
A Recall-Based Cluster Formation Game

in Peer-to-Peer Systems (Extended Version)

Georgia Koloniari and Evaggelia Pitoura

Computer Science Department, University of Ioannina, Greece
{kgeorgia,pitoura}@cs.uoi.gr

Abstract

In many large-scale content sharing applications, par-
ticipants or peers are grouped together forming clusters
based on their content or interests. In this paper, we
deal with the maintenance of such clusters in the pres-
ence of updates. We model the evolution of the system
as a game, where peers determine their cluster mem-
bership based on a utility function of the query recall.
Peers are guided either by selfish or altruistic motives:
selfish peers aim at improving the recall of their own
queries, whereas altruistic peers aim at improving the
recall of the queries of other peers. We study the evo-
lution of such clusters both theoretically and experi-
mentally under a variety of conditions. We show that,
in general, local decisions made independently by each
peer enable the system to adapt to changes and main-
tain the overall recall of the query workload.

1 Introduction

Large content sharing communities such as those
present in social networking applications and peer-to-
peer file sharing systems have become highly popular.
An issue central in such settings is efficiently locat-
ing sites, users or nodes, collectively called peers, that
maintain data relevant to a query and retrieving as
many results as possible, i.e. increasing the query recall
with a small communication cost. This is an intricate
task given the unprecedented scale and dynamicity of
such communities.

One of the proposed solutions for locating interesting
content is to create groups of peers with similar content
or interests. Grouping is achieved by adding links be-
tween similar peers thus forming clustered overlay net-
works [3, 5, 14, 19, 11, 8, 4, 6]. Peers in each cluster are
highly connected to each other, so that routing queries
inside a cluster is very efficient. Clustering has been
widely used in databases to reduce I/O costs by plac-
ing data items with similar properties together in the
disk, since it is expected that similar data is accessed
together. The motivation for exploiting clustering in a

distributed data sharing system is that through routing
queries within each cluster, the performance of locating
and accessing the requested content can be greatly im-
proved. This is because, once the appropriate cluster
for a query is identified, the peers in the cluster possess
relevant content that can be exploited to evaluate and
refine the query efficiently.

In fact, measurements from the deployments of many
content sharing systems have shown that such clusters
are implicit in many distributed interactions. In par-
ticular, traces of file-sharing peer-to-peer systems have
indicated that peers exhibit the property of interest-
based locality, that is, if a peer holds content satisfying
some query of another peer, then it is most likely that
it also maintains additional content of interest to this
other peer [17, 10]. Thus, placing the two peers in the
same cluster would increase the recall of their queries.
The formation of implicit clusters centered around top-
ics described by common keywords has been observed
in the blogosphere [2] as well. In measurements of pop-
ular on-line social networks [15], it was also observed
that the networks structure is that of a clustered overlay
where users form clusters based on common interests,
social affiliations or the wish to exploit their shared
content. The clusters are loosely connected with each
other through a strong central component.

Most previous work mainly focused on the discovery
and construction of clusters and ignored the mainte-
nance of the clustered overlay, which is needed for cop-
ing with the dynamic nature of the peers. Peers, which
join or leave the system constantly and change their
content and query workload frequently, may render the
original clustered overlay inappropriate under the cur-
rent system conditions. One solution to the problem
is to re-apply the clustering procedure that was used
to form the original overlay from scratch taking into
account the updated state. However, this incurs large
communication costs. It also requires global knowledge
about the system state that compromises peer auton-
omy.

In this paper, we propose a novel approach to clus-
tering by modeling the problem of cluster formation as

1

a strategic game in which the players are the peers.
Each peer/player determines its cluster memberships
individually so as to minimize a utility function that
depends on the membership cost entailed in belonging
to a cluster and the cost of evaluating its query work-
load at remote clusters. Game-theoretic models have
been previously proposed for creating overlays based
on the connection cost and radius of the network graph
[7, 13, 16]. The originality of our approach lies on the
fact that we focus on queries and aim at increasing their
recall.

We model both selfish and altruistic behavior of peers
as demonstrated in real content-sharing systems by
proposing appropriate utility functions. We also in-
troduce global system quality criteria to measure the
performance of the system as a whole. In addition,
we propose appropriate relocation policies for selfish
and altruistic peers and a cluster reformulation proto-
col that implements the game.

We study both theoretically and experimentally the
evolution of clusters under the individual actions of
each peer. Our experimental results show that our
policies help in coping with the changes in the over-
lay configuration without compromising its quality. In
particular, given the usual assumption for clustering
that the underlying data share some similar properties,
our policies converge to well formed clusters for most
initial system configurations.

The rest of this paper is organized as follows. In Sec-
tion 2, we present the cluster formation problem as a
game and define the utility functions for selfish and al-
truistic peers along with the corresponding global qual-
ity criteria. We also study the stability of the system.
In Section 3, we introduce the policies for peer reloca-
tion and describe a practical instantiation of the game.
Section 4 presents our experimental evaluation and Sec-
tion 5 refers to related research. We conclude in Section
6.

2 Recall-Based Clustering

We consider a distributed system consisting of highly
dynamic nodes (peers) that share content. Usually,
such distributed content sharing systems need to scale
up to a large number of peers (Internet-scale). Thus, a
peer is unable to know and directly communicate with
all other peers in the system. Instead, it establishes
logical links with only a few, creating logical overlay
networks on top of the physical one. Queries are for-
warded using these links from peer to peer in the over-
lay to locate peers that hold any content of interest.

We use P to denote the current set of peers. We do
not assume any specific model for the data items shared
by the peers, but adopt a rather generic approach where
each data item is described by a set of attributes (e.g.

keywords for text documents). We denote the number
of results for a query q (e.g. keyword query) against
the documents of peer pi as result(q, pi).

Let Q be the list of all queries in the system. Note
that a query q may appear more than once in Q.
Let num(Q) be the number of all queries in Q and
num(q, Q) be the number of appearances of query q in
Q. We characterize the importance of a peer pi in the
evaluation of a query q in Q based on the results that
pi offers for q with regards to the total number of avail-
able results (i.e. the recall achieved when q is evaluated
solely on pi). Specifically:

r(q, pi) =
result(q, pi)∑

pk∈P result(q, pk)
.

We also define as local workload of peer pi, Q(pi), the
list of queries that were issued by peer pi. Again,
num(Q(pi)) stands for the number of all queries in
Q(pi) and num(q, Q(pi)) for the number of appearances
of query q in Q(pi).

The efficiency of query evaluation depends heavily
on the structure of the overlay network formed by the
peers since that is used to forward queries to interesting
content. Thus, efficient overlays improving system per-
formance are required. Typical examples of such over-
lays are structured overlays such as Chord and CAN
with strict topologies in which locating any peer (i.e.
any data item) takes O(log|P |) and clustered overlays
in which peers are more loosely structured. In clus-
tered overlay networks, peers form sets, called clusters.
The main motivation for clustering is that inside each
cluster, the evaluation of a query is cost efficient. In
such overlays, the peers within each cluster are usu-
ally highly connected and it is very efficient for each of
them to communicate with any other member of the
same cluster. Figure 1 shows 8 peers forming a cluster
following a fully connected topology (Fig. 1(a)) where
each peer can reach any other with one hop, while (Fig.
1(b)) a structured topology in which finding any peer
takes log8 hops.

Clustering as a Game: We model the problem of
cluster formulation as a strategic game. Each peer rep-
resents a player in the game and its strategy is de-
fined by the set of clusters it joins. In particular, each
peer pi chooses which clusters to join from the set of
Cmax clusters in the system, C = {c1, c2, . . . , cCmax},
thus, defining its strategy si ⊆ C. We can describe
any cluster configuration by the set of strategies S =
{s1, s2, . . . , s|P |} that the peers in P have deployed,
since from this set we can derive the set of peers belong-
ing to each cluster in C. In this paper, we constraint
Cmax to be equal to |P |, i.e. it cannot exceed the num-
ber of peers, and assume that some clusters may be
empty if needed.

2

(a) (b)

p1 p2 p3

p4 p5
p6

p1
p2

p3

p4p5

p6

Figure 1: Examples of intra cluster topologies

The goal of the game is for each player (peer) to
minimize or maximize a utility function. We discern be-
tween two types of peers, selfish and altruistic ones, and
define a corresponding utility function for each type.

2.1 Individual Peer Measures

A selfish peer is interested in increasing the recall of its
local query workload by joining those clusters whose
peers would increase the recall of its local workload
the most. Specifically, let P (si) be the set of peers
belonging to any cluster c ∈ si. The gain for a peer p for
choosing a strategy si is the recall of its local workload
achieved by evaluating its queries in the peers P (si).
Stated differently, the cost associated with a strategy
si for a peer pi is the cost (recall) for obtaining query
results from peers located in clusters that do not belong
to si, that is, for peers not in P (si).

Clearly, this recall-based cost is minimized, if a peer
joins all Cmax clusters in the system. However, partici-
pation in a cluster imposes communication and process-
ing costs. Such costs depend on the size and the topol-
ogy of the cluster. The larger the size of the cluster,
the higher the cost of joining, leaving and maintaining
the cluster. Furthermore, a highly connected topology,
where each peer maintains links to a large number of
other peers, increases the cluster membership cost. To
capture this, the cluster membership cost is defined as
a monotonically increasing function θ of the number of
peers belonging to the cluster, i.e. as a function of the
cluster size |c|. This function depends on the cluster
topology, for instance, when all peers are connected to
each other, θ may be linear (Fig. 1(a)), whereas in the
case of structured overlays, θ may be logarithmic (Fig.
1(b)).

Definition 1 (Individual Peer Cost) In a cluster
configuration S, the individual cost for a selfish peer
pi for choosing strategy si is defined as:

pcost(pi, S) = α
∑

ck∈si

θ(|ck|)
|P |

+
∑

qinQ(pi)

num(q, Q(pi))
num(Q(pi))

∑

pj /∈P (si)

r(q, pj)

The first term expresses the cost for cluster member-
ship and the second one the cost (in terms of recall) for
obtaining results from peers outside the selected clus-
ters, that is, the average result loss from not partici-
pating in all clusters. Parameter α (α ≥ 0) determines
the extent of influence of the cluster membership cost
in cluster formation. From a system perspective, pa-
rameter α characterizes the ratio between updates and
queries in the system. For a given θ, a large value of α
means that updates in the system are rather frequent
and therefore the cost for cluster maintenance is high,
while a small value shows that query evaluation effi-
ciency is more important for determining the overall
system performance. Finally, factor 1/|P | is used for
normalizing the cluster membership cost.

We consider which strategy maximizes the value of
each of the two terms contributing into the individual
cost function for a peer pi, i.e., the membership cost
and the recall loss. If we consider a scenario in which
each peer can join only one cluster, we observe that
since θ is a monotonically increasing function, it takes
its largest value when all peers form a single cluster of
size |P |. In this case, the term based on recall takes
its lowest value equal to 0. That is, since all peers be-
long to pi’s cluster, there is no recall loss. In contrast,
the recall loss takes its largest value when pi forms a
cluster by its own. If any peer joins its cluster, the loss
will either decrease if the new peer has data that pi is
interested in, or remain the same, if it does not, but it
can never increase. Evaluating however the member-
ship cost in this case, we observe that it is minimized.
Thus, we observe that the two terms tend to guide the
peer towards selecting opposing strategies.

Note that in the proposed model, we focus on recall
and abstract the cost of processing queries both within
each cluster and across clusters. There is a large body
of research on routing queries among interconnected
peers. By concentrating on recall, we aim at capturing
the basic mechanisms underlying clustering indepen-
dently of any query routing specifics.

While minimizing the individual cost function is ap-
propriate for modeling the behavior of selfish peers that
try to maximize the recall of their own queries, we also
want to model the behavior of altruistic peers. Altru-
istic peers are not concerned about their own queries,
instead they are interested in offering to other peers.
Therefore, we define the corresponding utility function,
called individual peer contribution (pcontr) that an al-
truistic peer pi aims at maximizing based on how much
pi improves the recall of the other peers that belong to
the clusters of its strategy. Thus, analogously to Def.
1, the individual contribution is defined as follows:

Definition 2 (Individual Peer Contribution) In
a cluster configuration S, the individual contribution of

3

an altruistic peer pi for choosing strategy si is defined
as:

pcontr(pi, S) =
1
|P |

∑

pj∈P (si)

∑

q∈Q(pj)

num(q,Q(pj))
num(Q(pj))

r(q, pi)−

α

|P |2
∑

ck∈si

|ck|θ(|ck|)

The first term of the sum measures the contribution
of peer pi to the peers in the clusters of its strategy,
while the second term measures the membership cost
these peers pay if pi joins their cluster. Similarly to
the individual cost, the membership cost also takes its
lowest value when the peer forms a cluster by its own
and its largest when all peers form a single cluster (if
we consider that each peer joins only a single cluster),
whereas the recall it contributes to other peers takes its
largest value in the single cluster and its lowest when it
forms its own cluster. Individual contribution is defined
from the perspective of each beneficiary peer, that is,
the queries frequencies are defined based on their rel-
ative frequencies per such peer. While pcost measures
the cost pi pays for its query workload and membership
to clusters in si, pcontr is a positive measure showing
what other peers gain when pi chooses strategy si.

In general, there is no direct relation between the
two measures. We observe the relationship between the
membership cost in the two terms. Let us first consider
the simple case where each peer pi joins one cluster ck.
Then it holds that the membership cost in the indi-
vidual contribution is equal to |ck|/|P | times the corre-
sponding membership cost in the individual cost. Simi-
larly, when we consider a cluster configuration in which
all the clusters have the same size |c|, and a peer that
has joined k clusters we have for the membership cost
in the individual contribution: α/|P |2 k |c|θ(|c|), while
the same cost in the individual cost is:α/|P | k, θ(|c|),
that is the first cost is |c|/|P | times the second.

Besides the pure selfish and the pure altruistic behav-
ior, hybrid behavior can be captured by the following
cost function:

hpcost(pi, S) = d pcost(pi, S)− (1− d) pcontr(pi, S)
(1)

where d ∈ [0, 1] captures the degree of selfishness of
peer pi. A hybrid peer considers both its own cost
(with degree d) and its contributions to the others (with
degree 1− d).

Finally, note that our game is a non-cooperative
asymmetric game. A game is asymmetric if the value
of the utility function or payoff differ if different players
select the same strategy.

2.2 Global Cost Measures

One way to measure the overall quality of a cluster
configuration is by evaluating the achieved social cost
(SCost) defined as:

Definition 3 (Social Cost) The Social Cost of a
cluster configuration is defined as the sum of the in-
dividual costs of all peers in P .

SCost(S) =
∑

pi∈P

pcost(pi, S)

We can also evaluate the overall quality of the config-
uration from a query workload perspective, by consider-
ing the average cost for attaining results for all queries
in Q. Then, the workload cost (WCost) is defined as:

Definition 4 (Workload Cost)

WCost(S) = α
∑

ck∈C

|ck|θ(|ck|)
|P | +

∑

qinQ

num(q, Q)
num(Q)

∑

pi s.t. qinQ(pi)

num(q, Q(pi))
num(q, Q)

∑

pj /∈P (si)

r(q, pj)

The first term expresses the cost of maintaining the
clusters. The second term expresses the cost of all
queries, i.e., the recall of evaluating them outside the
clusters of their initiator.

The main difference between the social and the work-
load cost lies on how they assign weights to the queries.
In the social cost, each peer assigns weights to its
queries based on their frequency in its local workload,
whereas in the workload cost, the weight assigned to
each query is based on the frequency of the query in
the overall query workload. Intuitively, while the social
cost regards all peers as equals, the workload cost con-
siders more demanding peers, i.e. peers that pose more
queries, as more important than low demanding ones.

The two cost measures are not equal in the general
case.

Proposition 1 If for all peers pi, pj ∈ P ,
num(Q(pi)) = num(Q(pj)) = num(Q)

|P | , the social
and the workload cost measures are proportional to
each other.

Proof.
Using the definition of individual cost (Def. 1), the
social cost can be written as:

SCost(S) = α
∑

pi∈P

∑
ck∈si

θ(|ck|)
|P |

+
∑

pi∈P

∑

qinQ(pi)

num(q, Q(pi))
num(Q(pi))

∑

pj /∈P (si)

r(q, pj) (2)

4

The membership cost of SCost is equal to the first term
of WCost. Just consider that each cluster ck appears
in the sum of SCost as many times as the peers that
belong to it, i.e., its size |ck|. The second term differs
from the second term of SCost only on how much the
workload of each peer is taken into account. It is easy
to see, that if peers get an equal part of the query work-
load, i.e., num(Q(pi)) = num(Q(pj)), for all peers pi,
pj ∈ P , the recall parts of the two costs are propor-
tional, that is, improving the social cost improves the
workload cost and vice versa.
¤

In accordance to the social cost, we can also define
the corresponding social contribution as:

Definition 5 (Social Contribution) The Social
Contribution of a cluster configuration is defined as
the sum of the individual contributions of all peers in
P .

SContr(S) =
∑

pi∈P

pcontr(pi, S)

The WCost measure also has a counterpart from an
altruistic point of view, WContr:

Definition 6 (Workload Contribution) The
Workload Contribution for a cluster configuration S is
defined as:

WContr(S) =
∑

qinQ

num(q, Q)
num(Q)

∑

pi s.t. qinQ(pi)

num(q,Q(pi))
num(q, Q)

∑

pj∈P (si)

r(q, pj)−

α

|P |2
∑

pi∈P

∑
ck∈si

|ck|θ(|ck|)

Similarly to SCost and WCost, the SContr and
WContr are also proportional for specific workload dis-
tributions, in particular, when the query workload is
uniformly distributed among the peers:

Proposition 2 If for all pi, pj ∈ P and
all q in Q, num(q, Q(pi))/num(Q(pi)) =
num(q,Q(pj))/num(Q(pj)) = num(q,Q)/num(Q),
the social and the workload contribution measures are
proportional to each other.

Intuitively, social contribution favors queries that are
popular to specific peers, whereas its workload coun-
terpart favors overall popular queries.

Let us now examine the relationship between the
workload cost and the workload contribution.

Proposition 3 For α = 0, that is, if ignore the
cluster membership cost, it holds: WCost(S) = 1 −

WContr(S), which means that the two measures are
complementary.

Proof.
It holds that:

∑

pj /∈P (si)

r(q, pj) +
∑

pj∈P (si)

r(q, pj) = 1, ∀q in Q, si ∈ S.

(3)

Thus, α = 0 we have: WCost(S) = 1−WContr(S).
¤

Let us consider now, the social cost and the social
contribution.

Corollary 1 For uniform query workload among peers
the social cost and social contribution are also comple-
mentary: SContr(S) = 1− SCost(S).

Proof.
Again, for α = 0, we can rewrite SCost(S) using (3)
and if we assume that num(q,Q(pi))

num(Q(pi))
is the same for all

peers pi, then we have that:SContr(S) = 1−SCost(S).
¤

2.3 Stability

The goal of each player (peer) is to minimize/maximize
its individual cost/contribution. Since the two cases are
completely symmetric, we will refer in the following to
selfish peers, but the same results are applicable for
altruistic behavior. The question that arises is: if we
leave the players free to play the game to achieve their
goal, will the system ever reach a stable state in which
no players desire to change their strategy (the set of
clusters they belong to)? That is, will the system reach
a Nash equilibrium?
Nash Equilibrium: Formally, a (pure) Nash equilib-
rium is a set of strategies S such that, for each peer
pi with strategy si ∈ S, and for all alternative set of
strategies S′ which differ only in the i-th component
(different cluster sets s′i for peer pi), pcost(pi, S) ≤
pcost(pi, S

′). This means that in a Nash equilibrium,
no peer has an incentive to change the set of clusters it
currently belongs to, that is, Nash equilibria are stable.

We shall first prove an interesting property of the
clustering game. Due to the form of our cost func-
tion, the stable states in our system have the following
property that constraints the number of possible con-
figurations:

Lemma 1 In any stable state, there are no clusters ci,
cj such that ci ⊆ cj.

Proof. Let S be a cluster configuration, ci, cj be two
clusters in C such that ci ⊆ cj . Consider a peer pk,
pk ∈ ci. Clearly, pk ∈ cj . Let the individual cost of

5

pk be: pcost(pk, S) = αγ + δ, where γ is the member-
ship cost for pk when following strategy sk ∈ S and
δ the respective recall it loses from the peers that do
not belong to P (sk). Assume for the purposes of con-
tradiction that S describes a stable configuration, then
pk can not select a strategy that would reduce its cost.
Let us examine the strategy s′k = sk − {ci}. Let S′ be
the configuration resulting by replacing sk with s′k in S.
Then, pcost(pk, S′) = α(γ − θ(|ci|)

|P | + δ) < pcost(pk, S).
The recall part of the cost function remains the same,
because P (sk) = P (s′k). Thus, pk can reduce its cost
by selecting the strategy s′k, and therefore S is not a
stable state, which contradicts our assumption.
¤

Because of Lemma 1, it holds:

Corollary 2 When a peer forms a cluster by itself it
cannot belong to any other cluster in the system.

It is rather simple to show that for the cluster for-
mation game, a pure Nash equilibrium does not always
exist.

Proposition 4 A pure Nash equilibrium does not al-
ways exist for the cluster formation game.

Proof. Let us consider a simple scenario of two peers
p1 and p2. Consider also that Q(p1) consists of a single
query q1 satisfied by p2 (i.e. r(q1, p2) = 1) and Q(p2)
consists of q2 also satisfied by p2. Let C = {c1, c2}
be the clusters in the system. Using Lemma 1, the
following cluster configurations are possible: p1 ∈ c1

and p2 ∈ c2, described by S1 = {{c1}, {c2}}, p1 ∈ c2

and p2 ∈ c1, described by S2 = {{c2}, {c1}} and both
p1, p2 ∈ c1 or c2 described by S3 = {{c1}, {c1}} and
S4 = {{c2}, {c2}}, respectively. Let us assume a linear
θ function, θ(n) = n. Then, for any value of α > 0,
we can show that none of the possible configurations
is a Nash equilibrium. In particular, since the first
two configurations are symmetric, let us examine the
first one. The individual costs of the two peers are:
pcost(p1, S1) = α 1

2 + 1 and pcost(p2, S1) = α 1
2 . If p1

moves to cluster c2, then the system configuration be-
comes {{c2}, {c2}}, that is, configuration S4, and the
cost for p1 becomes pcost(p1, S4) = α ≤ pcost(p1, S1).
Thus, configuration S1 is not a Nash equilibrium, since
p1 can reduce its cost by moving to c2. Let us consider
now the configuration S3 (S4 is symmetric) in which
both peers belong to the same cluster. Their individual
costs are now: pcost(p1, S3) = α and pcost(p2, S3) = α.
Peer p2 can reduce its cost by moving to the (empty)
cluster c2 (resulting in configuration S1) and therefore
S3 is not a Nash equilibrium. Table 1 summarizes the
payoff (cost) table for this two-player game.
¤

Table 1: Payoff Table
p2 joins c1 p2 joins c2

p1 joins c1 α,α α
2 +1,α

2

p1 joins c2
α
2 +1,α

2 α,α

2.4 Social Optimum

Even if the system does eventually reach a stable state
(Nash equilibrium), it is not necessary that this stable
state has a satisfying cost. A measure widely used for
evaluating how far from the best possible outcome a
stable state is, is the price of anarchy defined as the
ratio between the social cost of the worst Nash equilib-
rium and the “social optimum”. The social optimum
is obtained by minimizing the social cost measure over
all possible configurations, even for those configurations
that do not correspond to a stable state. In accordance
to the price of anarchy, another measure often used is
the price of stability defined by the ratio between the
cost of the best Nash equilibrium and the social opti-
mum. We can acquire a rough bound of the cost of
the social optimum by considering each peer separately
and evaluating its individual cost over all possible con-
figurations. Then, by selecting for each peer the con-
figuration that yields the minimum individual cost and
adding these values, we obtain a bound for the min-
imum value of the social cost in the system, i.e., for
the social optimum. Note that we are adding together
individual costs that may correspond to different con-
figurations, thus, the estimated social cost may refer to
a configuration that cannot exist and may be very far
from the actual value of the social optimum that we
can achieve in a given system.

3 Case Studies

Although in the general case a Nash equilibrium does
not always exist, there are cases in which the data and
query workload distribution lead to the formation of
stable clusters. Next, we present two simple scenarios:
(a) the case in which there is no underlying clustering
in the data and the workload and (ii) the case in which
both the data and workload are such that clustering
can be utilized.

3.1 Stability

Case I: No Underlying Clustering

We consider first the case in which all peers in P are
similar in the following sense:

num(Q(pi)) = num(Q(pj)) = num(Q)/|P |, ∀pi, pj ∈ P

r(q, pi) = r(q, pj) = 1/|P |, ∀q ∈ Q,∀pi, pj ∈ P
6

This scenario corresponds to a data and query distri-
bution for which no physical grouping among the peers
exist. All peers can be viewed as belonging to a single
cluster, since they all have the same data and query dis-
tribution. Note that in this case, our game becomes a
symmetric one, since all players yield the same pay-
offs when applying the same strategy. We consider
three different configurations for this case and exam-
ine whether they constitute a Nash equilibrium.

Case(I.a): A single cluster
Let us assume as our first configuration the one in which
all peers form a single cluster. Let us call this configu-
ration S. The only way a single peer pi can change its
own strategy in S is by forming a cluster by its own. Let
us denote this as configuration S′. Note that Corollary
2 does not allow a configuration in which a peer belongs
both to a cluster with all other peers and form a cluster
by its own. For configuration S to correspond to a Nash
equilibrium, it must hold pcost(pi, S) ≤ pcost(pi, S

′),
∀pi ∈ P and by evaluating these costs, we get that this
is true for:

α ≤ |P | − 1
θ(|P |)− θ(1)

. (4)

If we assume that the θ function corresponds to a linear
function of the form: θ(n) = λn, λ ≤ 1, we deduce that
S (i.e. a single cluster) is an equilibrium for α ≤ 1/λ.
Recall that large values of α mean that maintenance
costs are more important than query recall. Thus, for
the same θ, for values of α larger than this threshold,
the maintenance cost would surpass those gained by
recall and would lead to splitting the cluster. Note also,
that whether a single cluster is stable or not depends
also on the topology as captured through function θ.
For instance, when λ is small (less connected topology),
a single cluster remains stable for larger values of α.

If we consider altruistic peers that change strategies
according to their individual contribution, then config-
uration S is a Nash equilibrium when:

α ≤ |P | − 1
|P |θ(|P |)− θ(1)

, (5)

and, if θ is the linear function, then: α ≤ 1/λ(|P |+ 1).

Case(I.b): Each peer forms its own cluster
Let us assume a second initial configuration S, in which
each peer forms a cluster by its own. The only way for
pi to change its strategy is to leave its own cluster and
join k other clusters, where 1 ≤ k ≤ |P | − 1 (configura-
tion S′′). Evaluating the individual cost for S′′, we see
that the initial configuration corresponds to an equilib-
rium for:

α ≥ k

kθ(2)− θ(1)
. (6)

If we consider a linear θ function, S is an equilibrium
for α ≥ k

(2k−1)λ . As expected, if α is small, the initial
configuration is not stable, since peers would tend to
cluster with each other to improve recall versus main-
tenance.

Again, for altruistic peers for S to be a Nash equilib-
rium it should hold:

α ≥ 2k − 1
2kθ(2)− θ(1)

(7)

And for linear θ functions: α ≥ (2k − 1)/λ(4k − 1).
Case(I.c): m non-overlapping clusters
Finally, let us now assume an initial configuration S in
which the peers form m non-overlapping clusters of the
same size |c|. Consider a peer pi ∈ cj . The available
options for pi for changing its own strategy are to: form
a cluster by its own; additionally to cj , join k other
clusters, where 1 ≤ k < m; or leave cj and join k other
clusters.

Thus, for S to be a Nash equilibrium, the following
must hold, for all k, 1 ≤ k < m:

α ≤ |c| − 1
θ(|c|)− θ(1)

, α ≥ |c|
θ(|c|+ 1)

,

α ≥ k(|c| − 1) + 1
kθ(|c|+ 1)− θ(|c|) . (8)

The above case can be easily generalized for clusters of
different sizes.

Finally, for altruistic peers we have that S is a Nash
equilirium when:

1
θ(|c|) ≤ α ≤ |c| − 1

|c|θ(|c|)− θ(1)
(9)

Therefore, we showed that even if there is no underly-
ing clustering according to the data and query workload
distribution among the peers, a system can still reach
a stable state that depends each time on the cluster
maintenance costs and the portions of data and query
workload each peer offers or demands.

Case II: Symmetric Clusters

The second case we consider refers to a scenario in
which the data and query distribution is such that an
underlying clustering/grouping exists among the peers.
In particular, we examine a scenario in which the peers
in P belong to m (m > 1) different groups of the same
size |c| = |P |/m. For m = 1 we fall back to the
case where there is no underlying clustering among the
peers. The members in each group offer and demand
data only within their group. All peers in the same
group are equal. Formally, for all pairs of peers pi, pj

in the same group, it holds num(Q(pi)) = num(Q(pj))
and ∀q in Q(pj), r(q, pi) = 1/|c|, whereas for all pairs

7

of peers pi, pj not in the same group, the lists Q(pi)
and Q(pj) have no queries in common and ∀q in Q(pj),
r(q, pi) = 0.

In the following, we limit our analysis to the case
where each peer can belong only to one cluster and
study three configurations.
Case(II.a): A single cluster
We consider first a configuration S, in which all peers
form a single cluster. The only other strategy for a peer
as in the previous symmetric case is to form a cluster
by its own. Thus, for S to correspond to a stable state,
it must hold:

α ≤ |P |(|P | −m)
mθ(|P |)− |P |θ(1)

. (10)

As in the first case, if we consider the linear function for
θ we have that S is a Nash equilibrium for: αleq(|P | −
m)/λ(m− 1).
Case(II.b): Each peer forms its own cluster
For an initial configuration S in which every peer forms
a cluster on its own, the only other option again is for
the peer to form a cluster by joining another peer pj .
We can discern between two cases: (a) pj is in the same
group with pj (S′), and (b), pj belongs to a different
group (S′′). Case (b) is the same, whatever group out of
the m−1 we consider, since all such peers are symmetric
for pi, i.e., they do not satisfy any of its local query
workload. Since pcost(pi, S

′) < pcost(pi, S
′′), for S to

correspond to a stable state, we have:

α ≥ m

θ(2)− θ(1)
. (11)

Particularly for a linear θ it should hold: α ≥ m/λ.
Case(II.c): m non-overlapping clusters
We consider another initial configuration in which the
peers form m clusters of equal size |c|, with each cluster
containing peers of a single group. Then, the individual
peer cost for each peer pi ∈ P is equal to its cluster
membership cost, since the cost for computing queries
outside its cluster is zero (there are no results for Q(pi)
in peers not in P (si)).

If pi wants to change its strategy si then one possi-
bility is to move to a cluster on its own and the other
to move to a different existing cluster. For S to corre-
spond to an equilibrium in this case, it should hold for
α:

|P |2 −m

|P |(θ(|P |/m + 1)− θ(|P |/m))
≤ α ≤ (|P | −m)

(θ(|P |/m)− θ(1))
.

(12)

Similarly to the first case, we can perform the same
analysis when we are dealing with altruistic peers by
considering the individual contribution instead of the
individual cost. We omit the analysis due to lack of

space.

3.2 Social Optimum

We examine whether any of the configurations we pre-
sented for the two case studies also corresponds to a
social optimum. For a configuration to correspond to
a social optimum then it must have the lowest social
cost among all possible configurations (stable or not).
We consider the case of using the linear θ function and
selfish peers. The results can be easily adapted for al-
truistic peers if we consider the respective contribution
measures and are omitted due to lack of space.

Case I: No Underlying Clustering

Since in this case all peers are symmetric the social cost
is minimized if we minimize the individual peer cost for
any peer.
Case(I.a): A single cluster
Note that if Eq. (4) holds and θ is the linear function,
then this Nash equilibrium corresponds also to a state
with social cost equal to the social optimum. We al-
ready proved that any peer has larger cost if it forms
its own cluster. The other option we should consider is
when a peer pi joins k clusters with different sizes. Let
us consider the best case in which the k clusters have no
overlapping members. It also holds that |P (si) < |P |,
otherwise we have again configuration S for k = 1. For
S to constitute a state with cost equal to the social
optimum, this configuration (S′′′) should also have a
larger individual cost for all peers pi. This does hold
for α ≤ 1/λ.
Case(I.b): Each peer forms its own cluster
In this case, we have a equilibrium when a ≥ k/(2k −
1)λ. k can take values from 1 to |P | and α takes its
largest value for k = 1. Thus, the cost corresponds
to the social optimum as in the previous scenario for
a ≥ 1/λ.

We observe that for α = 1/λ both case (I.a) and (I.b)
correspond to equilibria with the same social cost, equal
to the social optimum.
Case(I.c): m non-overlapping clusters
If we consider m > 1 then the third case does not cor-
respond to a social optimum since we already showed
that for any value of α as we already showed above. If
m = 1 then this case is the same as forming a single
cluster or each peer its own and we fall back to the
previous analysis.

Case II: Symmetric Clusters

In this case, the peers belonging to each group are sym-
metric to each other and each group is symmetric to
the others. Thus, to determine the social optimum it

8

again suffices to find the configuration that minimizes
the individual cost for any of the peers.
Case(II.a): A single cluster
For the first configuration we can easily discern that
for any value of α > 0 a configuration with a lower
social cost is one where the m groups form separate
clusters. When all the peers form a single cluster each
peer connects to |P | − |c| peers which do not offer any
recall to its queries thus the cost can easily be reduced
by not connecting to them.
Case(II.b): Each peer forms its own cluster
In this case we need to consider the case where a peer
joins a cluster with k other peers where 1 < k < |c|.
We only consider peers of the same group (i.e. at the
most —c—-1) since peers from other groups only in-
crease the membership cost without reducing the recall
factor. If we consider a ≥ mλ, then we conclude that
the cost for a peer of joining a cluster with more peers
is higher than forming a cluster by its own. So again,
this configuration corresponds to a social optimum.
Case(II.c): x non-overlapping clusters
For the linear θ function the configuration corresponds
to the social optimum. We have already considered the
case of a peer moving to its own cluster or a different
existing cluster. If a peer joins its cluster and any other
cluster it only increases its membership cost without re-
ducing its recall loss as all other peers hold no data of
interest. Thus, the only case we need to consider is
when pi forms a cluster with |c′| < |c| peers of its own
category (configuration S”’). If the cost in this config-
uration is again larger, then S corresponds to a social
optimum. This holds for α ≤ 1/λ(c− c′).

4 Cluster Evolution

Assume some initial cluster configuration. As the sys-
tem evolves, the recall achieved by this cluster configu-
ration may deteriorate. Changes that affect the quality
of clustering include topology updates as peers enter
and leave the system, as well as changes of the peer
content and the query workload. We propose a suite of
protocols to keep the clustered overlay up-to-date with
respect to these changes. Our protocols are based on
local relocation policies that each peer follows so that it
moves to the most appropriate cluster under the given
system conditions. Such protocols can also be used to
bootstrap the system, for example, by applying them
on an initial configuration in which all peers belong
to a single cluster or each peer forms a cluster by its
own. We describe first the relocation policies followed
by each peer, and then how such policies are applied
for creating a new cluster configuration. For simplicity,
in the rest of this paper, we focus on the case where
each peer belongs to a single cluster: si = {cj}.

4.1 Relocation Policies

Unlike most network creation games, our game is not a
one-shot game but a repeated one, where the peers re-
examine their strategy selection through time to cope
with the system dynamics.

We assume that each cluster has a unique identifier,
cid, and that all peers in the cluster are aware of this
unique id. We also assume that the results of each
query are annotated with the corresponding cids of the
clusters that provided them. Cluster ids are assigned
based on peer IPs and timestamps. For example, when
the first peer joins a cluster, the cluster id is formed
by the IP of the peer concatenated with a timestamp.
When another peer joins the cluster, it is informed of
this cid. Every peer in the system does not need to
know all cids, but it gradually learns them, as results
annotated with new cids are returned for its queries.
Therefore, when all peers leave a cluster, its cid just
becomes unused. Recycling cids is beyond the scope of
this paper.

Since a peer can not be aware of all available results
for a query, we define a measure called cluster recall as
the fraction of results returned to peer p for query q
by a cluster ci to the total number of results returned
for the query. The number of these results depends on
the routing algorithm used, and if a query is evaluated
against all clusters, it is equal to the total number of
results for q in the system.

Based on the behavior of each peer, we consider two
types of relocation policies: selfish and altruistic.

In the selfish relocation policy, a peer determines that
its current cluster is no longer suitable, when it observes
that its queries receive a low recall. Since, all query re-
sults received by a peer are annotated with the cid of
the cluster they came from, each peer can keep track of
its recall with respect to all clusters in the system. In
particular, each peer pi incrementally updates its indi-
vidual cost, pcost(pi, S), considering all different strate-
gies sets S = S1, S2, . . . , S|P | which differ only at their
si component, one for each of the clusters ci currently
in the system. When the peer needs to decide whether
to relocate or not, it selects the Snew with si = {cnew}
for which:

Snew = arg min
Sj∈S

pcost(pi, Sj) (13)

The motivation behind this policy is that a peer
chooses to move to the cluster that has yielded the most
results for its query workload.

In the altruistic relocation policy, the peers decide to
move to the cluster whose recall would be improved the
most by this movement. To this end, each peer keeps
track of the number of results it sends to queries coming
from a particular cluster. In particular, it incrementally
updates its individual contribution, pcontr(pi, S), con-

9

sidering different si components for each of the clusters
ci in the system. When it is its turn to play, each peer
selects the Snew defined as:

Snew = arg max
Sj∈S

pcontr(pi, Sj) (14)

The motivation behind this policy is that a peer
chooses to move to the cluster (say cnew) for which
it has provided the most results.

A hybrid relocation policy that uses the hybrid peer
cost, hpcost, is also feasible.

4.2 Cluster Reformulation Protocol

The relocation policies are deployed by the peers and
applied to form the cluster reformulation protocol.

First, we define a new measure the gain which is de-
fined as the absolute difference of the value of the util-
ity function of a peer if we consider its current strategy
from the value of the utility function when we consider
the new strategy the peer wants to assume. That is,
the gain measure shows how much the peer will benefit
from its move to a new cluster.

Coordinated Protocol

If we assume the existence of some entity that has
global view and control of the system, then this en-
tity can coordinate the peers in their application of the
policies resulting in a coordinated cluster reformulation
protocol.

To implement such a coordinated protocol, we may
use cluster representatives. The cluster representative
does not need to remain the same for a cluster. Repre-
sentative selection is local within each cluster and may
be random or based on specific properties of the peers.
When a peer stops acting as representative, it suffices
to redirect all requests at the new representative. Prac-
tically, for a peer to join a cluster it just needs to know
one of its members. It then sends a relocation request
to that member, which forwards the request to the cur-
rent cluster representative that takes over.

The clusters representatives gather and exchange in-
formation about their clusters so as to determine when
and where a move is recommended. The protocol is
initiated according for all peers at the same time. Each
peer evaluates its relocation policy and determines the
cluster it needs to move to. Then, all relocation re-
quests are gathered and ordered according to non-
increasing value of gain. A portion of these requests
is granted in this order (i.e., the x% of all the requests)
(Alg. 1).

Algorithm 1 CoordinatedEvent
|P |: number of peers
n:number of clusters
C = {c1, . . . , cn}: number of clusters
R = {r1, . . . , rn}: cluster representatives

1: for all global events do
2: for all ri ∈ R do
3: send a game initialise request to all pj ∈ ci

4: for all pj ∈ ci do
5: evaluate gainj,i−i′

6: send relocation request with gainj,i−i′

7: end for
8: send all relocation requests to all other ri ∈ R
9: sort relocation requests in non-increasing order of

gain
10: end for
11: for all gainj,i−i′ within x% of the list do
12: pj moves from ci to ci′

13: end for
14: end for

uncoordinated Protocol

We argue that the use of coordination is not necessary
and instead propose an uncoordinated cluster reformu-
lation protocol in which each peer determines when to
play locally and independently from the other peers in
the system.

Each peer, when it determines that it is its turn to
play, applies the relocation policy it follows. If the re-
location policy indicates that moving to a new clus-
ter (cnew) improves the peer’s utility function, the peer
leaves its current cluster and moves to the new one.

To facilitate the movements between clusters and re-
duce the overhead required when a new member joins
one, we may again use cluster representatives as in the
coordinated protocol.

Game Types

Based on how often the peers determine that there is
their turn to play in the uncoordinated protocol or the
coordinated protocol is initiated, we discern between
two types of game: an event-based and a trigger-based
game.

For the coordinated protocols, when we consider an
event-based game, the protocol is initiated after each
event in the system, i.e., a query issued or an update in
content or topology. In the uncoordinated event-based
game, a peer determines whether it needs to relocate
after it is made aware of a certain type of event. The rel-
evant events are related to the queries and differ for self-
ish and altruistic peers. Selfish peers re-examine their
strategy after a query from their local query workload
has been evaluated, while altruistic peers after a query
for which they maintain results reaches them. Selfish
peers consider their own queries as relevant events be-

10

cause it is their recall they aim to increase, while altru-
istic ones find the queries for which they can provide
results for relevant because they are interested in con-
tributing the most to their cluster. A hybrid peer may
choose either or both types of event as relevant.

We also consider a variation of the event-based game
thebatch-based game. In the coordinated version, the
game is initiated not after each global event but after a
predefined number of such events (batch). Similarly, for
the uncoordinated version the peers determine whether
they need to relocate to a new cluster after a batch of
relevant events.

In the coordinated trigger-based game, the social or
workload cost (or corresponding contributions) are con-
stantly updated and the protocol is initiated when the
respective global gain becomes greater than zero. For
the uncoordinated version, each peer continuously up-
dates its gain measure and decides to play whenever
its value becomes greater than zero, i.e, when it has
something to win from moving to another cluster. To
continuously update the measures there is a need to
monitor the system or perform some type of polling.

4.3 Controlling Parameters

The gains that individual peers attain from relocation
may not always worth the re-organization cost. Thus,
there is a need to control the overheads of cluster re-
organizations. To this end, we consider different aux-
iliary parameters to the basic reformulation protocol,
which act as overhead control mechanisms. The pre-
sented mechanisms can be applied in all three types of
game we have described and both for the uncoordinated
and coordinated protocols. We can apply either one of
them or a combination of them globally in the case of
coordination or locally at each peer.

Stopping Condition

Since each move imposes considerable overheads, we
want to reduce the number of movements that occur
by allowing a move only if the gain we will get is con-
siderable. Thus, after applying its relocation policy and
before issuing a relocation request, each peer evaluates
its gain and compares it with a system-defined thresh-
old ε. The relocation request is issued only if the gain
value is is larger than ε. Consequently, the protocol
stops without the system reaching an equilibrium, but
rather an ε-stable state.

In the coordinated protocol, the stopping condition
on ε may also be applied on a global level if we measure
the gain with the respect to the social cost or contribu-
tion instead of the corresponding individual measures.

Playing Probability

Instead of allowing a peer to play (i.e. re-evaluate its
strategy) every time it determines that it is time to
do so, for example after an event in the event-based
game, we introduce the use of a playing probability Pr.
The basic protocol is altered such that each time the
peer determines it needs to play, it plays with a prob-
ability Pr. This probability determines how aggressive
a player is, i.e., how high is the chance of a peer to
play, and the larger its value the more often a player
is allowed to play. When Pr = 1, then the protocol is
the basic reformulation protocol where peers play every
time it is their turn according to the type of game. By
decreasing Pr, we reduce the number of moves caused
by the protocol.

The playing probability can either be the same for
all peers, so as to treat all peers as equals or it may be
different for each peer. For example, one may choose to
give a higher probability to peers that change their con-
tent or workload often so that they can adapt faster to
these changes. Also, another factor we can take into ac-
count is the size or the level of demand of a peer. Peers
with more content or a bigger query workload may be
given a higher probability for playing since these peers
are the ones that most influence the workload cost and
contribution.

Movement Quota

Another mechanism to limit the number of moves the
peers make is to enforce a movement quota policy. In
particular, a quota of n possible moves (relocations) is
assigned to each peer when the peer joins the system.
This is the maximum number of moves a peer is allowed
for a specified time.

The peer can spend this quota in a time period of Tq.
If a peer makes n relocations before Tq expires, it is not
allowed to make any other moves. At the end of the of
Tq, the quota is replenished and the peer has again n
available moves.

The quota policy is fair, since it treats each peer the
same and does not penalize one in favor of another as
it may be the case with the locking protocol. If a peer
is very active, then it quickly uses up its quota and is
forced to remain in its current cluster.

Since all peers do not join the system simultaneously,
each peer has its own starting point for the Tq time
periods.

For the event-based game, Tq can be either an in-
dependent time period at each peer or it can be also
represented as a number of relevant events. That is,
for a number of k relevant events that reach a peer it
can only realize n moves (n < k). After each k events,
the quota is replenished. For the trigger-based game,
again a time period Tq is required.

11

The value of n, i.e. the number of quota, expresses
a trade-off between consuming system resources for re-
clustering and tolerating low recall values from a poor
clustering. Moreover, a very large quota allows all
movements and thus becomes obsolete as a mechanism
for preventing excessive movements. Whereas, a very
small quota would prevent peers from making move-
ments that would improve the social cost of the system.

All controlling parameters that we introduced for the
uncoordinated protocols can also be used in the coordi-
nated versions, in addition to the parameter inherent in
this version that determines how many of the relocation
requests are granted. The stopping condition (ε) is ap-
plied in a global level by examining the corresponding
global gain.

5 Experimental Evaluation

We model a system of peers sharing data belonging
to different semantic categories. Each peer in the sys-
tem is associated with a data category j and maintains
documents belonging to it. The local query workload
of each peer is generated by first selecting a document
category with probability P (j) following a zipf distribu-
tion, and then a document d from that category with
probability P (d, j) following another zipf distribution
within each category. We define Px∈l(d, j) as the prob-
ability of peer x associated with category l posing a
query about document d of category j as:

Px∈l(d, j′) =
{

(1−m)P (d, j), l 6= j
((1−m) + m/P (j))P (d, j), l = j

Parameter m is a measure of the interest-based lo-
cality ([17]) the users exhibit. The presence of interest-
based locality, i.e., of the peers property to maintain
data similar to their local query workload is derived
from measurements in real traces of p2p system found
in ([17]). For our evaluation we consider three specific
scenarios. For the first, m = 1. This is the symmetric
scenario in which both queries and data of each peer
belong to the same category. In the second scenario, we
consider again m = 1, but for a j 6= l which is selected
randomly from the remaining categories. This is the
asymmetric scenario, in which each peer has data from
one category but poses queries for a single different cat-
egory. Thus, the symmetric scenario exhibits maximum
interest-locality, while the asymmetric none. Finally, in
the third scenario, the random scenario, m = 0. Again,
there is no interest-based locality and each peer has
both data and queries uniformly distributed from all
categories.

We used as data Newsgroup articles belonging to 10
different categories. The articles were pre-processed,
stop words were removed from the text, lemmatiza-
tion was applied and the resulting words were sorted

by frequency of appearance. The texts are distributed
among 10000 peers. Queries are generated by choosing
a random word from the texts such that each query is
satisfied by documents only in a single category. Table
2 summarizes our parameters.

We present four sets of experiments. In the first
set, we evaluate the event-based and the trigger-based
games and the influence of the tuning parameters on
them. Furthermore, we compare the uncoordinated
versions we propose to corresponding coordinated pro-
tocols. In the second set, we examine how our protocols
perform when we start from various initial configura-
tions. In the third set, we focus on how well our proto-
cols enable the system adapt to changes. Finally, in the
forth set we compare our protocols adjusting capability
to a caching scheme.

5.1 Comparison with coordinated pro-
tocols

We compare our two types of game, the event-based and
trigger-based, as well as the batch-based variation of
the event-based game with corresponding coordinated
protocols. Our goal is to demonstrate that our proto-
cols work efficiently and competitively to the coordi-
nated ones, despite the lack of global control.

Tuning Parameters Influence

We compare uncoordinated and coordinated versions
of the event-based, trigger-based and batch-based pro-
tocols with batches of 20, 50 and 100 events, which
correspond to the 1/10th, 1/4th and 1/2 of the queries
in the average local workload of a peer respectively, for
different tuning parameters. We consider asymmetric
peers since this type of peers pose the greatest challenge
when applying clustering. The peers are all selfish in
this experiment. We explore the influence of strategy
selection later. We assume that clusters are organized
in a chord-like topology (logarithmic θ). We start with
an initial configuration in which each peer forms its
own cluster, which is similar to a system in which no
clustering algorithm has been applied yet. We measure
the social cost, the number of movements and the av-
erage number of turns per peer in the system until we
reach a stable state. With the term turn, we refer to
the turn of each player in the game when it needs to
decide whether to play or not. The more playing turns
the protocol needs to complete, the slower it reaches
stability.
Stopping Condition. We first examine how the vari-
ous protocols behave for different values of the stopping
condition ε. We compared all approaches for different
values of ε. For the uncoordinated protocols we used
different probabilities for playing (1, 0.5, 0.25). Fig-
ure 2(left) and Figure 2(left-center) report our results

12

for probability Pr = 0.5. For the coordinated proto-
cols, we set the playing probability of all peers to 1 and
regulate how aggressively the peers play by changing
the percentage of peers in the ordered list that are al-
lowed to play at each round. We experimented with
setting this percentage to 25% 50% and 100% of all the
peers and report our results in Figure 2(center-right)
and Figure 2(right) when 50% of the peers in the list
are allowed to play.

We observed that for the same value of ε each varia-
tion presents an approximate fixed value for the social
cost regardless of the value of the playing probability or
the percentage of peers allowed to play. Among the un-
coordinated protocols the trigger-based is the one that
displays the largest overhead. Since our experiments so
far concern only updates in the local query workload of
the peers (queries are being issued gradually), we ob-
serve that the coordinated versions of the trigger-based
and the event-based protocols behave identically. That
is, the event-based protocol is initiated after each query,
and since after each query the social cost also changes,
the trigger-based protocol is initiated as well. Both
protocols require the largest overhead we encountered
yet, especially when 50% and more peers are allowed
to play. However, the final value of the social cost is
similar to that achieved by the corresponding uncoor-
dinated protocols with respect to the selected ε.

For each of the protocols we can detect a range of
values ε for which the protocols exhibit the best trade
off between social cost and number of movements and
turns. For values greater than this value, the protocols
have increased social cost, while for lower values the ad-
ditional number of movements required is not justified
by the reduction in the social cost it achieves. For the
event-based protocol this critical range is around 10−4.
The social cost decreases significantly as ε decreases up
to 10−4, but when ε < 10−4, more than 1/2|P | of move-
ments are required for the social cost to decrease by a
factor of about 10−2. For the uncoordinated trigger-
based approach the critical value range is larger and
around 10−3. Due to the large overhead the trigger-
based approach entails, lower values render it useless
(almost all players play after each event that occurs in
the system). Finally, when we use batches of events,
we observe that the system works better for lower val-
ues of epsilon around 10−5 to 10−6, where with a small
number of movements we still achieve a significant re-
duction in the social cost. For the larger values of the
parameter this variation performs much worse than the
other two, especially for larger batches of events like 50
and 100. For the coordinated event-based and trigger-
based variations, the value of ε is even greater than the
uncoordinated trigger-based one and around 10−2 or
larger. Even then, the overhead is larger with respect
to the uncoordinated trigger-based game. The corre-

Table 2: Tuning Parameters

Parameter Range Default Value

Topology and Strategy

number of peers (|P |) - 10000
parameter α 1-100 1
membership cost function (θ) - log,linear
strategy - self-alt-hybrid-mixed

Data-Query Distribution

number of categories - 10
interest locality degree (m) - 0-1

Tuning Parameters

stopping condition (ε) 0-10−8 10−4, 10−3, 10−6

playing probability (Pr) 0-1 0.5
movement quota (n) 1-15 ∞
quota period (k) - 20, (5*batch size)
% of allowed moves (x) 0.1-1 1

sponding value for the individual cost in this case is
at most around 10−3. For the batch-based version we
observe that we have much better behavior for lower
values of ε and the number of moves is only marginally
larger than that in the uncoordinated version. When
using large batches, the moves become even the same
as we have almost no unnecessary moves and unlike the
event and trigger-based version, the batch-based ones
work better with larger percentages of playing peers.
Playing Probability. We now select the value of ε
for each protocol according to the previous results, i.e.,
10−4 for the event-based, 10−3 for the trigger-based,
10−6 for all the batch-based variations and 102 and
10−4 for the coordinated ones.

The playing probability does not influence the value
of the social cost we achieve considerably, as for each
protocol it depends mostly on the selected value of ε
and is around 922 for the values we selected for this
experiment. Thus, we measure the number of required
moves and turns.

We first discuss the uncoordinated protocols. The
trigger-based approach has the largest overhead both
in terms of moves and turns for all values of probabil-
ity. For all the protocols, while a lower playing prob-
ability decreases the number of required movements
by avoiding unnecessary ones (Fig. 3(center-left)), it
increases the number of turns required for stability.
The peers do not play every time they could, since
the probability check fails frequently, thus resulting in
more required turns (Fig. 3(center-right)). For the
batch-based approaches, we observe that for smaller
batches of events (such as 20) the approach behaves
similarly to the event-based one. When the batch sizes
are larger, then low playing probabilities cause even
larger increases in the number of required turns without
reducing the number of movements more significantly.

13

Thus, the batch-based approaches are more sensitive
to the probability value when it falls under some value
(around 0.5).

To compare with the coordinated protocols, we con-
sider the relationship between the percentage of peers
we allow to play at each round and the playing probabil-
ity. This percentage of peers can be viewed as another
way to control the overhead by reducing the number
of peers that play at each turn in a way similar to the
probability. Furthermore, by ordering the peer requests
according to their gain value, we implicitly associate
their playing probability to their gain value. Thus, we
set the playing probability to 1 for all peers and instead
experiment with different percentages of playing peers.
The results (Fig. 3)(center-right) and Fig. 3)(right))
are similar to the corresponding results for the uncoor-
dinated version when we varied the playing probability.
We notice that the coordinated version of the protocols
perform better for lower values of playing probabilities
than the corresponding uncoordinated versions.
Quota. To evaluate the influence of the quota protocol
we consider the same values of ε we used in the previous
experiment and a playing probability of 0.25, 0.5and1.
In Figure 4 we report our results for probability equal
to 0.5 and the uncoordinated protocols. We consider
that each peer is given a quota of n moves which is
replenished after k events. We set k = 20 for the event-
based and trigger-based approaches. For the batch-
based approaches, k is defined as a product of the size
of the batch. We use 5 times the size of the batch as
our replenishing period. We vary n from 1 to 15.

The social cost is again the same regardless the quota
used (Fig. 4(left)). When n is relatively small n < 6
then for all values of probability we observed a large
number of checks with the worst behaviour for the
smallest probability value (Fig. 4(center)). There is a
small gain in the number of movements that is slightly
decreased especially in the case of the trigger-based ap-
proach where the communication overhead is consider-
ably larger. We observed that there is an area of quota
for each approach and each probability value in which
our protocols behave the best. For example, for the
event-based approach for n > 6 and n < 12 and prob-
ability of 0.5 we observe the best system performance
(a balance between the number of movements and the
number of checks). In general, for larger probabilities
and protocols that make more movements, the use of
quota combined with the playing probability can sig-
nificantly improve the performance. For example, for
the trigger-based approach with probability 0.5, while
with quota n = 10 we have a decrease of about 10% in
the number of movements compared to not using any
quota, while the number of checks is not increased. This
proves that we mostly avoided unnecessary movements.

Similarly to the observation regarding the playing

probability, the use of a low movement quota is also
beneficial for the coordinated protocols. While the
trigger-based protocol in the uncoordinated version re-
quired a quota of about 10 moves, in the coordinated
version the protocol works better when the quota is
around 12. Similar conclusions apply for the batch-
based approaches.

Progress Per Round

It appears from our experiments so far that the batch-
based approaches perform the best. They reach the
same social cost as the other two while requiring less
movements and less turns, thus they are the ones with
the lowest overhead. However, we need to consider that
the reported social cost value is reached at the end of
the protocol when we reach stability. While the pro-
tocol is still active, since the batch-based approach is
the one that acts the last to correct the increase in the
cost caused by updates, we expect that it will have the
worst behaviour.

To demonstrate this we measure the average social
cost per turn (Table 3). Among the uncoordinated pro-
tocols the trigger-based has the lowest average social
cost (945.56), with the event-based approach coming
a close second (989.32). All batch-based approaches
perform considerably worse, and for 100 batch size, we
have the worst performance. The main advantage of the
coordinated version seems to be the very fast reaction
to changes. Both the trigger-based and the event-based
version work more efficiently than the uncoordinated
trigger-based approach with an average cost of 926.41.
The advantage is explained because of the policy the
coordinated protocol follows by applying ordering in
the relocation requests. By granting the requests with
the larger gain, the protocol seems to avoid some un-
necessary moves that would have to be retracted in the
future. This is also the only difference between the two
versions of the trigger-based protocol as they are both
triggered by the same events that affect the social cost.
The batch-based approaches also perform much better,
since they take into account global rather than just lo-
cal events.

Protocol Variations

Varying Probabilities. So far in our experiments, we
use the same value of probability for all the peers. This
does achieve a sense of fairness since we give all players
an equal chance of playing. However, one may need to
consider that all players are not equal, they have differ-
ent sizes and different levels of demand. Also, some may
update their content or workload more frequently than
others. Thus, we may want to tune their playing prob-
ability accordingly. Besides tuning the playing proba-
bility, another way to determine the number of times

14

 922

 923

 924

 925

 926

 927

 928

 929

10-110-210-310-410-510-610-7

so
ci

al
 c

os
t

ε

 10000

 15000

 20000

 25000

 30000

 35000

 40000

10-110-210-310-410-510-610-7

nu
m

be
r

of
 m

ov
em

en
ts

ε

 922
 922.2
 922.4
 922.6
 922.8

 923
 923.2
 923.4
 923.6
 923.8

 924

10-110-210-310-410-5

so
ci

al
 c

os
t

ε

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

10-110-210-310-410-5

nu
m

be
r

of
 m

ov
em

en
ts

ε

event-based
trigger-based

batch-based-20
batch-based-50

batch-based-100

Figure 2: (left) Social cost and (left-center) movements with no coordination and (right-center) social cost and (right)
movements with coordination

 12000
 13000
 14000
 15000
 16000
 17000
 18000
 19000
 20000
 21000
 22000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

nu
m

be
r

of
 m

ov
em

en
ts

probability

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tu
rn

s
(lo

gs
ca

le
)

probability

 16000
 18000
 20000
 22000
 24000
 26000
 28000
 30000
 32000
 34000
 36000
 38000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

nu
m

be
r

of
 m

ov
em

en
ts

probability

 1000

 10000

 100000

 1e+06

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tu
rn

s
(lo

gs
ca

le
)

probability

event-based
trigger-based

batch-based-20
batch-based-50

batch-based-100

Figure 3: Varying probability and (left) movements and (center-left) turns with uncoordinated protocol and (center-
right) movements, (right) turns with coordinated protocol

 14000

 14500

 15000

 15500

 16000

 16500

 17000

 17500

 18000

 0 2 4 6 8 10 12 14 16

nu
m

be
r

of
 m

ov
em

en
ts

quota

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 2 4 6 8 10 12 14 16

tu
rn

s
(lo

gs
ca

le
)

quota

event-based
trigger-based

batch-based-20
batch-based-50

batch-based-100

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

 0 50 100 150 200 250

w
or

kl
oa

d
co

st

turns

varying Pr
equal Pr

quota

 900
 950

 1000
 1050
 1100
 1150
 1200
 1250
 1300
 1350
 1400
 1450

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

av
er

ag
e

so
ci

al
 c

os
t

probability

policy
no policy

Figure 4: (left) Movements and (center-left) turns with varying quota and (center-right) workload cost with different
probabilities for each peer and (right) social cost with policy and no policy

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

 16000 12000 8000 4000 0

so
ci

al
 c

os
t

moves

selfish
altruistic

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

 16000 12000 8000 4000 0

w
or

kl
oa

d
co

st

moves

selfish
altruistic

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

 0 0.2 0.4 0.6 0.8 1

so
ci

al
 c

os
t

free riders

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100

av
er

ag
e

cl
us

te
r

si
ze

α

linear
logarithmic

Figure 5: (left) Social and (center-left) workload cost through progressing rounds, (center-right) influence of free
riders and (right) influence of α

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 0.2 0.4 0.6 0.8 1

so
ci

al
 c

os
t

percentage of updated x

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 0.2 0.4 0.6 0.8 1

so
ci

al
 c

os
t

percentage of updated peers x

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 0.2 0.4 0.6 0.8 1

so
ci

al
 c

os
t

percentage of updated peers x

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 0.2 0.4 0.6 0.8 1

so
ci

al
 c

os
t

percentage of updated peers x

100%-self
75%-self
50%-self
25%-self

0%-self
no-change

Figure 6: Social cost for different percentages of updated peers (query workload) for (left) scenario 1, (center-left)
scenario 2, (center-right) scenario 3 and (right) scenario 4.

Table 3: Social Cost Per Round

Uncoordinated Coordinated
Event-based Trigger-based Batch-20 Batch-50 Batch 100 Event-based Trigger-based Batch-20 Batch-50 Batch 100

SCost 989.32 945.56 1207.05 1876.15 2876.45 926.41 926.41 1100.25 1543.55 2454.67

15

each player plays is with the moving quota. The quota
in contrast to tuning the probability according to the
levels of demand ensures fairness. In this experiment,
we increase the level of demand of 20% of the peers to
double the average level of demand of all and we set
their playing probability to 1 while the probability for
the rest of the peers is set to 0.5. We compare it to
an approach where all peers have the same probability
0.5 regardless their demand level and another approach
where all players have playing probability 1, but move-
ment quota is utilised. We used the setting from the
previous experiment and set n = 10 and k = 20. We
measure the average workload cost each peer observes
at its turn.

Giving the more demanding peers larger playing
probability improves the workload cost much faster
than when all players have the same probability. The
more impressive result is that this configuration also de-
creases the number of movements significantly. While
with equal probability we require about 15000 move-
ments, the varying probability scheme reduces them to
about 11500, more than 1/4 of the peers save one move.
The movement quota approach performs similarly to
tuning the probability. Since the quota is replenished
after a number of events and the more demanding peers
are influenced by more events, their quota is replenished
faster than that of the other peers thus allowing them
to play more often. Thus, quota can be used when no
information about the level of the demand of the peers
is known and we cannot tune the probability accord-
ingly. The additional overhead is that we need to tune
the quota policy instead.

Ordering of Relocation Requests. The coordi-
nated protocols besides reacting faster to changes also
have the advantage of being able to order the reloca-
tion requests and granting first the ones that result in
the largest reduction in the social cost. To evaluate
how much they benefit from this ordering we compare
the event-based coordinated protocol for different per-
centages of playing peers with a corresponding proto-
col in which no ordering among the requests is utilised.
That is, x% of the requests are selected randomly to be
granted. We measure the average social cost per round
(global event) achieved by both approaches. While the
ordering does impose an additional cost, it also im-
proves social cost significantly (up to 15%). The im-
provement is better observed when a small number of
requests is only granted (small x), while their perfor-
mance becomes identical when almost all requests are
satisfied.

Events not affecting the cost. Thus far, our ex-
periments involved events in the type of issuing queries
that always yielded to a change (improvement or not)
of the cost of some peers. To differentiate between the
trigger-based and the event-based protocols, we per-

formed an experiment which we added events that did
not affect any cost functions. Such events include up-
dates of content that is not queried by anyone so far,
or insertion of new peers that have no content of in-
terest to any of the other peers so far. In this case,
the trigger-based protocol outperforms the event-based
one in term of turns, while they still require the same
number of movements and yield the same social cost.
The difference is the number of times the event-based
protocol is initiated without any reason causing the ex-
cessive evaluation of cost functions at each peer. The
batch-based events are also influenced by these types
of events, but since they consider them in batches, the
problem is not so significant, especially if the rate of
such events is not that large.
Summary:

• The value of ε is the main factor controlling the
value of the achieved social cost. For each ap-
proach we can define an appropriate value lower
than which the improvement in the social cost does
not justify the number of required moves. The
playing probability and quota reduce the num-
ber of movements while increasing the number of
turns.

• The trigger-based approach is the most expensive
among the uncoordinated approaches. Its main ad-
vantage is that it reacts much faster to any change.
The batch-based approaches present the lowest
overhead but also react much slower to changes.
The event-based approach seems the most reason-
able compromize between overhead and fast reac-
tion to changes.

• Variations that adjust the probability according to
the peer’s level of demand manages to reduce the
movements and increase the workload cost faster
(in less turns).

• The coordinated protocols achieve approximately
the same social cost value while imposing a much
larger overhead, especially with regards to required
turns. Their main advantage is that they re-
act to changes even faster than the uncoordinated
trigger-based approach and use requests ordering
yielding the best average social cost. The event-
based approach is initiated by events that do not
affect the cost, thus making it even more expensive
in terms of turns with respect to the trigger-based
version.

5.2 Cluster Formation

In this set of experiments, we start from a random peer
configuration and examine whether the peer reformula-
tion protocol leads to the desired cluster configuration.

16

Table 4: Cluster Formation

Moves Clusters Cluster Size
Self Alt Mix Self Alt Mix Self Alt Mix

Symmetric Scenario
i 15358 15436 14900 10 10 10 1087.5 1100 1100.5
ii 14786 14365 14657 10 10.5 10 1079 1109.5 1125.5
iii(a) 9654 9812 9867 10 10 10.5 1112 1085.5 1119.5
iii(b) 10211 10210 11270 10 10.5 10.5 1010.5 1056.25 1011.75
iii(c) 9841 9554 9456 10 10.5 10 1012.25 1009.5 1016.5
iv 0 0 0 10 10 10 1100 1100 1100
v 0 0 0 10 10 10 1100 1100 1100

Asymmetric Scenario
i 16875 16758 17008 89.25 89.5 90.25 110.75 110.9 111.15
ii 16257 16109 16431 89.25 89.15 90.01 111.9 111.75 111.45
iii(a) 9405 9115 9650 90.1 90.2 90 111.05 110.5 110.33
iii(b) 9180 9320 9125 89.9 90.05 90.2 111.15 110.9 110.67
iii(c) 8502 8745 8790 89.75 89.5 90.1 110.5 110.24 111
iv 5865 6120 6275 90 90.15 90.15 111.4 111.75 111.05
v 6015 6104 6436 90 89.9 90 110.9 111.09 110.89

Random Scenario
i 19450 19710 19340 1 1 1 10000 10000 10000
ii 0 0 0 1 1 1 10000 10000 10000

Table 5: Cluster Formation Utility Functions

SCost WCost SCont WCont
Self Alt Mix Self Alt Mix Self Alt Mix Self Alt Mix

Symmetric Scenario
i 10.07 10.23 10.15 9.97 10 10.15 9.67 9.85 9.84 9.32 9.45 9.65
ii 10.42 10.67 10.93 10.2 10.28 10.65 9.45 9.63 9.58 9.52 9.35 9.61
iii(a) 10.4 10.97 11.35 10.55 10.86 10.93 9.98 9.64 9.69 9.22 9.28 9.53
iii(b) 11.45 10.81 11.59 10.75 10.65 10.9 9.82 9.36 9.42 9.29 9.22 9.22
iii(c) 10.65 10.83 11.72 10.35 10.65 11.93 9.32 9.22 9.29 9.13 9.16 9.14
iv 10.09 10.09 10.09 10.09 10.09 10.09 9.94 9.94 9.94 9.94 9.94 9.94
v 10.09 10.09 10.09 10.09 10.09 10.09 9.94 9.94 9.94 9.94 9.94 9.94

Asymmetric Scenario
i 919.9 922.35 924.85 914.77 920.01 925.86 987.45 974.15 992.09 982 989.76 985.05
ii 924.75 929.25 926.05 919.87 925.5 931.43 974.01 959.25 964.26 971.17 948.89 963.25
iii(a) 922.86 926.41 941.02 917.9 921.12 937.09 947.05 961.67 961.08 957.26 954.25 958.25
iii(b) 922.65 921.15 924.66 918.07 917.78 924.67 967.33 965.09 964.23 962.25 954.57 962.44
iii(c) 923.08 924.44 926.12 920.17 922.99 924 978.02 967.15 976.45 971.67 962.32 969.35
iv 929.05 926.10 924.57 926.48 922.33 923.08 966.14 967.86 968.1 964.56 963.47 963.18
v 917.95 919.05 920.69 915.05 919.7 918.6 952.21 954.33 956 952.39 951.05 952.75

Random Scenario
i 11.33 11.33 11.33 11.33 11.33 11.33 11.33 11.04 11.04 11.04 11.04 11.04
ii 11.33 11.33 11.33 11.33 11.33 11.33 11.04 11.04 11.04 11.04 11.04

In this and the rest of the experiments, we use the un-
coordinated event-based protocol with Pr equal to 0.5
for all the peers and ε = 10−4 as it offers the best trade-
off between overhead and performance. Let M be the
number of peer categories in the system for each sce-
nario, i.e., for the symmetric scenario M = 10. We
consider five different cases for the initial system con-
figuration: (i) each peer forms its own cluster; (ii) all
peers form a single cluster; (iii) peers are randomly dis-
tributed to n groups and we discern for different values
of n the subcases: (a) n = M , (b) n < M and (c) n >
M ; (iv) peers are clustered according to their content
and (v) peers are clustered according to their workload.

The peer that issues a query each time is selected
uniformly at random from all peers in the system. We
allow the system to run multiple queries and check
whether the system reaches an equilibrium and if so,
what is the total number of moves the peers made, the
number of clusters they formed and the average size of
those clusters (Table 4). We also provide the achieved
social and workload cost as well as the respective social
and workload contribution (Table 5).

Both in the symmetric (Table 4 lines 1-7) and asym-
metric scenario (Table 4 lines 8-15), all strategies reach
a Nash equilibrium and form the desired number of
clusters. Furthermore, for the symmetric peers both

social and workload cost only depend on the cluster
membership cost; the cost for the recall is zero, since
all relevant data are located within the cluster (Table
5 lines 1-7). Similarly the recall term in the social and
workload contribution has its maximum value and the
peers only pay for their membership cost. Moreover,
according to our case studies for the given α = 10 the
social cost achieved is very close to the social optimum.
If we consider that all our peers are perfectly symmetric
and all clusters have the same number of peers (1000)
as in Case Study II, then the lowest individual cost
for a peer is equal to: 10−3α and the social cost is:
10α = 10 which is about the same with the cost our
approach achieves. The value is not exact because the
peers and the clusters are not perfectly symmetrical as
in the study case.

For the asymmetric scenario, the recall factor in this
case is not zero, and we observe higher social cost and
lower social contribution. Also, since the queries are
not uniformly distributed among the peers, the social
cost differs from the workload cost (similarly for the re-
spective contribution measures). When the symmetric
peers are clustered according to their content or work-
load, there is no need for change since the appropriate
clusters are already formed (Table 4 lines 6-7). For the
asymmetric peers, both configurations are not stable,

17

i.e., the peers can improve their cost, though they re-
quire less moves to reach stability than the other initial
configurations. Thus, we deduce that relying only on
content or workload information is not enough to pro-
vide the appropriate clustering and thus, our policies
take into account both.

Finally, for the third scenario since no clear num-
ber of desired clusters can be deduced, we consider all
peers as single-membered clusters (Table 4 line 16) and
all peers in one cluster (Table 4 line 17). This scenario
is similar to our first case study where no underlying
clustering exists. Due to the small value of the mem-
bership cost (logarithmic) and the α parameter that
is set to 10, the peers converge towards a single clus-
ter in both cases as we showed in our case studies and
achieve a social cost around the optimum. In partic-
ular, the second case requires no moves since all peers
are already in one cluster. For the same α, if we use
the linear function for the θ, then the single cluster is
no longer the best configuration and the peers tend to
split into smaller clusters. Similarly, a larger value of
α would force the peers to form single membered clus-
ters. For example, we repeated the experiment setting
α = 100. In this case, the first configuration consist-
ing of single member clusters was the one both initial
configurations converged to. Consequently, according
to the importance we want to give to the membership
cost, we can accordingly tune the α parameter to suit
our needs. Figure 5(right) reports the average size of
the clusters that are created for different values of α
when we start with an initial configuration of all peers
in a single cluster for the linear and the logarithmic θ
function.

In all three scenarios, we did not observe significant
differences between selfish and altruistic peers. When
a mixed strategy is used, we see that, in general, more
moves are required so as to reach a stable state. How-
ever, the social cost in the resulting state is not signif-
icantly different.
Social vs Workload Cost. We also measured the
progress of the social and workload cost as the peers
realised more moves, i.e., during the game and un-
til reaching a stable state. To show the difference
in the two measures we used varying probabilities for
each peer for the playing probability Pr. Furthermore,
we selected a percentage of peers (20%) as demanding
peers and doubled their query workload, and did the
same with respect to content to a different 20%.

The more demanding peers are the ones that move
first to accommodate their query workload. As Fig.
5(center-left) shows, the workload cost decreases faster
as the demanding peers are the ones that dominate the
moves. After the demanding peers find the appropri-
ate cluster, even if they do have a higher probability
to move they do no longer have anything to gain from

the move. The social cost that treats all peers equally
decreases linearly through all rounds (Fig. 5(left)).
When we consider altruistic peers in this experiment
we observe that the workload cost is not reduced much
faster. The peers that have large size (i.e., more data)
do not have an accordingly higher probability to move.
The demanding peers that do move more move towards
clusters that they can offer to, not caring if their own
workload will be satisfied. To have similar results for
the altruistic peers as the ones for the selfish we would
have to increase the probability Pr for those peers with
large size.
Hybrid Peers Besides the selfish and altruistic strat-
egy we also have hybrid peers that take into account
both individual cost and contribution when moving to
another cluster. From repeating the same experiments
for hybrid peers, we observe behaviors similar to the
selfish and altruistic ones. The number of moves re-
quired to reach stability is slightly greater (≈ 10%
greater) than when using the purely selfish or altru-
istic strategies, but the number of clusters formed and
their size is not influenced. Another difference is that
hybrid peers reduce the social cost of the system faster
at first, compared to selfish ones, but since they have
more options than purely selfish or altruistic peers, they
require more fine-tuning moves.
Free Riders Free-riders are peers that use data items
offered by others, but never contribute any content. We
model a free-rider p as a selfish peer with r(q, p) = 0,
for all q in Q. We want to examine how the appear-
ance of free riders that is a phenomenon often met in
p2p [1] influences the behaviour of the system. As the
percentage of free riders increases, the social cost also
increases (Fig. 5(center-right)), and finally the system
degenerates to a system where each peer forms a cluster
by its own since it has nothing to gain from connecting
to other peers.
Summary:

• Applying the relocation policies enables the sys-
tem to reach a stable state and the peers to form
the desired clusters for a variety of different start-
ing system configurations and both symmetric and
asymmetric peers.

• For symmetric peers the social cost achieved de-
pends only on the membership cost and is close to
the social optimum (≈ 10) for the given setting.
Similarly, when no underlying clusters exist, the
social cost of the system again is very close to the
social optimum.

• Clustering based solely on the content or workload
distribution may be enough for dealing with sym-
metric peers, but both need to be considered for
more general cases (i.e., asymmetric peers).

18

• The value of α determines the significance we put
in the membership cost and is the main factor de-
termining the number and size of the produced
clusters.

• When the playing probability of the most demand-
ing peers is increased, the workload cost is reduced
faster than the social cost that treats all peers
equally. (Similarly for peers with more content
when dealing with altruistic peers).

• Hybrid peers require about 10% more moves to
reach stability but reduce the social cost faster
during the first turns compared to purely selfish
or altruistic strategies.

• The presence of free riders affects the social cost
of the system negatively.

5.3 Cluster Adaptation

In this set, we start from a “good” cluster configura-
tion for given content and workload, and examine how
well the reformulation protocol adapts to changes in the
system conditions. We consider content, workload and
topology updates (peers join/leave the system). The
initial system configuration consists of clusters of peers
complying to the symmetric scenario, i.e., maintaining
data and posing queries belonging to a single category.
We use mixed populations of both selfish and altruis-
tic peers with different ratios, i.e., from all selfish peers
(100% − selfish) to all altruistic (0% − selfish). We
consider four different update scenarios:

• Popular existing category (Sc1): x% of peers ran-
domly distributed across all clusters change their
query workload to the specific category.

• New popular category (Sc2): x% of the peers be-
come interested in a data category that does not
have a corresponding cluster. We assume that con-
tent regarding this data category was already dis-
tributed among peers but no queries were issued
concerning it.

• k Popular existing categories (Sc3):k data cate-
gories become more popular and x% of the peers
are assigned one of those categories at random.

• k categories deletion (Sc4): k categories seize to be
popular, i.e., different percentages of peers from k
clusters change their query workload to one of the
other existing categories.

We compare the social cost our policies achieve for all
scenarios to not applying any changes at all. We assume
the logarithmic as the theta function, Pr = 0.5 and
ε = 10−4.

In all scenarios, our policies significantly reduce the
social cost compared to the social cost the system would
exhibit if no measures were taken to cope with the
changes, i.e., if we applied no changes in the cluster
memberships and maintained a static overlay. For ex-
ample, the cost is reduced up to 1/3 of the cost of the
static overlay for Sc1 (Fig. 6(left)). Also, the more
the selfish peers in the system the better our policies
perform. This is because the changes occur in the work-
load and not the content of the peers. For the altruistic
peers to issue a relocation request, a large percentage
of peers needs to change its workload. This percentage
is even larger than expected, since the changes affect
peers across all clusters, and for an altruistic peer to
have a gain to move to another cluster, a large number
of peers in both its current and the new cluster should
change their workload. Also, we have to note that the
social cost never reaches its initial value since a cluster
of bigger size is created by this update.

The second scenario performs better than the first
(Fig. 6(center-left)), as the relocation requests are
more evenly distributed among the clusters, since the
peers maintaining data of the new category are also
distributed across the clusters unlike the first scenario
in which they were all concentrated in one. Figure
6(center-right) shows the third scenario for k = 4,
which is similar to the second. The slightly worst social
cost is due to the existence of more asymmetric peers.
Figure 6(right) shows the corresponding results for the
last scenario when k = 4.

Content Changes. A conclusion from all four scenar-
ios is that when only the workload of the peers change,
selfish peers contribute to better performance since al-
truistic peers take more time to react to such changes.
We repeated the same experiment for all four update
scenarios, when the peers change their content instead
of their query workload. As Figure 7 shows, when the
content changes, then the more altruistic peers exist
in the system, the better the system performance. In
particular, the behaviour of the social cost when the al-
truistic peers increase is completely analogous to that
of the social cost when selfish peers increased in the
case of changes in the query workload.

Hybrid Peers. While selfish peers react fast to work-
load changes, altruistic ones react faster to content
changes. Hybrid peers consider both selfish and altruis-
tic criteria to determine their cluster membership. We
evaluate system performance when all peers are hybrid
with different β for update scenario 2, when the changes
refer to workload (Fig. 8(left)) and content (Fig. 8(left-
center)). When β is small, the peers act more like al-
truistic peers being affected from content changes more
than from workload changes. For β closer to 1 their
behavior is similar to selfish peers. When both selfish
and altruistic criteria are taken into account equally

19

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 0.2 0.4 0.6 0.8 1

so
ci

al
 c

os
t

percentage of updated x

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 0.2 0.4 0.6 0.8 1

so
ci

al
 c

os
t

percentage of updated peers x

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 0.2 0.4 0.6 0.8 1

so
ci

al
 c

os
t

percentage of updated peers x

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 0.2 0.4 0.6 0.8 1

so
ci

al
 c

os
t

percentage of updated peers x

100%-self
75%-self
50%-self
25%-self

0%-self
no-change

Figure 7: Social cost for different percentages of updated peers (content) for (left) scenario 1, (center-left) scenario
2, (center-right) scenario 3 and (right) scenario 4.

(β = 0), hybrid peers react faster than selfish peers to
content changes but slower than altruistic ones and vice
versa for workload changes. That is, if changes in both
content and workload happen with the same frequency
then adapting a hybrid strategy.
Workload and Content Change. We consider
changes in the workload that also cause changes in the
content of the peers. If we assume that a peer becomes
interested in a topic, i.e., changes its query workload
to a specific data category, then this peer will also ac-
quire data of this category. We consider that 50% of
the peers change their query workload to a category
that has not any data in the system so far. Then,
we measure the social cost as the number of turns in-
creases, while considering that these same peers change
incrementally 10% of their content at each turn to that
particular category. Figure 8(right-center) reports our
results. In the first rounds, the social cost increases as
there are not enough data to satisfy the query workload
of the updated peers. As the number of turns increases
and the peers change more of their data, the updated
peers tend to form a new cluster, effectively reducing
the social cost.
Peers Joining and Leaving the System. Besides
content and query workload updates that peers perform
locally, another type of changes concerns peers joining
and leaving the system. We examine how the system
adapts when a varying percentage of peers joins the
system. The peers that are selected to join are selected
uniformly from all the categories and are all selfish.
When peers first join, they form a cluster by their own.
As they pose queries and are gradually informed about
the other clusters, they move to the one that matches
their workload. Thus, there is initially a considerable
increase in the social cost because of the burst of new
peers, but as the rounds progress and the peers join
their cluster this is corrected (Fig. 8(right)). However,
the social cost remains slightly larger than its original
value since the system now has more peers. When peers
leave the system, the social cost is actually reduced as
the number of peers is reduced. In this case, no im-
mediate adaptation is required from the reformulation
protocols. If a large percentage of the members of a
cluster leave it, then the other member may require

to move to other clusters to find more results to their
queries, or peers from other clusters might be motivated
to move to this cluster to exploit the low membership
cost.
Cluster Reformulation vs Clustering from
Scratch Another alternative to cope with changes,
rather than applying the reformulation policies, would
be to apply the clustering procedure from scratch so
as to take into account the new data and query work-
load distributions. Such an approach is expected to
result in a better clustering scheme with a lower so-
cial cost than the reformulation protocols. However,
we argue that this would entail a much larger commu-
nication cost with respect to the gain in the social cost
it would offer. To demonstrate this we consider the
second update scenario where a new category of data
becomes popular. To apply clustering from scratch, we
first “decluster” the peers, considering each as forming
its own cluster and then apply our policies.

We measure the social cost in this case after the sys-
tem has reached stability for various percentages of up-
dates peers (Fig. 11(right)). Compared to the case
where we apply the reformulation policies for adapta-
tion only (Fig. 6(center)), the social cost in this case
is lower up to 10% for all selfish peers. Furthermore,
the re-clustering is able to perform well even in the
case of all altruistic peers in which adaptation does not
work when only the workload changes. However, the
re-clustering technique is much more expensive. We
measure the number of turns for both cases to achieve
a stable state and also the number of movements to dif-
ferent clusters that take place. The re-clustering tech-
nique requires for both all selfish and all altruistic peers
about 250 turns, while the reformulation policies reach
stability in only 10 turns. As far as movements, the
reclustering realises O(N) movements, where N is the
number of peers. Even in the case where only 10% of
the peers make the change in their workload, it still re-
quires over 10000 movements, whereas the number of
movements in reformulation, depends on the number
of the updated peers and is around 1100 when 10% of
the peers update their workload, while it remains below
10000 even for 100% of updated peers.
Summary:

20

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 0.2 0.4 0.6 0.8 1

so
ci

al
 c

os
t

percentage of update peers x

d=0.25
d=0.5

d=0.75

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 0.2 0.4 0.6 0.8 1

so
ci

al
 c

os
t

percentage of updates peers x

d=0.25
d=0.5

d=0.75

 2000
 2500
 3000
 3500
 4000
 4500
 5000
 5500
 6000
 6500
 7000

 0 1000 2000 3000 4000 5000 6000 7000 8000

so
ci

al
 c

os
t

moves

100%-self
75%-self
50%-self
25%-self

0%-self

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 0 1000 2000 3000 4000 5000

so
ci

al
 c

os
t

moves

10%-join
25%-join
50%-join

Figure 8: Social cost for (left) workload and (left-center) content changes for hybrid peers, (center-right) different
percentages of updating both workload and content, and (right) peers joining the system.

 DI:b
p3

Q:b, c

p4
 DI:a, c

Q:a, c

p1
 DI:a, b

Q:a, c p2
 DI: a, a

Q:a

p5
 DI: b, c

Q:a

p6
 DI:a, b, c

Q:a, b

p7
 DI:c

Q:a, b

p8
 DI:a,c

Q:c,c

 DI:b
p3

Q:b, c

p4
 DI:a, c

Q:a, c

p1
 DI:a, b

Q:a, c p2
 DI: a, a

Q:a

p5
 DI: b, c

Q:a

p6
 DI:a, b, c

Q:a, b

p7
 DI:c

Q:a, b

p8
 DI:a,c

Q:c,c

Cache
2
4
6

Cache
1
4
8

Cache
4
6
7

Cache
1
6
8Cache

1
2
8

Cache
1
2
3

Cache
1
2
8

Cache
4
6
7

(a) (b)

Figure 9: (left) A caching scheme and (b) the corre-
sponding clustered scheme

• The relocation policies are able to cope with
changes efficiently for a wide variety of update sce-
narios affecting the content, workload and popula-
tion of peers. Their application reduces the social
cost of the system up to 1/3 compared to a static
overlay in which the changes are ignored.

• Selfish peers react faster to workload changes,
while altruistic ones are more sensitive to content
changes. Hybrid peers perform according to their
b value and provide a compromise between sensi-
tivity to workload and content changes.

• When peers join the system the social cost is ini-
tially increased but the policies are able to fast
accommodate the new peers to their appropriate
cluster.

• Re-clustering from scratch taking into account the
changed conditions yields a system with a social
cost up to 10% lower than applying the relocation
policies and is not affected by the existence of self-
ish or altruistic peers that do not react to changes
in the content or workload respectively. However,
re-clustering imposes a considerable overhead in
both turns (250 turns instead of 10 in cluster adap-
tation) and moves (always ≥ |P |, while in cluster
adaptation it depends on the number of affected
by the changes peers).

5.4 Comparison with a Caching Scheme

Caching is widely used to improve performance in dis-
tributed systems. It either refers to caching the results
of previous queries to facilitate future similar queries
or caching the peers that provided answers to previ-
ous queries and forwarding future queries to them. We
consider a system based on the second idea and simi-
lar to [17]. The cache entries form an implicit overlay
network in which peers that are considered to share
similar interests are connected. Figure 9 shows a sim-
ple example with six peers and their content and query
workloads, and how the peers would be connected (a)
if a caching scheme was used or (b) if clustering was
applied. Queries are first forwarded to the peers in the
query’s origin cache and if the results are not satisfying,
then the peer resorts to other more inefficient methods
of search, i.e., flooding.

In an interesting variation of this strategy
(transitive), a peer sends its queries to the peers
in its cache as a message with a TTL = 2 prompting
the peers that receive them to also forward them to
the peers in their own caches. This is based on the
idea that a peer has common interests with the peers
that have common interests with the peers in its own
cache, and enables the peers to discover more peers
with results to their queries without flooding.

After each query, the peer that issued it updates its
cache. For the peers already in the cache, their recall
value (or any measure indicating their usefulness) is
updated according to the results for the latest query.
For the peers which have returned results and are not
in the cache an update cache policy is deployed. We
discern between two variations. In the first variation
(update(1)), the peer with the highest recall from the
ones not in the cache is selected. If there is enough
space in the cache then it is just added. Otherwise, it
replaces the peer with the lowest recall value that was
found in the cache. The alternative update(x), selects
the x new peers with the highest recall for either adding
them or replacing them in the cache. This alternative
is able to adapt faster to changes in the interests of a
peer as it maintains a fresher cache.

We want to compare our clustering scheme to a
21

cache-based scheme like the one we described above.
We model the cache-based system by considering a ran-
dom graph where each node representing a peer has
a maximum out-degree d of which a constant number
of 3 links is devoted for the formation of the graph,
while the rest d− 3 links are allocated as spaces in the
peer’s cache. To accomplish a fair comparison with our
scheme, we set d equal to the number of links a peer
establishes in its cluster. We first consider a linear θ
function for the topology within each cluster, i.e., a
fully connected graph and then, a chord-like topology
in which the number of links is equal to log(|ci|).

Symmetry. The cache-based scheme is expected to
work better than clustering when the interests among
peers are not symmetric. That is, when the peers offer
content different from their query workload. Each peer
has a cache with the peers that maintain its content
of interest, while it belongs to the caches of peers that
are interested in its own content. In contrast, for sym-
metric peers, while the caching scheme needs for both
peers to discover each other, in clustering, it suffices for
one of them to discover the other to establish the bidi-
rectional link between them (i.e., for them to become
members of the same cluster).

To demonstrate this we repeat the first experiment
of our first set of experiments, for both symmetric and
asymmetric peers. We measure the social cost for all
caching scheme variations, setting x equal to 2, after
intervals in which about 1/5 of the local query work-
load is issued by each peer and compare it to that of
the clustering scheme. As the membership cost for the
caching scheme we consider the cost of the d links and
as the loss in the recall, the percentage of results a
peer obtains through flooding rather than its cache.
We assume same size clusters and compare the caching
scheme for d = 1000 with fully connected clusters, and
for d = 10 with chord-like ones.

Our results confirm our expectation but also indi-
cate that the topology within the clusters that deter-
mines their membership cost also plays an important
factor. In particular, when θ is logarithmic yielding a
low membership cost, clustering outperforms caching
for both symmetric (Fig. 10(center-left)) and asym-
metric peers (Fig. 10(right)). For symmetric peers,
with d = 10 links, the efficiently structured cluster-
ing scheme reaches all 1000 peers of the same cate-
gory, while in caching only 10 such peers are reached.
In contrast, when θ is linear, the difference between
the performance of clustering and caching becomes
much smaller for symmetric peers (Fig. 10(left)), while
caching outperforms clustering for the asymmetric ones
(Fig. 10(center-right)). Both replace policies behave
similarly since the peers do not change the category of
their workload or content. The transitivity property is
only useful when the peers are symmetric, and again

90
100
110
120
130
140
150
160
170
180
190
200

0 0.2 0.4 0.6 0.8 1

so
ci

al
 c

os
t

percentage of updated peers

0%-self
100%-self

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 0.2 0.4 0.6 0.8 1

so
ci

al
 c

os
t

percentage of evaluated query workload

clustering
update (1)
update (2)

transitive

Figure 11: (left) Social cost with re-clustering and
(right) clustering vs caching for changes in the work-
load.

it does not suffice to achieve the performance we have
with clustering.
Coping with Changes. We consider the asymmetric
scenario and the peers organised in a chord-like topol-
ogy. We repeat scenario 3 of the third set of experi-
ments and measure the social cost after different per-
centages of the local queries workload have been pro-
cessed (Fig 11(right)). Clustering adapts to changes
more efficiently. While caching changes one to two
neighbours, clustering changes all neighbours at once,
thus, achieving lower social cost faster.
Summary:

• Caching is more appropriate for asymmetric peers,
while clustering is more suitable for symmetric
ones. However, deploying efficient topological
structures that significantly reduce the member-
ship cost within the clusters, such as chord-like
topologies, enable clustering to outperform caching
even with asymmetric peers.

• Clustering reacts faster and more effectively to
changes. While caching changes a subset of neigh-
bours (one to two) after each query, when the clus-
ter membership changes the entire neighbour set is
changed.

6 Related Work

Game theoretic approaches have been applied to model
the behavior of peers in p2p systems. In [7], the cre-
ation of an Internet-like network is modeled as a game
with peers acting as selfish agents without central coor-
dination. The aim of the game is for each peer to choose
the peers with which to establish links. The peers pay
for the creation of a link, but gain by reducing the
shortest distance to any other peer in the system. In
our approach, instead of establishing links randomly,
we consider content and query workload for creating
clusters of peers with similar properties. [13] consid-
ers a more sophisticated model, in which strict bounds
are enforced on the out-degree of the peers, links are
directed and peers are allowed to express preferences re-
garding the choice of their neighbors. Our approach can
be viewed as setting these preferences based on recall

22

 1000

 1050

 1100

 1150

 1200

 1250

 1300

 1 1.5 2 2.5 3 3.5 4 4.5 5

so
ci

al
 c

os
t

number of rounds

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 1 1.5 2 2.5 3 3.5 4 4.5 5

so
ci

al
 c

os
t

number of rounds

 1600
 1800
 2000
 2200
 2400
 2600
 2800
 3000
 3200
 3400
 3600
 3800

 1 1.5 2 2.5 3 3.5 4 4.5 5

so
ci

al
 c

os
t

number of rounds

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1 1.5 2 2.5 3 3.5 4 4.5 5

so
ci

al
 c

os
t

number of rounds

clustering
update(1)
update(2)
transitive

Figure 10: Caching for symmetric peers vs clustering (left) with linear and (center-left) logarithmic θ function, and
caching for asymmetric peers with (center-right) linear and (right) logarithmic θ.

benefits. In [16], the authors show that allowing peers
to act completely freely performs much worse than col-
laboration, and prove that even a static p2p system of
selfish peers may never reach convergence. This result
is in accordance to our findings that show that in only
specific scenarios, we reach a Nash equilibrium. In [20],
altruistic peers determine the level of their contribution
to the system based on a utility function that depends
on a variety of parameters such as the amount of data
they upload and download, whereas in our altruistic
policy, the choice of the cluster a peer joins depends on
its contribution to this cluster.

Recent research efforts are focusing on organizing
peers in clusters. In most cases, the focus is on cluster
formation and query processing using the clusters and
the adaptation of the overlay to changing conditions is
not addressed. In [9], a superpeer-based architecture is
proposed under which peers with common interests are
organized based on their caches. The paper exploits the
idea of [17], and since it is based on caches it implicitly
addresses the issue of cluster adaptation, but does not
focus on it. Furthermore, as a cache-based scheme it
is better suited for selfish symmetric peers, while our
model can encompass more types of peers. In [3], peers
are partitioned into topic segments based on their doc-
uments. A fixed set of M clusters is assumed, each one
corresponding to a topic segment. Knowledge of the M
centroid is global. Clusters of peers are formed in [19]
based on the semantic categories of their documents;
the semantic categories are predefined. Similarly, [5]
assumes predefined classification hierarchies based on
which queries and documents are categorized. Instead
of predefined categories, [8] use a learning approach
that based on generalizing the data the peers share,
learns the semantic categories they belong to and then
uses those to form the appropriate clusters. Clustering
in [14] is based on the schemes of the peers and on pre-
defined policies provided by human experts. Besides
clustering based on peers content, clustering based on
other common features, such as the interests of peers
[11], is possible. In [6], clustering is first applied on
the documents of each peer, and then recursively on
the derived feature vectors by selected peer representa-
tives. While this approach does not assume predefined
categories, it still requires the use of cluster represen-

tatives unlike our uncoordinated protocol. In [4], peers
maintain sets of guide rules, which are formed by the
users either explicitly based on their interests, or im-
plicitly through query history, and point to other peers
in the system, thus defining semantic clusters. Queries
are then first routed through relevant guide rules. A
somewhat different approach to clustering is taken in
pSearch [18]. pSearch is a system that maps the doc-
uments of the peers on a DHT, based on their term
vectors and exploiting only the most important terms.
Thus, semantically related documents are “clustered”
in the DHT, enabling the search process to limit the
space it has to consider.

A preliminary, short version of this paper has been
presented in [12].

7 Conclusions

In this paper, we have modelled peers in a clustered
overlay as players that dynamically change the set of
clusters they belong to according to an individual util-
ity function, which is based on a cluster membership
cost and query recall. We modelled both selfish peers
that aim at minimizing their individual cost, i.e., maxi-
mizing their recall, and altruistic peers that try to max-
imize their contribution to other peers. In addition,
we have defined measures for evaluating global system
quality. We have proposed corresponding relocation
policies for both selfish and altruistic peers. Our exper-
imental results showed how by following these policies,
the peers can change the clustered overlay to reflect the
current system conditions thus, gradually correct sys-
tem performance. Furthermore, our results indicated
that the proposed policies can also be used for the ini-
tial construction of clusters, when the underlying data
distribution permits it.

There are many open issues for future work. One
issue is to derive theoretical results regarding conver-
gence perhaps by considering more restricted forms of
the cluster formation problem. Also, practical issues,
such as the maximum number of clusters that a realis-
tic system can support and the expected look-up cost
with respect to the number of clusters and their sizes,
are worth exploring.

23

References

[1] E. Adar and B. A. Huberman. Free riding on
gnutella. First Monday, 5(10), 2000.

[2] N. Bansal, F. Chiang, N. Koudas, and F. W.
Tompa. Seeking stable clusters in the blogosphere.
In VLDB, 2007.

[3] M. Bawa, G. Manku, and P. Raghavan. Sets:
Search enhanced by topic segmentation. In SIGIR,
2003.

[4] E. Cohen, A. Fiat, and H. Kaplan. Associative
search in peer to peer networks: Harnessing latent
semantics. In INFOCOM, 2003.

[5] A. Crespo and H. Garcia-Molina. Semantic over-
lay networks for p2p systems, technical report,
computer science department, stanford university,
2002.

[6] C. Doulkeridis, K. Norvag, and M. Vazirgian-
nis. Desent: decentralized and distributed seman-
tic overlay generation in p2p networks. JSAC,
25(1):25–34, 2007.

[7] A. Fabrikant, A. Luthra, E. Maneva, C. H. Pa-
padimitriou, and S. Shenker. On a network cre-
ation game. In PODC, 2003.

[8] A. Fast, D. Jensen, and B. N. Levine. Creating
social networks to improve peertopeer networking.
In KDD, 2005.

[9] P. Garbacki, D. H. J. Epema, and M. van Steen.
Optimizing peer relationships in a super-peer net-
work. In ICDCS, 2007.

[10] S. B. Handurukande, A.-M. Kermarrec, F. L. Fes-
sant, L. Massouli, and S. Patarin. Peer sharing be-
haviour in the edonkey network, and implications
for the design of server-less file sharing systems. In
EuroSys, 2006.

[11] M. Khambatti, K. Ryu, and P. Dasgupta. Effi-
cient discovery of implicitly formed peer-to-peer
communities. IJPDSN, 5(4):155–164, 2002.

[12] G. Koloniari and E. Pitoura. Recall-based cluster
reformulation by selfish peers. In NetDB, 2008.

[13] N. Laoutaris, G. Smaragdakis, A. Bestavros, and
J. W. Byers. Implications of selfish neighbor selec-
tion in overlay networks. In INFOCOM, 2007.

[14] A. Loser, F. Naumann, W. Siberski, W. Nejdl,
and U. Thaden. Semantic overlay clusters within
super-peer networks. In DBISP2P, 2003.

[15] A. Mislove, M. Marcon, K. P. Gummadi, P. Dr-
uschel, and B. Bhattacharjee. Measurement and
analysis of online social networks. In IMC, 2007.

[16] T. Moscibroda, S. Schmid, and R. Wattenhofer.
On the topologies formed by selfish peers. In
PODC, 2006.

[17] K. Sripanidkulchai, B. Maggs, and H. Zhang. Effi-
cient content location using interest-based locality
in peer-to-peer systems. In INFOCOM, 2003.

[18] C. Tang and Z. X. andMallik Mahalingam.
psearch: information retrieval in structured over-
lays. Computer Communication Review, 33(1):89–
94, 2003.

[19] P. Triantafillou, C. Xiruhaki, M. Koubarakis, and
N. Ntarmos. Towards high performance peer-to-
peer content and resource sharing systems. In
CIDR, 2003.

[20] D. K. Vassilakis and V. Vassalos. Modelling real
p2p networks: The effect of altruism. In P2P,
2007.

24

