
Journal of Systems Integration, 7, 99–126 (1997)
c© 1997 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Providing Database Interoperability through
Object-Oriented Language Constructs

EVAGGELIA PITOURA pitoura@cs.uoi.gr
Department of Computer Science, University of Ioannina, GR 45110 Ioannina, Greece

Abstract. Seamless access to resources and services provided by distributed, autonomous, and heterogeneous
systems is central to many advanced applications. Building an integrated system to provide such uniform access and
cooperation among underlying heterogeneous systems is both an increasing necessity and a formidable challenge.
An important component of such a complex integrated system is a unified language that serves both as a data
definition and as a data manipulation tool. Special requirements are posed in the instance of an integrated system
which includes database systems among its components. In this paper, we introduce the necessary constructs
that an object-oriented programming language should provide for being adopted as the language of the integrated
system in such a setting. We adopt a modular, object-based approach to integration. Each component system
that joins the integration provides a set of basic classes and pre-defined basic methods. We show how the class
hierarchy of the system can be used to provide a uniform way of mapping database resources to basic classes and
associative queries to basic methods. A view mechanism is introduced that supports the integration of the basic
classes and provides a means of expressing relationships among them and resolving any potential conflicts. The
view mechanism is implemented by extending the standard class constructors of an object-oriented language to
support the definition of virtual classes. The language provides workflow constructs for defining the structure of
programs and for attaining synchronization among concurrently executing programs. Furthermore, atomicity and
concurrency control information is included in the form of consistency assertions as part of the interface of each
basic method.

Keywords: database integration, multidatabase, object-oriented languages, assertions, workflow, views

1. Introduction

Today, worldwide high speed networks connect numerous information systems which pro-
vide access to a wide variety of data resources. Although no provision for a possible
future integration was made during the development of these systems, there is an increasing
need for technology to support the cooperation of the provided services and resources for
handling complex applications. The requirements for building an integrated system that
combines this available information can be met at two levels [23]. The lower-level ability of
systems to communicate and exchange information is referred to asinterconnectivity. At a
higher level, systems would not only be able to communicate but additionally be capable of
interacting and jointly executing tasks. This requirement is referred to asinteroperability.

Building an integrated system is an intricate task complicated by the heterogeneity of the
underlying systems.Heterogeneitymanifests itself through differences at the operating,
hardware, or communication level of the participating systems [37]. In the special case
where database systems are being integrated, discrepancies among data models and query
languages and variability in system-level support for concurrency, commitment, and recov-
ery constitute additional sources of heterogeneity. Finally, frequent disparities occur in the
semantic interpretation of stored information, caused by social or organizational differences

100 PITOURA

among the users or developers of the systems. The process of building heterogeneous sys-
tems is further complicated by the fact that some of the component systems areautonomous
and have complete control over the execution of all operations that access their resources.

Central to the integrated system is a language through which the integrated data is defined
and manipulated. We call this unified languagemultilanguage. In this paper, we define
necessary constructs which permit an object-oriented programming language to serve as a
multilanguage in the special case where the integrated system includes database systems
as components. We adopt an object-based approach in which each component system that
joins the integrated system provides a set of basic classes and a set of pre-defined basic
methods. Rather than defining yet another language, we propose minimal extensions to the
existing basic constructs of an object-oriented language without modifying their semantics.

The main contributions of this paper are as follows. First, a view mechanism is introduced
that is implemented by extending, without altering their usual semantics, the standard
class constructors (i.e., the new class, subclass, and superclass constructors) of an object-
oriented language to include virtual classes. A virtual class is a template that describes
already-created instances. We show how this mechanism supports the integration of the
basic classes and provides a means of expressing relationships among them and resolving
potential conflicts. Second, we show how the class hierarchy of the system can be utilized
to provide a uniform way of mapping database resources. Finally, we define workflow
constructs to express the structure and order of execution of the multilanguage programs
and synchronization constructs to control the interaction among programs. In addition,
atomicity and concurrency control information is expressed in the form of consistency
assertions for each basic method. We develop semantic-based correctness criteria and
mechanisms for enforcing them in a decentralized manner.

The remainder of this paper is structured as follows. In the next section, we introduce the
object-oriented approach to integration and the basic functionality of the multilanguage. In
Section 3, we define constructs for supporting database integration and functionality through
extensions of the standard class constructors. In Section 4, we show how these constructs
along with the class hierarchy of the system can be used to support sets and associative
queries and database integration. In Section 5, we introduce consistency annotations as
a means of including atomicity and concurrency information within class definitions and
special constructs for controlling the execution flow. In Section 6, we demonstrate the use
of these constructs for concurrency control. Finally, we discuss related work in Section 7
and summarize our conclusions in Section 8.

2. The System Model

The proposed methodology is grounded upon an object-based approach to integration.

2.1. An Object-Oriented Approach to Integration

With object technology, the requirements of interconnectivity and interoperability are nat-
urally met. In this scenario, the resources of the various local systems that participate in

PROVIDING DATABASE INTEROPERABILITY 101

Local
Application

Data Stored
Real

in any Form

Data Stored
Real

in any Form

Local
Application

Integrated Virtual System

Communication Layer

Pre-existing Pre-existing

Legend

 global virtual objects
 local virtual objects

User’s View

Figure 1. Distributed object architecture.

the heterogeneous system are modeled as objects, while their services are modeled as the
methods provided by these objects. The methods constitute the interface of the objects. We
refer to this architecture asDistributed Object Architecture(Figure 1). We call the provided
objectsvirtual to emphasize the fact that they may not be actually stored in toto but instead
may be computed by combining existing resources (Figure 1).

Objects of similar behavior and structure are grouped together in classes. Each system
that participates in the integration provides a set of classes, calledbasic classesand a set of
methods that constitute their interface and are calledbasic methods. These basic methods
offer the only means of accessing the virtual local objects. Each component system provides
an implementation of the basic methods which is private to the local system and completely
hidden from users of the integrated system. The basic classes and methods constitute
the local view of each component system. During integration, new classes, calledvirtual
classes, are defined by combining the provided basic classes using the view mechanism
of the multilanguage. The methods of the virtual classes are combinations of the basic
methods (Figure 2(a)). During operation, the user or client interacts with the system by
using the multilanguage to send messages to the objects of the virtual classes. The system
is responsible for translating these messages in terms of the basic methods, for directing the
methods to the appropriate local system for execution, and then for combining the results to
present the user with the output of the requested computation expressed in the multilanguage
(Figure 2(b)).

When the component systems are database systems, the resources are the information
stored in the database, while the provided basic methods are efficient mechanisms for
retrieving and updating this information. In this case, object technology is also applied at a
finer level of granularity. The information stored in a database is structured according to a
data model. When a database participates in the integrated system, its data model is mapped

102 PITOURA

Virtual Class Definitions
 Virtual Methods

Basic Methods
Basic Classes

Schema Translation or
 Mapping

Schema Translation or
 Mapping

Basic Methods
Basic Classes

Pre-existing Local
Application

Design or
Compile Time

 Global View

& Integration
Class Importation

Integrated Virtual System

Local
Application

Pre-existing

User’s View

Local View Local View

Implementation

in the local
language

Implementation

in the local
language

of the methods of the methods

 (a)

Query Decomposition and Translation

Local Pre-existing Local
Application

Pre-existing

User1 Usern

Local Applications
Interface

Run-time or
Execution Time

Implementation
of the method
in the local

Basic
Methods

Implementation
of the method
in the local

Basic
Methods

languages languages

Application

Integrated Virtual System

Global QueryGlobal Query

(b)

Figure 2. The use of the multilanguage (a) at design or compilation time, to define views and (b) at execution
time, to express queries.

PROVIDING DATABASE INTEROPERABILITY 103

..

.

..

.

..

.

..

.

Local system specific
mapping

..

.

Class: Book

Set Author
Methods: Get Author

Class: Journal
Methods: Get Title

Set Title

 Get all papers of author X

Local View

 Get all references to keywork X
Check-out-Book

..

.

Book(authors, ISBN, title, publisher, year, text, check-out-info)
Article(authors, title, category, in, abstract)

Local system specific
mapping

Methods: Get Author
Set Author

Class: Book

Set Author

Class: Article

Local Pre-existing Application

Local View

CS Library

Methods: Get Author

 Get all references to keywork X
Check-out-Book

Book(authors, ISBN, title, publisher, year, text, check-out-info)
Journal(title, category, list of papers)

Local Pre-existing Application
Math Library

Figure 3. An example. Each local application provides a mapping of its data to a local view that consists of a set
of classes. The methods of these classes (called basic methods) offer the only means of accessing the data of the
pre-existing applications.

to the same for all participating systems data model, called theCommon (or Canonical)
Data Model (CDM). This model can be an object-oriented data model. The objects of the
database model are of a finer granularity than the distributed objects. At one extreme, the
entire database may be modeled as a single distributed complex object. Although object
granularity may vary at different levels of the heterogeneous system architecture, the same
basic object abstractions can be applied.

In the remainder of this paper, we shall identify these basic abstractions that a multilan-
guage must provide.

The running example.Assume two local databases, one corresponding to the library of the
Computer Science Department and another corresponding to the library of the Department
of Mathematics. Figure 3 shows part of the local views of these two systems. It should be
noted that in this paper we are not concerned with the mapping between the local views and
the data in the local pre-existing applications, but we assume that this mapping is provided
by the local systems and is completely hidden from the integrated system.

2.2. Overview of the Language

Our rationale for the functionality that the multilanguage should provide is as follows:

1. The language should be consonant with the Distributed Object Architecture.

104 PITOURA

2. The language should be programming language-based rather than query- or database-
based, to allow the integration of nondatabase systems. Programming-based approaches
are also favored by the fact that a multilanguage is a high-level language superimposed
on pre-existing systems. The actual storage and retrieval of data is supported by the
underlying systems. So the main concern of the multilanguage is not storage but the
provision of flexible means of reusing existing mechanisms.

3. Object-oriented programming languages are used for manipulating transient data whose
lifetime coincides with the execution of a program. A multilanguage should be capable
of combining and manipulating persistent pre-existing data. To this end, in Section
4 we extend the class constructors to definevirtual classes. Data defined during the
execution of a multilanguage program are also persistent unless otherwise indicated.

4. The language should provide for combining information from the component databases.
View-definition facilities have been used in database languages to provide a different
view of stored data to database users. We adopt this concept from database systems.
The view mechanism is detailed in Section 5.

5. Although the language is programming-based, since the integrated system includes
database systems, efficient data access is very important, and nonprocedural operations
(such as search and select) should be efficiently supported. This can be accomplished
without sacrificing the power of the programming language approach, by considering
database systems as a special class in the class hierarchy of the system. This technique
is explained in Section 5.

6. Multilanguage programs express complex tasks that access and update various databases.
The language should provide constructs for specifying the control flow of each task and
the interaction among concurrently executing tasks. Furthermore, we propose that each
basic method should include informations about its consistency requirements and atom-
icity properties. This leads to a close connection between transaction management and
the multilanguage. This issue is explored in Sections 5 and 6.

7. Our design is based on the principle of minimality, we seek to define as few new
constructs as possible.

Many object-oriented programming languages distinguish between the state of an object,
which is modeled by its instance variables, and its behavior which is modeled by its methods.
We shall not make this distinction between the state and the behavior of an object but use a
single construct, called amethod, to model both. An instance variable is modeled by a pair
of setandget methods[38], where set assigns a value to the variable and get returns its value.
This approach leads to a model with fewer constructs and thus minimizes the number of
possible conflicts during the integration of different local views. More importantly, it offers
increased flexibility to the integrator by permitting the state of an object to be redefined
in the global schema. For example, assume an object of a class namedemployee. An
employees’s salary may be represented in dollars in one component database and in
German marks in another. We can define an appropriate method in the global view that
performs the necessary transformations based on the daily rate of exchange between these

PROVIDING DATABASE INTEROPERABILITY 105

monetary units. In contrast, ifsalary is represented as an instance variable, there is no
straightforward solution to the above conflict.

3. Constructs to Support Database Functionality and Integration

Using as a multilanguage a language that is an extension of a programming language
allows us to manipulate both database and nondatabase resources uniformly thus alleviating
problems of impedance mismatch. On the other hand, the language should be customized
to accommodate the manipulation of sets of data and to support database integration.

3.1. Class Extension

A class is a template for creating objects with a specific behavior and structure and is
not directly related to the real objects whose structure and behavior it models. However,
in a database system, we need a language construct to model sets of objects. For that
purpose, we define the notion of aclass extent. The extent of a class defines how a class
is populated. Informally, the class extent is the set of objects thatbelong tothe class. A
natural way to define the“belong-to a class”relation is as the set of all objects that are
instances of that class. However, this approach proves to be restrictive. For example,
assume a simple library database where the books in each department’s library are modeled
as a class. Two such classes could beCSLibrary-BookandMathLibrary-Book. All these
classes are subclasses of the classUnivLibrary-Book, which has no instances. To find a
book, a user must name all existing libraries, although it is intuitively more logical, to
designate the extent ofUnivLibrary-Bookas the target of his query. This leads us to the
following definition of the belong-to relation and of the extent of a class:

Definition. [belong-to] An object“belongs-to a class”if it is an instance of that class or of
any of its subclasses.

Definition. [extent] The extent of a class includes all objects that belong to the class.

Thebelong-to relationis similar to themembers-ofrelation [9], [29]. Under the above
definitions, the extent of the classUnivLibrary-Book is the union of the extent of all its
subclasses. One can therefore express the above request as a query with the extent of
UnivLibrary-Bookas its target. Definition 1 is valid, since an instance of a subclass has at
least the behavior of its superclass. The implication of the above definition is to impose a
hierarchy of the extents that parallels the hierarchy of their classes. If class A is a subclass
of class B, then the extent of class A is a subset of the extent of class B. We should stress
that the class hierarchy is of a semantic nature, whereas the extent hierarchy is an inclusion
relationship between sets of objects. Furthermore, although the definition of a class remains
the same, the extent of a class changes with time as new instances are created or deleted.
The definition of a class extent is implemented by associating each class that expresses a
database item with a collection class as explained in Section 4.1.

106 PITOURA

3.2. Virtual Classes

Most object-oriented languages, though rich in facilities for structuring new objects, lack
some necessary mechanisms for grouping already-existing objects. Classes are defined
as templates for creating new objects and no mechanism for grouping existing objects is
supported. In the case of database integration, grouping existing objects is essential. To this
end, we define virtual classes. A virtual class is a template that describes already-existing
objects. Once a virtual class is created is treated as any other class. The classes used in the
definition of a virtual class are calledbase classes.

Rather than defining new constructs, we extend the existing ones. We wish to maintain the
role of classes, as a mechanism for grouping objects with common structure and behavior.
Similarly, subclassing and superclassing should maintain their roles as mechanisms for
incremental definition and sharing. Those principles distinguish our work from related
approaches to the definition of views for object-oriented databases. Typically, classes are
defined as templates by simply specifying their structure and behavior. The instances of
the class are explicitly created after the definition of the class. To create a virtual class,
however, we must define:

1. the initial members of the class (class extension). For this purpose, we may need to
use a query language to select objects belonging to different classes or even to different
component systems;

2. the structure and behavior of the members of the class, which in our approach are both
represented as methods; and

3. the position of the new virtual class in the class hierarchy.

The only means of creating new virtual classes is by applying one of the class constructors.
Classes that result through subclassing or superclassing take the corresponding position in
the class hierarchy. However, no specific position in the hierarchy is assumed for classes
created by the new class constructor.

As a final note, since most object-oriented languages do not provide a superclass construct
nor do they support the corresponding concept of inheritance from the subclass to the
superclass (generalization or upwards inheritance [30], [36]), we first define the notion of
a superclass constructor before proceeding to define virtual classes.

Definition. [superclass constructor] A classA, defined as a superclass of one or more
already defined classesBi , inherits (upwards inheritance) all the common methods of the
Bi s. A’s extent class is a collection of the members of allBi s.

3.2.1. The<New Virtual Class> Constructor

We shall make a distinction between two different cases of new virtual classes, new virtual
classes that directly correspond to one basic class in a local view (importation) and new

PROVIDING DATABASE INTEROPERABILITY 107

virtual classes that are created by combining instances belonging to different basic classes
(derivation).

Importation. The new class incorporates data from other databases via import statements.

<class> A <import> B <from> database-name

Once a class is imported, its definition and instances become visible to the user of the new
class. Part of the imported data can be hidden by using explicit hide commands.

Example: The following definition:

<class> CS-Book <import> Book <from> CS-Library
<hide> set-ISBN

creates an imported classCS-Bookwhich corresponds to the classBookof theCS-Library
but does not permit the user to modify theISBNof a book.

Derivation. New classes are defined by queries on existing ones. The new classes have
no implicit relations with existing classes and no specific position in the class hierarchy
as regards the base classes. Their extension is defined as the result of a query that selects
instances of the base classes. Finally, their methods are defined explicitly and can use
methods defined in the base classes.

<class> A <derive> B1 <from> database-name1
<where> Predicate1 using B1’s methods

B2 <from> database-name2
<where> Predicate2 using B2’s methods

Bj <from> database-namej
<where> Predicatej using Bj’s methods

<methods>
(... method definition ...)

3.2.2. The<Virtual Subclass> Constructor

A virtual class which is defined as asubclassinherits all the methods of its superclasses.
Methods can be redefined in the virtual subclass, and new methods may be defined. In the
case of multiple inheritance,imaginary objectscombine the behavior of two or more local
objects, based on the value of some common method.

<class> A <virtual subclass> B, C
<on> Predicate

108 PITOURA

3.2.3. The<Virtual Superclass> Constructor

A virtual class defined as asuperclassinherits the common behavior and structure of
its subclasses (upwards inheritance). Methods may be redefined in the superclass. The
instances of the superclass are imaginary objects that consist of the common part of the
structure and behavior of the objects of the subclasses.

<class> A <virtual superclass> B, C

In the case of object-oriented languages where subclassing is used for subtyping, some
restrictions must be enforced on the type of arguments and on the type of the return values
of all methods defined by inheritance in the virtual class. These restrictions should permit
every object of a subclass to be used in any context where an object of any of its superclasses
could be used.

4. Integration through Views

Views are an important part of any database language which provide a means of defining
a virtual database on top of one or more existing databases. Views in the global system,
as opposed to warehouses [42], are not stored, but are recomputed for each method that
refers to them. Views play an important role in the creation of the integrated system, since
they are used to define a global view that includes all information stored in the component
systems.

Definition. [object-oriented view] An object-oriented view is a set of virtual classes.

We will first show how the class hierarchy of the system can be used to provide a uniform
way of mapping database resources to basic classes and associative queries to basic methods.
Then, we will detail the view mechanism and how it provides a means of expressing
relationships among basic classes and resolving any potential conflicts.

4.1. The Use of the Class Hierarchy to Map Database Systems

Figure 4 presents part of the class hierarchy of the global view. All classes are subclasses
of a system-defined class calledObject. The system provides a predefined class called
Database-System. All database systems that participate in the integration are modeled as
descendants of this class. This class provides a set of predefined methods for manipulating
component database systems such as data structures for storing directory information for
these databases.

The classes of the global system are virtual classes created by applying appropriate class
constructors to the basic classes. All imported basic classes of a component database are
indirect or immediate subclasses of the classDatabase-Class. For each element class
in the tree rooted byDatabase-Class, the system produces a corresponding hierarchy of
classes that represent the extent of the element class. The classes that represent the extent

PROVIDING DATABASE INTEROPERABILITY 109

System Defined Classes

Object

 ArticleBook

Database-ClassDatabase-SystemFile-System

 Library-Database

Math -LibraryCS -Library

Collection

CS-Book Math-Book

UnivLibrary-Book

Extension Hierarchy

UnivLibrary Database-Extent

Book-Extent Article-Extent

UnivLibrary-Book-Extent

CS-Book-Extent Math-Book-Extent

Figure 4. Part of the class hierarchy.

of a class are descendants of the system-defined class calledCollection. A Collection is
an unordered list of objects.

In Figure 4, for example, each instance of the classBook-Extentis a collection of objects
of classBook. Predicate-based queries are modeled as messages to the appropriate class
extent and return as result subsets of this extent. The result of such queries are defined as
subclasses of the associated class extent. For instance, a query to select all books written by
an authorX should be modeled as a method of the objects of the classBook-Extent. The
system provides predefined methods for accessing members of both theDatabase-Class
and its extension.

• Predefined basic methods of theDatabase-Extent include methods for searching all
the elements of the collection, methods for selecting an element from the collection,
insertion, deletion, and other set-based operations (such as Union and Difference).

• Predefined basic methods of theDatabase-Classinclude operations to get and set an
attribute and create an instance.

Other operations are defined using these basic operations. The advantage of this mecha-
nism is that it provides a default mechanism and library support for basic database function-
ality. In Figure 5, some of the basic methods of the classes in the hierarchy are depicted.

110 PITOURA

..

.
..
.

..

.

<Class> <Class>

<Subclass of> <Subclass of>

<Methods> <Methods>

<End><End>

<Class>

<End>

Set(attribute)

Get(attribute) Insert(object)

Select(object with attribute-Y)

Get-all-references-to-X
Check-out-book

<Methods>

Database-ExtentDatabase-Class

CS-Book

<Import>

Print-abstract

Object Collection

Book CS-Library<from>

Figure 5. Class definitions of some classes.

4.2. Using Views to Resolve Conflicts and Express Interschema Relations

If no relations pertained among the imported basic classes then the global view would
simply be the union of these classes. Unfortunately, the same concepts may be represented in
different databases and furthermore, due to heterogeneity, these concepts may be represented
in variant forms. Schema translation alleviates the problems that arise from the use of
different data models at each component database. Even when all component schemas are
represented by the same data model, however, conflicts may still occur.

Table 1(a) provides a taxonomy of the possible conflicts when object-oriented models are
used. First, the same entity may be represented by different objects. Then, several other
conflicts are possible along the various system levels. At the schema or representation level,
different names or structural constructs may be used to represent the same entity. At the
semantic level, the same entities may have different underlying interpretations. Finally, at
the data or storage level, the same entities may have been assigned different values.

Furthermore, for integration to be successful, it is crucial to identify not only the set
of common concepts but also the set of different concepts in different systems that are
mutually related by some semantic properties. These properties are calledinterschema
properties[7]. They are semantic relationships which hold between a set of objects in one
schema and a different set of objects in another schema. For reasons of completeness, these
relations should be represented in the global view. Table 1(b) outlines types of interschema
relation that can be easily expressed using object-oriented mechanisms. Other relations are
considered arbitrary and treated on a per case basis.

PROVIDING DATABASE INTEROPERABILITY 111

di
ff

er
en

t o
bj

ec
ts

 in
 d

if
fe

re
nt

 lo
ca

l
da

ta
ba

se
s

T
yp

e
D

ef
in

it
io

n
E

xa
m

pl
e

Id
en

ti
ty

 C
on

fl
ic

t

A
rt

ic
le

 f
or

 a
 jo

ur
na

l a
rt

ic
le

an
d

fo
r

a
ne

w
sp

ap
er

 a
rt

ic
le

N
am

in
g

S
yn

on
ym

s:
 th

e
sa

m
e

co
nc

ep
t i

s
de

sc
ri

be
d

by
 d

if
fe

re
nt

 n
am

es

di
ff

er
en

t c
on

st
ru

ct
s

of
 th

e
m

od
el

,
A

ut
ho

r
is

 a
 c

la
ss

 in
 o

ne
an

d
a

m
et

ho
d

in
 th

e
ot

he
r

 cl
as

s
in

 th
e

ot
he

r,
 o

r
al

th
ou

gh
 th

e
sa

m
e

co
nc

ep
t i

s

th
e

cl
as

se
s

ha
ve

 d
if

fe
re

nt
 m

et
ho

ds
or

 th
e

m
et

ho
ds

 h
av

e
di

ff
er

en
t

S
tr

uc
tu

ra
l

B
oo

k
ha

s
an

 a
tt

ri
bu

te

no
t i

n
th

e
ot

he
r

co
nf

er
en

ce
 in

 o
ne

 b
ut

 n
ot

 in
di

ff
er

en
tl

y
in

 d
if

fe
re

nt
 d

at
ab

as
es

S
em

an
ti

c
C

on
fl

ic
t

D
at

a
C

on
fl

ic
t

en
ti

ty
 a

re
 d

if
fe

re
nt

 in
 d

if
fe

re
nt

T
he

 s
am

e
bo

ok
 a

pp
ea

rs
 to

S
ch

em
a

C
on

fl
ic

t

fo
r

di
ff

er
en

t c
on

ce
pt

s
H

om
on

ym
s:

 th
e

sa
m

e
na

m
e

is
 u

se
d

L
ib

ra
ry

bo
th

 th
e

C
S

 a
nd

 th
e

M
at

h
T

he
 s

am
e

co
nc

ep
t i

s
re

pr
es

en
te

d
by

T
he

 s
am

e
bo

ok
 is

 s
to

re
d

in

R
ef

er
en

ce
s

an
d

bi
bl

io
gr

ap
hy

ke
yw

or
d

in
 o

ne
 c

la
ss

 b
ut

T
he

 s
am

e
co

nc
ep

t i
s

re
pr

es
en

te
d

by

e.
g.

, b
y

a
m

et
ho

d
in

 o
ne

 a
nd

 b
y

a

re
pr

es
en

te
d

by
 th

e
sa

m
e

co
ns

tr
uc

t,

T
he

 s
am

e
co

nc
ep

t i
s

in
te

rp
re

te
d

T
he

 d
at

a
va

lu
es

 o
f

th
e

sa
m

e

pa
ra

m
et

er
s

or
 r

et
ur

n
va

lu
es

co
m

po
ne

nt
 d

at
ab

as
es

ha
ve

 d
if

fe
re

nt
 a

ut
ho

rs

C
on

fe
re

nc
e

is
 a

 r
ef

er
ee

d

th
e

ot
he

r

as
 p

ar
ts

 a
rt

ic
le

s
st

or
ed

 in
th

e
ot

he
r

A
gg

re
ga

ti
on

m
at

he
m

at
ic

al
 jo

ur
na

l i
s

a
sp

ec
ia

l c
as

e
of

 a
 jo

ur
na

l
S

pe
ci

al
iz

at
io

n

G
en

er
al

iz
at

io
n

C
S

 li
br

ar
y

ar
e

al
l b

oo
ks

us
er

E
xa

m
pl

e
T

yp
e

A
rb

it
ra

ry
in

te
re

st
 to

 a
 p

ar
ti

cu
la

r

A
 b

oo
k

in
 o

ne
 li

br
ar

y
ha

s

A
n

ar
ti

cl
e

of
 a

 s
pe

ci
fi

c

B
oo

ks
 in

 th
e

M
at

h
an

d
th

e

S
om

e
bo

ok
s

an
d

ar
ti

cl
es

 o
f

(a
)

(b
)

Table 1.(a) Taxonomy of the possible conflicts between two local views (b) Interschema relations.

112 PITOURA

Type Resolution

Naming
Schema Conflict

Define an appropriate method in the

Structural

Identity Conflict

Semantic Conflict

Ad-hoc combinations of the virtual

Data Conflict

(a)

Use a user-defined same method

Use renaming operators

conflicting values or semantics
virtual class that combines any

class constructors

Superclassing

Subclassing

New method

New class

Aggregation

Specialization

Generalization

Type Operation

Arbitrary

(b)

Table 2.Using the view mechanism (a) to resolve conflicts and (b) to express interschema relationships.

Tables 2(a) and 2(b) show how the view mechanism can be used to resolve conflicts and
to express interschema relations. These tables are meant to be indicative of the general
methodology rather than to provide a detailed coverage of the topic.

We define a special method, calledsame, that defines the conditions under which two
instances are considered equal. The methodsameis defined at the classDatabase-Class
and can be overloaded at its descendants. Renaming synonyms or homonyms suffices to
resolve naming conflicts. Structural conflicts, however, are harder to cope with. In general,
a combination of class constructors can be applied to the conflicting virtual classes, to
put them in compatible forms. Semantic and data conflicts can be resolved by defining
appropriate reconciliation methods. For instance, if a book appears to have two different
authors in two local databases, a properly defined method should report the problem and
return both authors as an answer.

To express aggregation between classes, a pair ofget andset methods can be defined
in a virtual classA. These methods will return and modify the objects ofA’s component
class. Specialization and generalization are modeled by subclassing and superclassing
respectively. Finally, to express arbitrary relations between classes, we can use the new
class constructor to combine them in various ways.

PROVIDING DATABASE INTEROPERABILITY 113

4.3. Identity and Resolution Problems

Object-oriented systems associate a unique identifier with each object upon its creation.
Accordingly, upon creation of an imaginary object, an identifier must be associated with
it. Care must be taken to ensure that an imaginary object is assigned the same identifier at
each invocation. Moreover, the identity of the imaginary object should be modified if the
local objects from which it is constructed are updated. We adopt the solution of defining
the identifier of an imaginary object as a function of the identifiers of those local objects.

In an object-oriented system, a method defined in a class may be redefined in its subclasses,
resulting in method overloading. The default resolution method adopted by the object-
oriented systems states that, when a method is applied to an object the most specific method
from those applicable to the object is selected. Thus, when a methodm is applied to an
object O, first the class whose instanceO is, is searched to find the definition ofm. If
m is not found, then the immediate superclass is searched, and the process continues in
this fashion. The introduction of virtual classes complicates the resolution problem, when
a virtual classA is defined as a superclass of existing classes. In that case, the default
resolution method always selects the most specific method, i.e., one defined in one ofA’s
subclasses, even when the user wants a more general method defined inA to be selected. To
cope with this problem, we allow the user the possibility to override the default resolution
mechanism by explicitly specifying which of the applicable methods should be used.

5. Constructs to Support Concurrency and Consistency

The multilanguage provides constructs for supporting concurrency in the execution of each
program and among programs. This is achieved by nonblocking message calls. There
is also a need for synchronization among concurrently executing programs which is at-
tained through defining dependencies between execution states and by appropriate message
exchanges. Finally, concurrent executions should not violate database consistency. Con-
sistency is expressed using assertions and is enforced by ensuring semantic serializability.

5.1. Consistency Assertions

In each local database system, data are related by a number of integrity constraints that
express real-world restrictions on the allowable values they can take. This is formalized by
incorporating the consistency requirements of each class into its interface. For each basic
method, an assertion, called aprecondition, expresses the input requirements, and a second
assertion, called apostcondition, expresses the properties ensured by any call to the method.
Beyond the precondition and postcondition of each of its individual basic methods, a class
is also characterized by itsinvariant, which characterizes the consistency of the class. The
class invariant applies to all its methods, being in effect added to both the pre- and post-
conditions. Formally,

Definition. Methods are defined as Hoare triples. Each method opi (a, b) on an objecto,
whereo is an instance of a classC, a is an input parameter, andb is an output parameter,

114 PITOURA

..

.

(*)

<Class>

<Class Invariant>

<Methods>

<End>

<Precondition>

<Postcondition>

<Precondition>

<Postcondition>

<Precondition>

<Postcondition>

<Virtual Subclass>

(*) A book can be checked-out by only
one user at a time

Get-all-references-to-X

Print-abstract

Check-out-Flag = TRUE
Check-out-Book

Book

(*)

regarding borrowing books

UnivLibrary-Book

Part of the annotations that express
the Universitity Libraries policy

Figure 6. Extending the definition of a class with consistency annotations.

is annotated as follows:{Pi } opi (a, b) {Qi }, where{Pi } ≡ Preconditioni (o) ∧ I N VC

and{Qi } ≡ Postcondit ioni (o) ∧ I N VC. Preconditioni (o) andPostcondit ioni (o) are
predicates ono’s local state and ona andb and I N VC expresses the integrity constraints
of the class.

Figure 6 shows such an example. Ouronly assumptionis that the basic operations are
implemented atomically at each local site and in a manner that preserves the consistency
of the local site that is theI N VC for all classesC in that site. Any call to a basic method
may assume that the invariant is initially satisfied (i.e., it may expect to find the object
in a consistent state), but it must maintain the invariant (i.e., it must leave the object in a
consistent state).

During view definition, the consistency assertion of the basic classes must be respected
in two ways. First, the invariant of a subclass must be stronger than the invariant of its
superclass. Second, when a method is redefined, its precondition can only be weakened
and its postcondition can only be strengthen.

Consistency annotations offer a natural and convenient formalism for incorporating the
consistency requirements of a persistent local object into its interface. Furthermore, asser-
tions provide the basis for semantic-based concurrency and atomicity control, as will be
shown in Section 6.1.

PROVIDING DATABASE INTEROPERABILITY 115

5.2. Task Concurrency and Synchronization

A user interacts with the multidatabase by invoking programs called tasks. Programs
are special objects of the multidatabase that are instances of the system-defined class
Program Class. Tasks are activated by an initialize message and are executed in the
context of their own local data. Specifically, tasks have instance variables (modeled as
explained in Section 2.2) and a special method calledComputethat encodes the intended
computation. There are at least three types of instance variables: (a) instance variables that
model local data, (b) instance variables that express the state of each method of a task and
(c) a history variable that records the execution of messages, in particular method invoca-
tions and dependencies, and is used for recovery. The methods that access the instance
variables of a task are calledprimitive. Computeis the top-most method of the task object
and uses only basic and primitive methods.

Upon activation each task creates a Task Transaction Manager (TTM) to coordinate its ex-
ecution. TTMs, like programs, are objects, instances of a special class of the multidatabase
called T T M Class. Concurrency in the execution of a task is achieved through asyn-
chronous message calling. In addition, tasks submitted by different users may be executed
concurrently.

5.2.1. Intratask Concurrency and Synchronization

Concurrency inside a task is achieved through asynchronous message invocations. Syn-
chronization mechanisms are necessary to control the interaction among methods. Intratask
synchronization is based on defining a set of dependencies on the ordering of the execution
of methods [34]. Such dependencies are called structural and are expressed in terms of
controllable states of the methods of theComputeof the task. In terms of basic methods,
the states that can be controlled is the completion (commit or abort state) and the submis-
sion (begin state) of the method. The actual execution time of a basic method is under the
control of the corresponding local database. In addition, some database systems provide a
prepare-to-commit state that indicates that a basic method has completed execution and its
results are about to become permanent. Finally, we distinguish two types of commitment
depending on whether the result of the execution is semantic failure or semantic success.

Definition. [structural dependency] A structural dependencySD is a triple (C, M, S),
whereC is a specification,M is a set of methods, andS is a set of controllable states of the
methodsM ∈M. For a basic methodM , a controllable state inS may be commit (semantic
failure or semantic success), abort, prepare-to-commit, or submit, and for a primitive method
it can also be execute.

We distinguish three types of structural dependency based on the form ofC: existence,
order, and real-time dependencies in accordance with the primitives defined in [22].

Definition. [existence] In an existence structural dependency (C,M,S),C has the following
form: if Mi enters statesi , thenMj must enter statesj for Mi , Mj ∈M andsi , sj ∈ S.

116 PITOURA

Special cases of existence structural dependencies include critical, contingency, and com-
pensation methods.Critical methodsare methods that, when aborted (or fail semantically)
cause the entire task to abort (or fail semantically).Contingency methodsare methods that
are executed as alternatives when a task fails semantically.Compensation methodsare
methods that are executed to semantically undo the effect of a committed method when
some other method aborts.

Definition. [order] In an order structural dependency (C,M,S), C has one of the following
forms: Mi can enter statesi only afterMj has entered statesj , or Mi cannot enter statesi

after Mj has entered statesj for Mi , Mj ∈M andsi , sj ∈ S.

Ordering structural dependencies can be used to express data flow dependencies, for
instance thatMi reads data produced byMj .

Definition. [real-time] In a real-time structural dependency (C, M, S), C specifies a
requirement for the real time submission or completion of the methods inM.

The synchronization mechanism of the language is based on (a) allowing direct access
to the state of each method, and (b) employing a special method calledform dependency.
A state is an instance variable of the associated task and can be modified by the Task
Transaction Managers of the sender or the receiver of the method. Theform dependency
method is sent to the Task Transaction Manager and takes as arguments the specification
of the dependency and the names of the associated methods and states.

5.2.2. Intertask Communication and Synchronization

Concurrency at the intertask level is achieved by allowing more than one task enactment.
Traditional concurrency control does not allow any form of interaction between tasks initi-
ated by different users, since serializability enforces the isolation of each task. In particular,
each user’s interaction with the database is implemented as an ACID transaction. The ex-
ecution of each program is isolated from the execution of all other programs, and is also
formulated as atomic, consistent, and durable. In a multidatabase system, however, these in-
teractions model long-lived, complex activities that scan more than one autonomous system.
Ensuring the ACID properties is thus unrealistic. The ACID model is also inappropriate
for environments where there is a need for cooperation between users, such as in workflow
tools and in software development, computer-aided design and other CSCW applications.

There is a need to control the interaction between concurrently executed tasks and also
preserve the consistency of local databases. The multidatabase language provides com-
munication and synchronization constructs for expressing and controlling such intertask
interactions. This intertask synchronization control can be either through a message pass-
ing mechanism or through shared memory. In the latter case, interaction relies on the
observation of partial changes in object states which are caused by other tasks.

Message passing provides an explicit control of the visibility of a task. Both asynchronous
and synchronous messages from a task to another task should be supported.

<send> Object <to> Task-name

PROVIDING DATABASE INTEROPERABILITY 117

<receive> Object <from> Task-name

In contradistinction, a task can define points in its execution where other tasks are allowed
to observe its partial results as changes in the database state. This may be accomplished
by explicitly defining break [17] or permit [11] points within the execution of a task where
other tasks are allowed to interleave.

Definition. [breakpoint] A breakpointB of a taskT is a triple(Bs, Be, {(Ti ,Mj)}) where
{(Ti ,Mj)} is a set of pairs of methods and tasks, andBs, Be are pairs of methods and
controllable states inT which allow members of{(Ti ,Mj)} to be executed between states
Bs andBe of T .

Another form of intertask communication isdelegation, where a task delegates responsi-
bility of the execution of a method to another task.

Definition. [delegation] A delegation of a taskT is a pair(Mi , Tj) that denotes that the
methodMi invoked byT will be executed as part of taskTj .

To denote breakpoints and delegation we use two special methods calledbreakpointand
delegation. A breakpointmethod is sent to the Task Transaction Managers of the tasks
whose methods’ call are allowed to interleave. Thedelegationmethod is sent to the Task
Transaction Manager of the task to which the execution of the method is delegated.

6. Semantic-Based Concurrency Control

We outline how assertions and workflow specifications are used for concurrency control.

6.1. Assertion-Based Definitions of Commutativity

The consistency assertions are used to define when two operations conflict. Conflicting
methods are defined as methods that do not commute; that is, as methods whose relative order
of execution affects the result of a task. There are different definition of commutativity based
on the type of global concurrency control and recovery mechanism used. In the following,
we illustrate how some proposed definitions of commutativity can be expressed using the
consistency assertions.W p.opj .Pi stands for the weakest precondition forPi to hold after
the execution ofopj . Specifically, we consider noninterference [28], left-commutativity
[2], [19], and forward and backward commutativity [40]. The list of definitions is intended
to be illustrative rather than exclusive.

Definition. Let two basic methods{Pi } opi {Qi }, and{Pj } opj {Qj }.

• Pi ∧ Pj ⇒ wp.opj .Pi (noninterference)
The intuition is that, Pi is not interfered with, if it is not invalidated by the execution of
opj , and thus opj can be interleaved at this point.

118 PITOURA

• opj left-commutes with opi if (Pi ∧ wp.opi .Pj ⇒ Pj ∧ wp.opj .Pi).
The intuition is that in any execution where opj immediately follows opi , opi and opj

can be swapped.

• opi andopj commute forwardif (Pi ∧ Pj ⇒ wp.opj .Pi ∧ wp.opi .Pj).
The motivation is that in a state where both opi and opj can be executed we can “push
opi forward over opj ” and vice versa.

• opi andopj commute backwardif Pi ∧ wp.opi .Pj eq Pj ∧ wp.opj .Pi .
The motivation is that in any state where opi opj represents a valid order of execution
we can “push opj backwards over opi ”.

Figure 7 shows how information about the atomicity and commutativity of each basic
method can be included in its definition.

An assertion-based definition of commutativity supports extensibility. When a new basic
method is added to the interface of a local database system, the only concurrency information
that the system is required to provide is the assertions of the methods. Its commutativity
with the other methods can then be computed.

6.2. The Transaction Model

A commutativity relation is defined for each pair of methods. In a closed-nested transaction
model, such as that in [19], conflicts among primitive or local methods result in conflicts
among the composite methods from which they are invoked. In open-nested transactions
[26], there is no such implication. Although, we assume for the clarity of presentation, an
open-nested transaction model, most of the following definitions and protocols translate
easily to the closed-nested situation by for instance using such techniques as hierarchical
timestamps [19].

The computation of a task is extended to include the methods that are delegated to it.
In particular, the execution of a task is modeled as a sequence of its breakpoints and of
state transitions of the methods that it invokes or are delegated to it. Thus, atask execution
is a pair(6,<) where6 is a set of events and< is a partial order. An event in a task
execution is either a breakpointB of theComputeof the task or a pair(M, S)whereM is a
nondelegated method invoked by theComputemethod of the task or a method delegated to
it andS is a state ofM . The partial order< is such that for all non commutable methodsMi

andMj either(Mi , E) < (Mj , E) or (Mj , E) < (Mi , E), whereE stands for the execution
state of the method. A task execution iswell-structuredin terms of a setD of structural
dependencies if the order< of its events does not violate any of the dependencies inD.

A schedule is an interleaved execution of methods and breakpoints of a set of tasks.
Formally, ascheduleof a set{T1, T2, . . . , Tn} of task executionsTi = (6i , <i) is a pair
(6,<h) where6 =⋃6i and<h is a partial order such that: (1) if, for anysk andsl ∈6i ,
sk <i sl thensk <h sl , and (2) for all non commutable methodsMi andMj of two different
task executions either(Mi , E) <h (Mj , E) or (Mj , E) <h (Mi , E).

PROVIDING DATABASE INTEROPERABILITY 119

..

.

..

.
<End>

.

.

.

<Class>

<Virtual Subclass>

<Class Invariant>

<Methods>

<Precondition>

<Postcondition>

<Precondition>

<Postcondition>

<Atomicity Information>

<Compensatable>

<Postcondition>

<Precondition>

<List of Methods that need Compensation>

<Concurrency Information>

<List of Commutable Methods>

Book

UnivLibrary-Book

A book can be checked-out by only
one user at a time

Print-abstract

Check-out-Book

Check-out-Flag = True

The user holds the book
Return-Book

Check-out-Flag = False

Notify users that requested the
book between the submission of the
method and the submission of the
compensating method

Print-Abstract

Figure 7. Extending the definition of a class with atomicity and commutativity information.

The projection of a scheduleSon the local data of taskTi is the schedule that results if we
exclude fromSall but the primitive methods on data ofTi and the breakpoints, if any, that
immediately precede each of them. Similarly, the projection of a scheduleS on the local
data of a local databaseDBi is the schedule that results if we exclude fromS all but the
basic methods on data ofDBi and the breakpoints, if any, that immediately precede each
of them.

A stepof a task executionT is a subset ofT that includes exactly the events between
two consecutive breakpoints inT . We use a modified model of step-wise serializability
[17] that allows for efficient, i.e., polynomial, serializability testing [3]. We say that a
methodM2 directlydepends ona methodM1 if M1 <h M2. Thedepends onrelation is the
transitive closure of the directly depends on relation. A schedule isrelatively serialif for
all Ti andTj , if a methodM of Ti is interleaved with a a step ofTj thenM does not depend
on any operation of the step and no method of the step depends onM . A relatively serial
schedule iscorrect if, for any methodM of a taskT that interleaves a step ofTj starting
with breakpoint(Bs, Be, {(Ti ,Mj)}), it holds (T, M)∈ {(Ti ,Mj)}.

120 PITOURA

Then, a schedule is correct if (1) all its tasks are well-structured, and (2) it is conflict
equivalent to a correct relatively serial schedule. It is easy to prove that,

THEOREM1 If each task and local database projection of a schedule S is conflict equivalent
to a correct relatively serial schedule, then, if there is an order<o consistent with the
serialization orders assumed by each projection, then S is conflict equivalent to a correct
relatively serial schedule with order<o.

6.3. Transaction Management

Transaction management is performed at three levels (see Figure 8): (1) at a local level by the
pre-existing transaction managers of the local databases, (LTMs), (2) at a task level by task
transaction managers (TTM), and (3) at a global level by distributed transaction managers
located on top of the LTMs at each database system (DGTMs). Each TTM is created upon
the activation of a task to control its execution. Each DGTM receives methods from the
various TTMs, schedules them to control concurrency and intertask synchronization and
in turn submits them at the corresponding LTMs. LTMs at each site ensure that each basic
method is executed as an ACID transaction.

The above approach differs from traditional multidatabase transaction management tech-
niques in many ways. First, the interface between the integrated system and the local
systems is through basic methods. By doing so, we are in accordance with DOM standards,
encapsulation is achieved, and semantic serializability can be utilized. Second, there is
no central point of control, in the form of a global transaction manager, instead control
is distributed among tasks and local schedulers. This way, bottlenecks that can seriously
affect performance, especially in cases of widely distributed systems, are avoided.

Upon creation, each task receives atimestamp. The timestamp is defined to be a combi-
nation of the value of the clock and the user’sid. The timestamp of a task corresponds to its
global serialization order. To handle breakpoints, the commutativity relation between the
methods that follow the breakpoint and the methods specified in the breakpoint is changed
so that for the duration of the breakpoint, the methods commute even if they normally do
not. Delegation is taken into consideration directly in the definition of a task execution by
making a delegated method part of the execution of the task it was delegated to.

Each TTM has two basic responsibilities. First, it coordinates the execution of its task.
It decomposes theComputeof its associated task to basic and primitive methods, and
takes care of submitting these methods to the appropriate sites. It also ensures that its task
execution is well structured. To enforce the specified structural dependencies, the TTM can
either use graph-based methods [11] or automata-based techniques [5]. Second, each TTM
produces correct relatively serializable executions on its local data based on the timestamp
order.

Each DGTM producesDBi correct relatively serializable schedules consistent with the
timestamp order. We now describe the submission of a primitive method from a DGTM
to an LTM. To execute a composite method, each TTM can use techniques such as the
semantic-based locks of [26]. Each DGTM possesses a variable called alogical ticket
(LT) and a list of the timestamps of all basic methods that have been submitted to the

PROVIDING DATABASE INTEROPERABILITY 121

message

Local Transaction Local Transaction

Integrated System

Local Site
Local Site

Basic
Method

Basic
Method

LTM LTM

DGTM DGTM

TTM TTM

Figure 8. Task execution.

site. A method that does not commute with a submitted method is not allowed to execute
concurrently with it; thus, if such a method arrives with timestamp smaller thanLT , it
is aborted. Two commutable methods can be executed concurrently without any further
control. However, if we allow submission of operations directly to the LTM, indirect
conflicts among commutable methods may arise through conflicts with these autonomous
operations; these can be avoided by forcing direct conflicts among them. In this case, an
additional data item per database site is needed. This data item is physically stored in that site
and is called aphysical ticket(PT). This is accomplished by having each DGTM execute
the following code after a commutable methodM of a taskT is received. The algorithm is
a slight variation of [8] for the case of a database interface of primitive methods.

get(LT)
if (LT > T’s timestamp)

abort(M)
else

submit(M) to the LTM
in a critical region

get(LT)
if (LT > T’s timestamp)

abort(M)
else

write(PT, T’s timestamp)
send prepare-to-commit(M) to T
if decision taken to commit M

122 PITOURA

set (LT, T’s timestamp)
commit(M)

else abort(M)

Another important concern is the maintenance of the atomicity property of a task, which
ensures that either all or none of its methods commit. This is complicated because each local
site makes independent decisions on whether to commit or abort an individual basic method.
To resolve this problem, a task manager can either attempt to compensate (semantically
undo) a committed method or to retry an aborted method. Information per basic method
includes the type of each method, such as whether it is retriable or compensatable, and,
in the latter case the compensation method to be used. Compensation methods are also
annotated with assertions.

7. Related Work

Reference [33] is a preliminary brief presentation of the multilanguage, in this paper we
provide a more complete description. Many of the issues discussed in this paper have been
the topic of previous research. However, this paper covers all aspects of the multilanguage
and shows how database functionality, views and transaction management can be combined
effectively using a minimum number of well-defined language constructs. In the following
we briefly review related research and compare it with the proposed approach.

7.1. General Frameworks

Recently there has been a proliferation of research regarding the integration of various
computing resources to create network-wide integrated distributed systems. In this section
we put our work in perspective with respect to proposed, general frameworks for this
problem.

Distributed Object Management Systems (DOMS).DOMSs which are the topic of much
current research [27], [18], propose an object-based approach to distributed computation to
overcome the shortcomings of client-based computation. The main focus of this research is
on specifying the common interface of each local system for supporting interconnectivity
and extensibility. Instead, in this paper, while being in compliance with the general principle
of DOMS, we focus on the special case of database systems, and discuss how this interface
can be customized for local database systems and how integration of information and support
for concurrency can be achieved using language constructs.

Open Object-Oriented Database Systems (Open OODB).In terms of proposals for open
object-oriented database system architectures [41], our approach focuses on the role of the
language in the general architecture, especially in terms of supporting the integration of
existing systems.

Megaprogramming. Megaprogramming or programming in the large [45] is a proposal

PROVIDING DATABASE INTEROPERABILITY 123

for a future technology which will support programming with large modules that capture
the functionality of services provided by pre-existing systems. In that context, the mul-
tilanguage corresponds to the language used to define, integrate and program with these
modules. Our multilanguage provides a concrete example of such a technology and thus
can be seen as a step towards a better understanding of this issue.

Mediators. In [44], mediators, were introduced as an intermediate layer between the user
applications and the systems that store the data resources. In this framework, the local and
global views can be considered as the mediators and the multilanguage as the specification
and interface language of those mediators.

7.2. Specific Issues

In this section, we compare research related to specific characteristics of the multilanguage.

Database Functionality. There is no consensus yet on a standard object-oriented data
model. In this paper, instead of defining yet another data model, we show how the standard
characteristics of object-orientation as manifested in most programming languages can be
customized to model sets and associative queries. A similar notion of a class extension is
implemented in the object-oriented database language ORION [6]. In this paper, we extend
this notion for the case of heterogeneous database systems and show how it can be used as
part of the class hierarchy of the global view.

View Definition. There are as many approaches to defining object-oriented views [14],
[25], [4], [43], [21], [13], [35], [1], [20], [10] as different object-based data models. The
distinctive characteristic of our approach is that we extend an object-orientedprogramming
language, where the only language primitive for grouping sets of objects is the class. Based
on that assumption, views in our approach are virtual classes whose extent is defined by
queries. To define virtual classes, instead of defining new class constructors, we extend
the existing ones (namely, the new class, subclass, and superclass constructors). In that
sense, the work most related to ours is [1]. In [1], a virtual class is defined by specifying its
extension, and then its position in the hierarchy is implied. In our approach, we explicitly
define a virtual class as a subclass or a superclass. Also, in this paper we show the view
mechanism of our multilanguage in the context of heterogeneous system and show how it
facilitates integration and transaction management.

Concurrency. There is a flurry of research on defining extended transaction models (see
for example [15]). The approach of making transaction specification constructs part of the
multilanguage is also demonstrated in IPL [12]. In this paper, we show how these constructs
interact with the object-oriented features of the language and suggest new constructs for
specifying inter-task interactions, which are not supported in IPL. Annotations have been
introduced in the area of concurrent object-oriented programming languages in the Eifel
language [24] and in the area of database transaction systems in [16], [39]. In this paper,

124 PITOURA

we extend this work to show how it can be part of the multilanguage and how it can be used
to assist global transaction management.

8. Conclusions

There is an increasing need to provide users with uniform access to information stored in
many pre-existing, autonomous, and possibly heterogeneous databases. This is accom-
plished by combining these systems in a high-level confederation called a multidatabase
[37], [32], [31]. We adopt a modular, object-based approach to the creation of a mul-
tidatabase. Each local system participating in the federation provides an interface that
consists of classes and methods expressed using the constructs of an object-oriented pro-
gramming language, called the multilanguage. The mapping of local resources to classes
and the implementation of the local methods is the responsibility of the component systems
and can be completely hidden from the federation.

The multilanguage plays an integral part in the federation. It serves as both a data
definition and data manipulation language. In this paper, we have described how a typical
object-oriented programming language should be extended to provide the functionality of
a multilanguage. Specifically:

• Associative queries and efficient set operations must be efficiently supported. This
is accomplished by automatically defining a dual concept, called extension, for each
class that represents a database entity. The extension of a class is a subclass of a
system-defined collection class and provides an efficient implementation of sets.

• View facilities are necessary for the integration of the basic classes. We extend the
existing class constructors of an object-oriented language to provide constructors for
virtual classes, which are classes that group existing objects. Once a virtual class is
created, it is treated as any other class.

• The multilanguage closely interacts with the transaction manager in two ways. First, it
includes as part of the interface of each class the consistency requirements and atomicity
properties of each of its provided methods in the form ofconsistency assertions. Second,
it providesflow of controlconstructs to specify the execution order of methods inside
a single program as well as among different programs.

References

1. S. Abiteboul and A. Bonner. “Objects and views,” inProceedings of the ACM SIGMOD, 1991, pp. 238–247.
2. D. Agrawal, A. E. Abbadi, and A. K. Singh. “Consistency and orderability: Semantics-based correctness

criteria for databases.”ACM Transactions on Database Systems18(3), pp. 460–486, September 1993.
3. D. Agrawal, J. Bruno, A. Abbadi, and V. Krishnaswamy. “Relative serializability: An approach for relaxing

the atomicity of transactions,” inProceedings of the 13th ACM Symposium on Principles of Database
Systems, 1994, pp. 139–149.

4. R. Ahmed, J. Albert, W. Du, W. Kent, W. Litwin, and M-C. Shan. “An Overview of Pegasus,” inProceedings
of the RIDE-IMS, April 1993, pp. 273–277.

5. P. Attie, M. Singh, A. Sheth, and M. Rusinkiewicz. “Specifying and enforcing intertask dependencies,” in
Proceedings of the 9th International Conference on Very Large Database Systems, 1993, pp. 134–144.

PROVIDING DATABASE INTEROPERABILITY 125

6. J. Banerjee, H-T. Chou, J. F. Garza, W. Kim, D. Woelk, and N. Ballou. “Data model issues for object-oriented
applications.”ACM Transactions on Office Information Systems5(4), pp. 3–26, January 1987.

7. C. Batini, M. Lenzerini, and S. B. Navathe. “Comparison of methodologies for database schema integration.”
ACM Computing Surveys18(4), pp. 323–364, 1986.

8. P. K. Batra, M. Rusinkiewics, and D. Georgakopoulos. “A decentralized deadlock-free concurrency control
method for multidatabase transactions,” inProceedings of the 12th International Conference on Distributed
Computing Systems, June 1992.

9. E. Bertino. “Integration of heterogeneous data repositories by using object-oriented views,” inProceedings
of the First International Workshop on Interoperability in Multidatabase Systems, April 1991, pp. 22–29.

10. E. Bertino. “A view mechanism for object-oriented databases.” In A. Pirotte, C. Delobel, and G. Gottlob,
editors,Advances in Database Technology—EDBT ’92, pp. 136–151. Springer Verlag, 1992.

11. A. Biliris, S. Dar, N. Gehani, H. V. Jagadish, and K. Ramamritham. “ASSET: A system for supporting
extended transactions,” inProceedings of the 1994 SIGMOD Conference, May 1994, pp. 44–54.

12. J. Chen, O. Bukhres, and A. K. Elmagarmid. “IPL: A multidatabase transaction specification language,” in
Proceedings of the 1993 International Conference on Distributed Computing, 1993.

13. J. Chomicki and W. Litwin. “Declarative definition of object-oriented multidatabase mappings,” inProceed-
ings of the International Workshop on Distributed Object Management, Edmonton, Canada, August 1992,
pp. 307–325.

14. U. Dayal and H. Hwang. “View definition and generalization for database integration in a multidatabase
system.”IEEE Transactions on Software Engineering10(6), pp. 628–645, 1984.

15. A. K. Elmagarmid, editor.Database Transaction Models for Advanced Applications. Morgan Kaufmann,
1992.

16. A. K. Elmagarmid, Y. Leu, W Litwin, and M. Rusinkiewics. “A multidatabase transaction model for In-
terBase,” inProceedings of the 16th International Conference on Very Large Data Bases, August 1990,
pp. 507–518.

17. A. A. Farrag and M. T. Ozsu. “Using semantic knowledge of transactions to increase concurrency.”ACM
Transactions on Database Systems14(4), pp. 503–525, December 1989.

18. Object Management Group. “The common object request broker: Architecture and specification.” OMG
Document Number 91.12.1, December 1991.

19. T. Hadjilacos and V. Hadjilacos. “Transaction synchronization in object bases.”Journal of Computer and
System Sciences43, pp. 2–24, 1991.

20. S. Heiler and S. Zdonik. “Object views: Extending the vision,” inProceedings of the 6th International
Conference on Data Engineering, 1990, pp. 86–93.

21. M. Kaul, K. Drosten, and E.J. Neuhold. “Viewsystem: integrating heterogeneous information bases by
object-oriented views.” InIEEE International Conference on Data Engineering, 1991, pp. 2–10.

22. J. Klein. “Advanced rule driven transaction management,” inProceedings of the IEEE COMPCON, 1991.
23. F. Manola, S. Heiler, D. Georgakopoulos, M. Hornick, and M. Brodie. “Distributed object management.”

International Journal of Intelligent and Cooperative Information Systems1(1), June 1992.
24. B. Meyer. “Systematic concurrent object-oriented programming.”Communications of the ACM36(9),

pp. 56–80, September 1993.
25. A. Motro. “Superviews: Virtual integration of multiple databases.”IEEE Transactions on Software Engi-

neering13(7), pp. 785–798, July 1987.
26. P. Muth, T. C. Rakow, G. Weikum, P. Brossler, and C. Hasse. “Semantic concurrency control in object-

oriented database systems,” inProceedings of the 9th International Conference on Data Engineering, 1993,
pp. 233–242.

27. J. R. Nicol, C. T. Wilkes, and F. A. Manola. “Object orientation in heterogeneous distributed computing
systems.”IEEE Computer26(6), pp. 57–67, June 1993.

28. S. Owiski and D. Gries. “An axiomatic proof technique for parallel programs.”Acta Informatica6, pp. 319–
340, 1976.

29. M. P. Papazoglou and L. Marinos. “An object-oriented approach to distributed data management.”Journal
of Systems and Software11(2), pp. 95–109, February 1990.

30. C. H. Pedersen. “Extending ordinary inheritance schemes to include generalization,” inProceedings of
OOPSLA ’89, October 1989, pp. 407–417.

31. E. Pitoura, O. Bukhres, and A. Elmagarmid. “Object-orientation in multidatabase systems.”ACM Computing
Surveys27(2), pp. 141–195, June 1995.

32. E. Pitoura, O. Bukhres, and A. Elmagarmid. “Object-oriented multidatabase systems: An overview.” In

126 PITOURA

A. Elmagarmid and O. Bukhres, editors,Object-Oriented Multidatabases. Prentice Hall, 1996.
33. Evaggelia Pitoura. “Extending an object-oriented programming language to support the integration of

database systems.” In28th Annual Hawaii International Conference on System Sciences (HICSS-28), Maui,
Hawaii, Jan. 1995, pp. 707–716.

34. M. Rusinkiewicz and A. Sheth. “Specification and execution of transactional workflows.” In W. Kim, editor,
Modern Database Systems, pp. 592–620. Addison Wesley, 1995.

35. M. H. Scholl, C. Laasch, and M. Tresch. “Updatable views in object-oriented databases,” inProceedings
of the 2nd International Conference on Deductive and Object-Oriented Databases, Munich, Germany,
December 1991, pp. 188–207.

36. M. Schrefl and E. J. Neuhold. “Object class definition by generalization using upward inheritance,” in
Proceedings of the IEEE International Conference on Data Engineering, 1988, pp. 4–13.

37. A. Sheth and J. Larson. “Federated database systems.”ACM Computing Surveys22(3), pp. 183–236, Septem-
ber 1990.

38. D. Ungar and R. B. Smith. “Self: The power of simplicity,” inProceedings of OOPSLA ’87, October 1987,
pp. 227–242.

39. H. Wachter and A. Reuter. “The ConTract model.” In Ahmed K. Elmagarmid, editor,Database Transaction
Models for Advanced Applications, pp. 239–264. Morgan Kaufmann, 1992.

40. William E. Weihl. “Commutativity-based concurrency control for abstract data types.”IEEE Transactions
on Computers37(12), pp. 1488–1505, 1988.

41. D. L. Wells, J. A. Blakeley, and G. W. Thompsosn. “Architecture of an open object-oriented database
management system.”IEEE Computer25(10), pp. 74–82, October 1992.

42. J. Widom. “Research problems in data warehousing,” inProceedings of the 4th International Conference
on Information and Knowledge Management (CIKM ’95), November 1995, pp. 25–30.

43. G. Wiederhold. “Views, objects, and databases.”IEEE Computer, pp. 37–44, December 1986.
44. G. Wiederhold. “Mediators in the architecture of future information systems.”IEEE Computer25(3), pp. 38–

49, March 1992.
45. G. Wiederhold, P. Wegner, and S. Ceri. “Towards megaprogramming.”Communications of the ACM35(11),

pp. 89–99, November 1992.

