (e.g. a prefix trie) that allows checking for
subsumption and providing more involved cache operations.

In [16], a cooperative cache is also maintained but for
supporting full text document search in P2P. Each peer lo-
cally stores query results. An index is built over a DHT,
by indexing the cache content of each peer through ran-
domly selected terms of the cached queries. The focus is
on determining which multi-term queries to cache to avoid
intersecting large inverted lists.

There is some work in the context of distributed process-
ing of XML documents. [13] investigates the organization of
peers in an unstructured super-peer network for maintaining
a distributed index of XML data. Peers are clustered based

337

on their content which is summarized by multi-level bloom
filters. This approach is not appropriate for indexing cached
XPath queries, since caches and thus content, changes dy-
namically. In [17], a distributed index for XPath queries is
proposed. The index is based on a distributed binary tree
and queries are routed based on their prefixes. The main dif-
ference with our prefix trie is that [17] is used for indexing
the document collections maintained by the peers, while our
prefix trie indexes cache content, which significantly changes
query processing. Additionally, in [17], P-Grid [1] is used as
the DHT, which requires restructuring the overlay to adapt
to the indexed dataspace. In a cooperative cache this would
occur often, since the cached data changes dynamically ac-
cording to the query workload.

Other approaches for DHT-based indexing for XML in-
clude [5] and [10]. The operations in [5] can not detect
fragment overlap, thus if used for indexing the cooperative
cache, they would create significant redundancy. The ap-
proach presented in [10] indexes XML paths in a DHT by
using tag names as keys. A peer responsible for an XML tag
maintains a summary with all possible unique paths leading
to the tag. Thus, only one tag of a query is used to locate
the responsible peer for exact match queries. Although en-
suring efficient search and the possibility of looking up query
prefixes, the approach introduces considerable overhead for
popular tags whose summaries are large. Again, the differ-
ence with our work is that we index cached data instead of
content, thus, we cannot ensure that the node responsible
for a tag would have a summary of all possible documents
(instead, it would know only of the cached ones).

7. CONCLUSIONS AND FUTURE WORK
In this paper, we have proposed a framework for building

a cooperative cache of XML documents. To facilitate shar-
ing, a prefix-based distributed index of the cache content
is maintained. Our main focus is on studying the two fun-
damental approaches to cache sharing. In the IndexCache
approach, each peer caches results of its own queries and just
publishes a description of the content of its local cache to
the index. In the DataCache approach, each peer is assigned
and stores a specific part of the query space. The partition
of the query space is based on the prefixes of the cached
queries. We have evaluated both approaches and identified
the conditions under which one surpasses the other.

There are many issues for future work. A promising di-
rection for future work is to investigate whether a prefix-
based partitioning of the dataspace can be used for building
a distributed native XML database. Considering different
overlays for implementing the prefix-trie is also central. A
basic reason for building the trie on top of a DHT is for
achieving transparent distribution of the trie nodes among
the peers of the DHT. As our results show, this is achieved.
On the other hand, there have been proposals for tree-based
overlays (e.g., PGrid [1], BATON [12]), for which, it could
be possible to have “built-in” substring search. However,
a direct mapping of trie nodes to nodes of such structures
would introduce the need for restructuring the overlay itself
and thus increase the maintenance cost considerably.

8. REPEATABILITY ASSESSMENT RESULT
All the results in this paper were verified by the SIGMOD

repeatability committee.

9. REFERENCES
[1] K. Aberer. P-Grid: A Self-Organizing Access

Structure for P2P Information Systems. In CoopIS,
2001.

[2] A. Aboulnaga, J. Naughton, and C. Zhang.
Generating Synthetic Complex-Structured XML Data.
In WebDB, 2001.

[3] S. Amer-Yahia, D. Srivastava, and D. Suciu.
Distributed Evaluation of Network Directory Queries.
IEEE Trans. Knowl. Data Eng., 16(4), 2004.

[4] A. Balmin, F. Ozcan, K. Beyer, R. Cochrane, and
H. Pirahesh. A Framework for Using Materialized
XPath Views in XML Query Processing. In VLDB,
2004.

[5] A. Bonifati, A. Cuzzocrea, U. Matrangolo, and
M. Jain. XPath Lookup Queries in P2P Networks. In
WIDM, 2004.

[6] Y. Chawathe, S. Ramabhadran, S. Ratnasamy,
A. LaMarca, J. Hellerstein, and S. Shenker. A Case
Study in Building Layered DHT Applications. In
SIGCOMM, 2005.

[7] L. Chen, S. Wang, and E. A. Rundensteiner. A
Fine-Grained Replacement Strategy for XML Query
Cache. In WIDM, 2002.

[8] S. Dar, M. J. Franklin, and B. Jonsson. Semantic
Data Caching and Replacement. In VLDB, 1996.

[9] A. Deshpande, S. K. Nath, P. B. Gibbons, and
S. Seshan. Cache-and-Query for Wide Area Sensor
Databases. In SIGMOD, 2003.

[10] L. Galanis, Y. Wang, S. R. Jeffery, and D. J. DeWitt.
Locating Data Sources in Large Distributed Systems.
In VLDB, 2003.

[11] S. Iyer, A. Rowstron, and P. Druschel. Squirrel: A
Decentralized Peer-to-Peer Web Cache. In PODC,
2002.

[12] H. V. Jagadish, B. C. Ooi, and Q. H. Vu. Baton: A
Balanced Tree Structure for Peer-to-Peer Networks. In
VLDB, 2005.

[13] G. Koloniari and E. Pitoura. Content-Based Routing
of Path Queries in Peer-to-Peer Systems. In EDBT,
2004.

[14] B. Mandhani and D. Suciu. Query Caching and View
Selection for XML Databases. In VLDB, 2005.

[15] G. Miklau and D. Suciu. Containment and
Equivalence for a Fragment of XPath. In J. ACM
51(1), 2004.

[16] G. Skobeltsyn and K. Aberer. Distributed Cache
Table: Efficient Query-Driven Processing of
Multi-Term Queries in P2P Networks. In P2PIR, 2006.

[17] G. Skobeltsyn, M. Hauswirth, and K. Aberer. Efficient
Processing of XPath Queries with Structured Overlay
Networks. In ODBASE, 2005.

[18] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A Scalable Peer-to-peer
Lookup Service for Internet Applications. In In
SIGCOMM, 2001.

[19] H. L. Yang, M. L. Lee, and W.Hsu. Efficient Mining of
XML Query Patterns for Caching. In VLDB, 2003.

338

