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Abstract

Broadcasting provides an efficient means for disseminating information in both wired and wireless setting. In this

paper, we propose a suite of broadcast organization schemes for multiversion data broadcast, i.e., data broadcast in

which more than one value is broadcast per data item. Besides increasing the concurrency of client transactions,

multiversion broadcast provides clients with the possibility of accessing multiple server states. For example, such a

functionality is essential to support applications that require access to data sequences and have limited local memory to

store the previous versions, such as in the case of sensor networks. We identify two basic multiversion organizations,

namely vertical and horizontal broadcasts and propose an efficient compression scheme applicable to both. We also

consider a multiversion client data cache and introduce appropriate cache replacement techniques. Finally, we propose

an adaptive scheme that dynamically selects the appropriate broadcast organization based on the client access pattern.

We provide performance evaluation results for both flat and broadcast disk organizations and for a variety of client

query patterns.
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1. Introduction

A major problem on the Internet is the scalable
dissemination of information. This problem is
particularly acute with the presences of mobile
users. The traditional unicast pull framework
simply does not scale up and it is not suitable for
mobile devices due to their inherent resource
limitations including power of mobile devices
and the capacity of the wireless links. A solution
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to this scalability problem is to use multicast
communication for both wireline and wireless
devices. In particular, in the context of wireless
and mobile environments, broadcast push [1] takes
both the communication and energy limitations
into account, exploiting the asymmetry in wireless
communication and the reduced energy consump-
tion in the receiving mode. Servers have both
much larger bandwidth available than client
devices and more power to transmit large amounts
of data.

In broadcast push, the server repeatedly sends
information to a client population without explicit
client requests. Clients monitor the broadcast
channel and retrieve the data items they need as
d.
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they arrive on the broadcast channel. Applications
of broadcast push typically involve a small number
of servers and a much larger number of clients
with similar interests. Examples include stock
trading, electronic commerce applications, such
as auctions and electronic trading, and traffic
control information systems. Any number of
clients can monitor the broadcast channel. If
broadcast data are organized according to the
clients’ interests, such a scheme makes an effective
use of the low-wireless bandwidth. Besides wireless
settings, where there is physical support for
broadcast, broadcast push provides a scalable
means to disseminate data in web environments
as well.

To reduce access time, clients may cache data of
interest locally. However, in the case of data
updates, the problem arises of keeping the data
cached in the client consistent with the updated
data on the server [2–4]. The same problem also
exists in the context of broadcast push, even
without client caching. Broadcasting is a form of a
cache ‘‘on the air’’.

In our previous work, we proposed maintaining
multiple versions of data items on the broadcast
channel as well as in the client cache for
concurrency control purposes [5] (similarly to
multiversion schemes in traditional unicast pull
models, e.g., [6]). With multiple versions, more
client transactions read consistent data (i.e., data
values that belong to the same server database
state) and complete their operation successfully.
The time overhead induced by the multiple
versions is smaller than the overall time lost for
aborts and subsequent recoveries in the absence of
multiple versions [5]. Furthermore, multiple ver-
sions increase client’s tolerance to network dis-
connections that are common in wireless
communications [7].

Besides increasing the concurrency of client
transactions and their tolerance to disconnections,
multiversion broadcast provides clients with the
possibility of accessing multiple server states. For
example, such a functionality is essential to
support applications that require access to data
sequences and have limited local memory to store
the previous versions as is the case with data
streams.
The performance (characterized by the client
access time and power consumption) of multi-
version broadcast is directly related to the way
data are organized in the broadcast. The main
contributions of this paper are:

1. The introduction of two different basic broad-
cast organizations for multiversion broadcast,
namely Vertical and Horizontal.

2. The development of a compression scheme
along the lines of run length encoding (RLE)
[8], applicable to both of the proposed multi-
version broadcast organizations. Our compres-
sion scheme exploits the fact that adjacent
versions of an item may have the same value
and reduces the broadcast size by not explicitly
sending unchanged parts of older versions.

3. The proposal of different cache replacement
policies for multiversion broadcast that con-
sider versions and apply our compression
scheme to maximize the number of hits.

4. The evaluation of the conditions under which
each of the proposed broadcast organizations
performs better, and the introduction of an
adaptive broadcast organization scheme that
improves performance in dynamically changing
environments.

The remainder of this paper is structured as
follows. In Section 2, we present the system model.
Section 3 describes different multiversion broad-
cast organizations for both single and multiple
disk organizations as well as our compression
scheme. Section 4 evaluates client side cache.
Adaptive broadcast is introduced in Section 5.
Section 6 presents our experimental platform,
while our experimental results are discussed in
Section 7. Section 8 discusses related work, and
Section 9 concludes the paper.
2. System model

In a broadcast dissemination environment, a
data server periodically broadcasts data items to a
large client population. Each period of the broad-
cast is called a broadcast cycle or bcycle, while the
content of the broadcast is called a bcast. Each
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client listens to the broadcast and fetches data as
they arrive. In this way, data can be accessed
concurrently by any number of clients without any
performance degradation (compared to a ‘‘pull’’ or
on-demand approach). However, access to data is
strictly sequential, since clients need to wait for the
data of interest to appear on the channel. We
assume that all updates are performed at the server
and disseminated from there.

Without loss of generality, in this paper, we
consider a model in which the bcast disseminates a
fixed number of data items. However, the data
values (values of the data items) may or may not
change between two consecutive bcycles. In multi-
version broadcast, the server maintains multiple
versions of each data item and broadcasts a fixed
number of versions for each data item. At each
cycle, the oldest version of the data is discarded
and a new, the most recent, version is included in
the broadcast. The number m of older versions
that are retained can be seen as a property of the
server: an m-multiversion server is a server that
broadcasts m values of each item. In terms of client
transaction consistency, an m-multiversion server
guarantees the consistency of all transactions with
span m or smaller [5]. The span of a client
transaction T ; is defined to be the maximum
number of different bcycles from which T reads
data.

The client listens to the broadcast and searches
for data elements based on the pair of values (data
id and version number). Clients do not need to
listen to the broadcast continuously. Instead, they
tune-in to read specific items. Such selective tuning
is important especially in the case of portable
mobile computers, since they most often rely for
their operation on the finite energy provided by
batteries and listening to the broadcast consumes
energy. Indexing has been used to support selective
tuning and reduce power consumption, often at
the cost of access time [37]. In this paper, we focus
only on broadcast organization and how to reduce
its size without adopting any indexing scheme.

The logical unit of a broadcast is called a bucket.
Buckets are the analog to blocks for disks. Each
bucket has a header that includes useful informa-
tion. The exact content of the bucket header
depends on the specific broadcast organization.
Information in the header usually includes the
position of the bucket in the bcast as an offset
time-step from the beginning of the broadcast as
well as the offset to the beginning of the next
broadcast.

The main question in multiversion broadcast is
how to organize the broadcast, that is, where to
place the new and the old versions. In the next
section, we elaborate on this issue, considering in
addition broadcast compression as a method to
reduce the size of the broadcast.
3. Multiversion broadcast organization

3.1. Basic organization

A set of multiversion data to be broadcast can
be represented as a two-dimensional array, where
dimensions correspond to broadcast version num-
bers (Vno) and data ids (Did), and the array
elements are the data values (Dval) of the items.
That is, Dval½i; k� ¼ v means that the k-version of
the i-data item is equal to v: Data items can appear
in any order. Versions appear in descending order
with the most recent version appearing in the left
most column and the oldest version in the right
most column. This data representation can be
extended to any number of data items and
versions.

A simple sequential broadcast can be generated
by linearizing the two-dimensional array in two
different ways: horizontally or vertically. In
Horizontal broadcast, a server broadcasts all
versions (with different Vno) of a data item with
a particular Did, then all versions (with different
Vno) of the next data item with the next Did and so
on. In Vertical broadcast, a server broadcasts all
data items (with different Did) having a particular
Vno, then all data items (with different Did) having
the next Vno and so on. Formally, the Horizontal
broadcast transmits ½Did½Vno;Dval���� sequences,
whereas the Vertical broadcast transmits
½Vno½Did ;Dval���� sequences.

Consider for example, the two-dimensional
array of Fig. 1 representing four data items
selected to be broadcast with Did ¼ f3; 5; 8; 9g;
each having four versions with Vno ¼ 3 being the
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most recent one. For the Horizontal broadcast, the
data values appear on the bcast in the following
order (the complete bcast will include also the data
ids and version numbers as indicated above):

1 1 1 1 8 8 8 5 6 1 1 2 5 4 4 4

while for the Vertical broadcast, the data values on
the bcast are placed in the following order:

1 8 6 5 1 8 1 4 1 8 1 4 1 5 2 4

The resulting bcasts have the same size for both
organizations, but differ in the order in which they
broadcast the data values.

The broadcast order affects the client access
time. For instance, say a client who tunes in at the
beginning of our example bcast wants to access
Vno ¼ 3 of data element with Did ¼ 9: In the
Vertical broadcast, the client waits time equal to
the time for broadcasting 3 data items before the
item of interest appears in the bcast, while in the
Horizontal broadcast, it waits time equal to the
time for broadcasting 12 data items. We expect
that different strategies are more appropriate for
different applications. If users require different
versions of a particular data (for example, the
history of a stock index change), Horizontal
broadcast is preferable. If users need the most
recent data (for example, the current stock
indexes), Vertical broadcast is expected to be more
efficient. Our experimental results in Section 7
verify this intuition.

3.2. Compressed organization

In both cases, Horizontal and Vertical, the
broadcast size and consequently the access time
can be reduced by using some compression
scheme. A good compression scheme should
reduce the broadcast as much as possible with
minimal, if any, impact on the client. That is, it
should not require additional processing at the
client, so it should not trade access time for
processing time. The following is a simple com-
pression scheme that exhibits the above properties.

Our compression scheme is based on the
observation that data values do not always change
from one version to another. In other words,
Dval½i; k� ¼ Dval½i; k � 1� ¼ ? ¼ Dval½i; k � N� ¼
v; where the value of the item having Did ¼ i

remains equal to v for N consequent versions.
Then, when broadcasting data, there is no reason
to broadcast all versions of a data item if its Dval

does not change. Instead, the compressed scheme
broadcasts a Dval only if it is different from the
Dval of the previous version. In order not to lose
information (as well as to support selective
tuning), it also broadcasts the number of versions
having the same Dval.

The generation of a compressed broadcast
proceeds in two steps. In the first step, the
compressed values of the data elements are
produced and in the second phase, these values
are broadcast based on the selected organization.
In the first step, any sequence of elements with
repetitive data values is replaced by the first element
of the sequence and the length of the sequence.

The array of Fig. 1 is redrawn in Fig. 2 to
capture the first step of the compression algorithm.
For example, 1 1 1 1 becomes 1� 3 and 8 8 8
becomes 8� 2:

In the second step of the compression, the
Horizontal and Vertical broadcasts are pro-
duced by using horizontal and vertical lineariza-
tion of the arrays, respectively. Formally, the
Horizontal broadcast produces ½Did½VnoðDval �
Repetition���� sequences, while the Vertical broad-
cast creates ½Vno½DidðDval � RepetitionÞ���� se-
quences. Obviously, we do not include into the
broadcast those versions, which already have been
included ‘‘implicitly’’ with other versions.
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In the example of Fig. 2, the compressed
Horizontal broadcast produced in the second
step is

1� 3 8� 2 5 6 1� 1 2 5 4� 2

and the compressed Vertical

1� 3 8� 2 6 5 1� 1 4� 2 5 2:

In the case of the Vertical broadcast, it also
makes sense to rearrange the sequence of broad-
cast data elements within a single-version sweep
and make them dependent not on Did but on the
number of implicitly broadcast elements. Applying
this reordering to our example, the resulting
Vertical broadcast is

1� 3 8� 2 6 5 4� 2 1� 1 5 2:

In this example, 4� 2 and 1� 1 switch their
positions, because we broadcast implicitly two 4’s
and only one 1. The idea is that we broadcast first
as ‘‘dense’’ data as possible, because when a client
begins to read the broadcast, the client has higher
chances to find the necessary data elements in
‘‘more dense’’ data. Of course, this optimization
works under the assumption that client access data
uniformly.

For providing a rough estimation of the
reduction of the broadcast size (and, consequently,
of the duration of the bcycle) due to our
compression scheme, let us introduce Randomness

and Randomness degree to represent the repetitive-
ness of data from one version to the other. Let
Randomness½i; k� ¼ 0 if Dval½i; k� ¼ Dval½i; k � 1�
and Randomness½i; k� ¼ 1 otherwise. Then, the
average randomness Randomness degree[i] of the
data element i over all its versions represents how
frequently the value of this element changes. We
can use this average randomness as a para-
meter describing the probability that Dval½i;m� is
not equal to Dval½i;m � 1�: For instance,
Randomness degree½i� ¼ 0 means that Dval½i;m�
= Dval½i;m � 1�; for any m: The smaller the
degree of randomness, the higher the gain of our
compression scheme. Hence, we can expect that
the broadcast of data having many ‘‘static’’
elements (for example, a cartoon clip with one-
color background or a stock index of infrequently
traded companies, etc.) improves the ‘‘density’’ of
broadcast data.

As an example, consider the broadcast of data
item j assuming Randomness degree½j� ¼ 0:1: Then,
in average out of 100 versions we have 10 versions
with values different from the values of the
previous versions and 90 versions repeating their
values. This means that instead of broadcasting
100 data values, we broadcast only 10. We can
roughly estimate that the overhead created by the
auxiliary symbols will not exceed 1 symbol per
‘‘saved’’ data item from the broadcast. Assuming,
one data item consumes 16 bytes and one auxiliary
symbol consumes 1 byte; the gain is
100�16=ð10�16þ 90�1Þ ¼ 6:4; which corresponds
to a 84% reduction of the broadcast length.
Similarly, the broadcast shrinks about 45%, for
Randomness degree ¼ 0:5 and about 9%, for
Randomness degree ¼ 0:9: This reduction holds
for both Vertical and Horizontal broadcast.

3.3. Broadcast encoding

In order to make our broadcast fully self-
descriptive, we add all necessary information
about version numbers and data items. One of
our design principles has been to make the system
flexible, allowing a client to understand the
content of a broadcast without requiring the client
explicitly to be told of the organization of the
broadcast. For this purpose, we use four auxiliary
symbols:

# ðDidÞ; V ðVnoÞ;

¼ ðAssignment to DvalÞ; 4 ðNumber of repetitionsÞ
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Using these symbols, the uncompressed bcast for
Horizontal broadcast in our example is fully
encoded as

V3#3¼1V2#3¼1V1#3¼1V0#3¼1V3#5

¼8V2#5¼8V1#5¼8V0#5¼5

V3#8¼6V2#8¼1V1#8¼1V0#8¼2V3#9

¼5V2#9¼4V1#9¼4V0#9¼4

and for Vertical broadcast

V3#3¼1#5¼8#8¼6#9¼5V2#3¼1#5

¼8#8¼1#9¼4V1#3¼1#5¼8#8

¼1#9¼4V0#3¼1#5¼5#8¼2#9¼4

V3, V2, V1 and V0 are the version numbers. They
determine Vno of the data elements which follow it
in the broadcast. #3¼1 means the element having
Did¼3 of the corresponding version (broad-
cast before) is equal to 1. So, V3#3¼1#5¼8
means Dval½Did¼3; Vno¼3�¼1 and Dval½Did¼
5; Vno¼3�¼8: Note that for Vertical broadcast
we do not need to include the version number in
the broadcast before each data element, but for
Horizontal broadcast we have to do this. Because
of this need of some extra auxiliary symbols, a
Horizontal broadcast is usually longer than its
corresponding Vertical broadcast. However, given
that the size of an auxiliary symbol is much smaller
(which is typically the case) than the size of a data
element, this difference in length becomes very
small.

In the case of compressed bcast, the symbol 4 is
used to specify that the following versions of a
data item have the same value. The other auxiliary
symbols are also used to give a client the complete
information about Did, Vno, and Dval in a
uniform format for both the compressed and
uncompressed multiversion broadcast organiza-
tions. Returning to our example broadcasts, the
compressed Horizontal broadcast is encoded as

V343#3¼1V2V1V0V342#5¼8V2V1V040#8

¼5V340#8¼6V241#8¼1V1

V040#8¼2V340#9¼5V242#9¼4V1V0

whereas the compressed Vertical broadcast as:

V343#3¼142#5¼840#8¼6#9¼5V242#9

¼441#8¼1V1V040#5¼5#8¼2
Considering the Vertical bcast as an example, let
us clarify some details of the broadcast. It starts
from the version 0. First, it broadcasts the data
elements with the most repetitive versions.
V343#3¼142#5¼840#8¼6#9¼5 means that
versions 3; 2; 1; 0 of data element 3 are 1, versions
3; 2; 1 of data element 5 are 8, version 3 of data
element 8 is 6, version 3 of data element 9 is 5.
V242#9¼441#8¼1 means that versions 2; 1; 0 of
data element 9 are 4 and versions 2; 1 of data
element 8 are 1. We do not broadcast versions 2 of
data elements 3 and 5 because we broadcast them
together with versions 3.

3.4. Broadcast disk organization

In this section, before we describe how hor-
izontal and vertical organizations can be used with
broadcast disks, we briefly review the basic idea of
broadcast disks using an example; for a complete
definition of broadcast disks refer to [9,35]. In a
broadcast disk organization, the items of the
broadcast are divided in ranges of similar access
probabilities. Each of these ranges is placed on a
separate disk. In the example of Fig. 3, the buckets
of the first disk Disk1 are broadcast three times as
often as those in the second disk Disk2: To achieve
these relative frequencies, the disks are split into
smaller equal sized units called chunks; the
number of chunks per disk is inversely propor-
tional to the relative frequencies of the disks. In
the example, the number of chunks is 1 (chunk 1)
and 3 (chunks 2a, 2b and 2c) for Disk1 and Disk2;
respectively. Each bcast is generated by broad-
casting one chunk from each disk and cycling
through all the chunks sequentially over all disks.
A minor cycle is a sub-bcycle that consists of one
chunk from each disk. In the example of Fig. 3,
there are three minor cycles.

A direct application of the broadcast disks on
multiversion broadcast is to base the distribution
of each Dval½i; k� on its access probability. Then,
the Dval½i; k� sequences inside each bucket or
inside each minor cycle can follow either a
Horizontal or a Vertical organization. However,
this approach requires knowing the access prob-
abilities of each version of each data item. This
assumption is rather unrealistic in many settings.
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We describe next three ‘‘heuristic’’ approaches that
differ on the amount of information about the
client access pattern that is required at the
server side.

Assume for simplicity that we have only two
disks: a ‘‘fast’’ and a ‘‘slow’’ disk. One approach is
to determine the Dids of the frequently accessed
data elements and place all versions of these data
items on the ‘‘fast’’ disk. All remaining data items
are placed on the ‘‘slow’’ disk. Within each disk,
data are organized either horizontally or vertically.
This first approach is easily extended to multiple
disks.

The second approach builds on the assumption
that the most recent versions of items are usually
the most frequently requested ones and places the
most recent version of all data items on the ‘‘fast’’
disk. Clearly, this means that the data elements on
the ‘‘fast’’ disk are vertically organized since they
all belong to the same version. All previous
versions of the data items are placed in the ‘‘slow’’
disk and can be organized either horizontally or
vertically. This second approach can also be
generalized for multiple disks, by associating
different ‘‘temperatures’’ (degrees of popularity)
to different versions. For example, in the case of a
7-multiversion server and three disks, ‘‘fast’’,
‘‘medium-speed’’ and ‘‘slow’’, the most recent
versions of all data items are placed on the ‘‘fast’’
disk, the previous two most recent versions of all
the data items are placed on the ‘‘medium-speed’’
disk and the remaining four oldest versions of all
the data items are placed on the ‘‘slow’’ disk.

A third approach, that in some sense combines
the above two ones, again uses a third ‘‘medium-
speed’’ disk having speed between the ‘‘fast’’ and
the ‘‘slow’’ disks. The approach distinguishes the
Did of the data items based on their popularity. It
places the most recent version of the hot (i.e., most
frequently accessed) items on the ‘‘fast’’ disk, using
a vertical organization. The other versions of the
most frequently accessed items are placed on the
‘‘medium-speed’’ disk along with the most recent
version of the remaining cold data items. Finally,
the remaining versions of the cold data items are
placed on the ‘‘slow’’ disk. Again this approach
can be easily generalized for multiple disks and
both horizontal and vertical organization can be
adopted for each broadcast disk.
4. Client side cache

To improve performance, clients may cache
items of interest locally. Caching reduces the
latency in answering queries and the need to
access the broadcast channel for every data item.
In this section, we describe how caching can be
used in conjunction with multiversion broadcast.

The simplest way to integrate caching with
multiversion broadcast is to assume that data
elements are the units of caching and adopt the
traditional least recently used (LRU) replacement
method to discard elements from the cache when
the cache runs out of space. Each cache entry has
three basic fields for each multiversion data
element: Did, Vno, and Dval and a fourth field: t;
which shows at which broadcast cycle the element
was used the last time. Following the LRU policy,
when the cache becomes full, the cache element
with the oldest (i.e., smallest) t is selected for
replacement.
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Compression can be applied to the caching
content as well. Our compression scheme requires
that each cache entry has one additional field f ;
which contains information on how many adjacent
versions of this data element have the same Dval.
Thus, each entry in the compressed LRU scheme is
of the form ½Did ;Vno;Dval; t; f �: For example, a
cache entry ½i; k; u; t; 2� indicates that the k; k � 1;
and k � 2 versions of item i have the same value u:
In the case of compressed broadcast, data elements
can be directly cached. In the case of uncom-
pressed broadcast, data elements need to be
combined with the corresponding already cached
elements.

In [10], we considered a number of variations of
compressed-LRU. Our results showed that the
compressed-LRU variant with autoprefetch exhi-
bits the best performance with respect to client’s
perceived latency. With autoprefetching, a client
acts pro-actively by prefetching newest version of
data that have already been cached. This is a
reasonable choice, when energy is not a major
issue, for instance, in the case of stationary
wireless or docked mobile devices. With autopre-
fetching, when the client reads the broadcast and it
appears that the newest version of a data element
has the same Dval as the newest cached value for
this element, besides the Vno field, the f field of the
corresponding cache entry is incremented as well
indicating that there is now a longer sequence of
versions with the same Dval. Autoprefetching
increases the effective number of elements stored
in the cache.

In this paper, we assume compressed-LRU
with autoprefetch but consider different rules for
cache replacement. There is a number of different
criteria on which to decide which cache entry
should be replaced. We suggest using the values
of the following cache fields as the basis for
replacement:

1. t: This corresponds to the standard LRU
replacement strategy.

2. Vno: This approach flushes the oldest cache
elements on the premise that they will not be of
interest to the client.

3. f : This approach tries to keep in the cache the
entries with the most compressed data, effec-
tively, storing in the cache as much data as
possible.

We call the replacement strategy which uses the
t (100)-replacement (this is equivalent to LRU
replacement), the strategy which uses the Vno field
(010)-replacement, and the strategy which uses the
f field (001)-replacement. It is also possible to
combine the three strategies. To this end, we define
Score as

Score¼A � t þ B � Vno þ C � f

The lower the score, the higher the probability
that cache entry will be replaced. Coefficients A, B,
and C show which of the three parameter is more
significant and define its weight in selecting the
item to be replaced. The (ABC) abbreviation
shows the weight of each replacement mechanism.
In this paper, we consider (100)-replacement,
(010)-replacement, (001)-replacement as well as
the ‘‘aggregated’’ (111)-replacement.
5. Dynamic model of the adaptive broadcast

5.1. Client access behavior

Clients have different interests. We consider
three types of access behavior. In historical access,
clients are interested in the ‘‘history’’ of a
particular data item, that is, they are interested
in reading various versions of this item. For
instance, a client may wish to monitor the progress
of the values of some data item over a period of
time (e.g., a specific stock price, the weather
condition at a given city, the output of a particular
sensor). In snapshot access, clients are interested in
a specific version of a set of data items, for
instance, they are interested in the current versions
of the items or in their values at a specific time
instance. For example, clients may be interested in
weather conditions in a set of cities in some earlier
time, the oldest available value for a number of
stock prices, or the current values of a set of
sensors. Finally, in the browse type of access, a
client is interested in a randomly chosen version of
a randomly chosen data item.
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We also distinguish between dynamic and static

access. In the case of static access, the client knows
all data it wants to access before the broadcast. In
contrast, in dynamic access, the client determines
the next data to access after it reads the previous
item.

Our experimental results show that the Hor-
izontal organization is more appropriate for the
historical type of access, whereas the Vertical
broadcast organization is more appropriate for the
snapshot one. Thus, the choice between Horizon-
tal and Vertical broadcast should be based on the
access type of the majority of the clients. However,
this may change over time. To this end, we
introduce adaptive broadcast.

5.2. Adaptive broadcast

In adaptive broadcast, the type of broadcast
organization (i.e., Vertical or Horizontal) is
dynamically determined by the access behavior of
the majority of the clients. For adaptive broadcast
to be supported, information about the type of
client behavior must be available at the server.
This information is minimal, just the client’s access
type: historical, or snapshot. The browse type of
access is not affected by the type of the broadcast
organization, thus clients with such behavior are
not considered in determining the broadcast
organization type. To convey their access type,
clients send messages via the uplink channel to the
server specifying their access type when this
changes. The server keeps information reflecting
the interest of the majority of its clients. At the
beginning of each broadcast cycle, if the server
Table 1

Clients profile

Broadcast cycle

Linear profile Binary profile

1 2 3 4 1 2

Client 1 1 1 1 1 1 0

Client 2 1 1 1 0 1 0

Client 3 1 1 0 0 1 0

Client 4 1 0 0 0 1 0

Client 5 0 0 0 0 1 0
notices a switch in its clients’ interests, it moves
from one type of broadcast organization to the
other.

There are various reasons for changes of the
client access type. New mobile clients may enter
the area of coverage of the server, or previously
supported mobile clients may leave the server’s
area. Client’s interests may also change over time.
A set of client access types constitutes the clients’
accumulative profile, or simply profile. We con-
sider three different profile types depending on
how the profile changes over time:

1. linear profile,
2. binary profile,
3. random profile.

The linear profile simulates the case when the
overall client interest migrates gradually from one
access type to the other. It can be considered as a
synthetic profile. In the binary profile, all clients
synchronously change their interest. This is a
synthetic profile. The random profile models the
case in which clients independently change their
access interests with some probability. The main
parameter of a random profile is the probability
that a client changes its interests between two
consecutive broadcast cycles, broadcast cycles i

and i þ 1: We call this parameter Instability. Note
that Instability is different from Randomness

degree.
As an example, consider Table 1 that depicts the

profiles of a set of five clients. The table also shows
how this profile changes over four broadcast
cycles. Assume that 1 denotes snapshot access
and 0 denotes historical access. For instance, in the
Random profile

3 4 1 2 3 4

1 0 1 0 0 1

1 0 0 1 0 0

1 0 1 1 0 1

1 0 0 0 1 1

1 0 1 0 1 0
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linear profile, client 1 uses snapshot access for all
broadcast cycles. Client 2 uses snapshot access for
broadcast cycles 1, 2, and 3, and historical access
for broadcast cycle 4.

Table 1 depicts a linear profile where the access
type changes from snapshot to historical. In
particular, for the first two broadcast cycles, the
majority of the clients follow a snapshot access
pattern, so the server uses the Vertical broadcast
organization, whereas, for the last two broadcast
cycles the majority changes, so the server switches
to Horizontal broadcast. In the binary profile in
Table 1, the access behavior of all five clients
changes at each broadcast cycle. Finally, in the
random profile, changes of access type occur
randomly.
6. Experimental testbed

Our simulator consists of a broadcast server
which broadcasts a specified number of versions of
a set of data items, and a client who receives the
data. The number of data items in the set is
determined by the Size parameter and the number
of versions by the Versions parameter. The
communication is based on the client–server
mechanism via sockets. For simplicity the data
values are integer numbers from 0 to 9. The server
repeatedly broadcasts data, each broadcast cycle
has a number, determined by the Bcast cycle

parameter.
The simulator runs the server in two modes,

corresponding to the two broadcast organizations,
namely Vertical broadcast and Horizontal broad-
cast (determined by the Bcast type parameter). The
broadcast is either Compressed or basic Sequential
(determined by the Compression parameter). The
server generates broadcast data with different
degrees of randomness (from 0 to 1), which is
determined by the parameter Randomness degree.

The client searches the data by using three
different access types: Browse, Snapshot and
Historical (determined by the Access type para-
meter). The client generates the data elements it
needs to access (various versions of data items)
before tuning into the broadcast. The parameter
Elements determines the number of data elements
to be requested by the client. For the Browse type
of access, the data items and their versions are
determined randomly to simulate the case when all
versions of all data items are equally important for
a client. For the Snapshot and the Historical
accesses, the requested data elements are grouped
into a number of strides (determined by StrideN),
each containing l elements (determined by Stri-

deL). (Clearly, StrideL�StrideN ¼ Elements:) For
example, if StrideN ¼ 2 and StrideL ¼ 5; for
Snapshot access, the client searches for 2 versions
(determined randomly with Zipf distribution) of 5
consecutive data elements. For Historical access,
the client tries to find 5 versions of 2 data items
(determined randomly with Zipf distribution). In
both cases, this pattern can be written as
Elements ¼ 5� 2:

The client may tune in at any point in the
broadcast, but it starts its search for data elements
at the beginning of the next broadcast. Thus, if a
client does not tune in at the beginning of a
broadcast, it sleeps until it wakes up at the
beginning of the next broadcast which is deter-
mined by the next broadcast pointer in the header
of each bucket. A client reads a broadcast until all
the desired data elements are found. In this way, it
is guaranteed that the desired data elements are
found within a single broadcast. This scheme is
applicable for both static and dynamic access.
Note that for the broadcast with dynamic access,
the performance is determined by how fast the
data is found in the last broadcast cycle. There-
fore, by simulating the last broadcast, it is possible
to estimate the performance for both cases. While
the client is reading, it counts the number and type
of characters it reads. This can be converted into
Access time – the time elapsed between the time the
client starts its search and until it reads its last
requested data element, given a specific data
transmission rate. In our study, access time is the
measure of performance for both response time
and power consumption (recall that we do not
consider selective tuning in this paper, hence a
client stays in active mode throughout its search).
The smaller the access time, the better the
performance and the smaller the consumption of
energy. We assume that the auxiliary characters
(e.g., #;¼;4 ;V) consume one time unit and the
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Table 2

Simulation parameters

Parameter Description Default value

Compression Basic Sequential broadcast

Compressed broadcast Compressed

Disk 0–Single disk

1–Multiple disks 0

HDSize Fast disk size

Frequency Relative rotation frequency of fast disk relative to slow disk

Bcast cycle Broadcast cycle

Bcast type Vertical broadcast

Horizontal broadcast Vertical

Size Number of data items 10

Versions Number of versions

Randomness degree 0–1, (0: all versions have the same value, 1: versions are completely independent) 0.5

Length Size of a data element (size of an auxiliary symbol is 1) 16

Elements Number of the requested data items

Access type Browse access

Snapshot access Browse

Historical access

StrideN Number of strides for Snapshot/ Historical access

StrideL Length of the strides for Snapshot/ Historical access

Tries Repetition of each experiment to reduce deviations 80

Instability Probability that a client changes its access pattern
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data elements may consume 4, 16, 64, etc. time
units, depending on the complexity of the data.
The Length parameter is used to specify the size of
the data element. In the experiments reported in
this paper, we have chosen Length to be 16, which
may correspond to 16 bytes.

For the broadcast disk case, we implemented
two different speed disks (‘‘fast’’ for all versions of
frequently accessed data and ‘‘slow’’ for all
versions of infrequently accessed data). HDSize,
is the size of the fast disk, which corresponds to the
number of values, which are ‘‘hot’’. Frequency is
the relative frequency of how faster (more
frequently) the ‘‘hot’’ data are broadcast, com-
pared to the ‘‘cold’’ data. In this case, the client
generates requests to data not uniformly, but
following the Zipf-distribution. We varied the
HDSize parameter from 1 to 20 and the Frequency

parameter from 1 to 6. The disks were implemen-
ted for both Vertical and Horizontal broadcasts.
In real world, the clients are expected to let the
server know about their distributions, and on the
base of that knowledge the server is expected to
place the most frequently accessed data to the
faster rotating disk. In our experiments, we show
that, besides single disks, compression improves
the performance in the case of broadcast disks as
well.

In order to estimate confidence intervals, we
performed the measurements 80 times (parameter
Tries). Then, we calculated the average access time
and the corresponding standard deviation which
are shown in our graphs. The discussed parameters
and their default values are summarized in
Table 2.
7. Performance results

7.1. Single disk broadcast

In this section, we report on the results of our
experiments that demonstrate the applicability of
our proposed multiversion broadcast organiza-
tions and the advantages of our compression
scheme.
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7.1.1. Performance of the compression scheme

For this set of experiments, we consider the
Vertical broadcast organization and the Browse
access for the clients. Our results are also applic-
able for the other broadcast organizations and
access types. Size is set to 90 and for the first two
sets of experiments Elements is set to 5.

The effectiveness of the Compressed Broadcast
depends on the size of the data elements on the
broadcast (represented by Length parameter) as
opposed to the size of the auxiliary symbols (note
that we assume that such symbols consume one
time unit). Fig. 4 shows the dependence of
the access time on the size of the data items for
the Compressed and the Sequential (i.e., uncom-
pressed) server broadcasts. Compression reduces
the client’s access time for any size of data (about 2
times for Randomness degree ¼ 0:5). The greatest
gain in terms of absolute access time occurs for the
largest data sizes as expected.

The effectiveness of our compression depends
on the frequency of updates. The smaller the
update frequency, the larger the benefits of
compression. To model this, we use the average
randomness Randomness degree[i] of the data
element i to represent how frequently the value of
this element changes, in particular to express the
probability that any two consequent versions of k;
Length
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Fig. 4. Dependence of the access time on the size of the data

items.
Dval½k; j� and Dval½k; j � 1� are not equal. Fig. 5
depicts the dependence of the performance of
compression on the Randomness degree. For
Randomness degree ¼ 0:0; we observe about 10
times improvement. When the versions become
more different, the performance of the compressed
broadcast worsens, getting close to that of the
sequential broadcast as Randomness degree ap-
proaches 1.

The experiment shows that the proposed com-
pressed scheme works best if data do not change
from one version to another in all time interval.
However, even if they do change, the Compressed
broadcast just converts to a simple Sequential
broadcast. The auxiliary symbols overhead
is so small that the fact that even at
Randomness degree ¼ 1 there exist some data
items for which the data values are the same for
adjacent version numbers (and so, we still have
some minimal compression) is enough to have
some minor performance improvement. This is a
situation to be expected in practice.

The dependence of the Access time on the
number of elements requested (given by Elements

parameter) is shown in Fig. 6. We see that at the
beginning, the increase of the number of elements
requested leads to a significant increase of the
access time, but later (for Elements higher than 4)



ARTICLE IN PRESS

Elements
0 2 4 6 8 10

A
cc

es
s 

Ti
m

e

2000

4000

6000

8000

10000

12000

14000

16000

Sequential Bcast
Compressed Bcast

Fig. 6. Performance for different number of searched elements. Fig. 7. Vertical broadcast at different Randomness degree.

Fig. 8. Horizontal broadcast at different Randomness degree.

O. Shigiltchoff et al. / Information Systems 29 (2004) 509–528 521
the access time increases more slowly. This
behavior does not look very surprising if we
consider the access time as the time needed to
search from the beginning of a bcast to ‘‘the
furthest data element’’. The other requested data
elements are ‘‘in between’’ and are ‘‘picked up’’ on
the way. As the number of Elements increases, the
place where the last searched element was ‘‘picked
up’’ shifts toward the end of the broadcast, making
the Access time ‘‘saturated’’. The important
feature is that the absolute difference between the
access time for the Compressed broadcast and the
Sequential broadcast is the largest for Elements

higher than 4. However, the relative difference
stays approximately the same (slightly greater than
2 times).

The results presented in Figs. 4–6 are obtained
for the Vertical broadcast and the Browse access
type, but qualitatively the tendencies observed are
valid for all other broadcast organizations and
access schemes.

7.1.2. Broadcast organization and client access type

Fig. 7 shows the dependence of the Access time

on Randomness degree when the server uses the
Vertical broadcast, whereas Fig. 8 when the server
uses the Horizontal broadcast. Elements is set to
20. The main conclusion is that for the Snapshot
access type, the most efficient broadcast organiza-
tion is the Vertical organization, whereas for
Historical access type, the most efficient broadcast
organization is the Horizontal one.

In particular, Fig. 7 shows that for the Vertical
broadcast the most efficient access scheme is the
Snapshot access and the worst is the Historical
access (about 1.5 times worse than the Snapshot
access). The Browse access is somewhere in
between (about 1.4 times worse than the Snapshot
access) closer to the Historical access. Fig. 8 shows
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the opposite results. The best scheme for the
Horizontal broadcast is the Historical access, and
the worst is the Snapshot Access (about 1.4 times
worse than the Historical access).

These results are valid for both Compressed and
Sequential broadcasts. The interesting feature is
that for small values of Randomness degree, it is
more important for the performance whether the
broadcast is Compressed or Sequential than
whether the access scheme ‘‘corresponds’’ to the
broadcast. We can observe from the figures that
for Randomness degree less than 0.7 the Access

time for any access type is smaller in the case of the
Compressed broadcast. But for Randomness de-

gree higher than 0.7, there are cases when the
Sequential broadcast with the ‘‘right’’ access
scheme can beat the Compressed broadcast with
the ‘‘wrong’’ access scheme. Hence, in order to
have the best performance, the broadcast organi-
zation and access scheme should have ‘‘similar
patterns’’, either Vertical broadcast organization
and Snapshot access, or Horizontal broadcast
organization and Historical access.

7.2. Broadcast disks

In this section, we restrict our discussion to the
first approach for distributing data between the
‘‘fast’’ and the ‘‘slow’’ disk presented in Section
3.4. Similar results apply to the other approaches
as well. The goal of our experiments are two-fold.
First, we test whether the popular technique of
broadcast disks is ‘‘compatible’’ with our compres-
sion scheme. Second, we want to get a better
insight of the use of the broadcast disks for
disseminating multiple versions of data. Specifi-
cally, two important parameters in this setting are
the size of the fast disk and the relative speed of
the two disks. We performed two experiments to
see how these parameters affect performance of
multiversion broadcast.

We set the relative speed of the disks (Fre-

quency) as a constant equal to 2 and varied the size
of the fast disk (HDSize). The results are presented
in Fig. 9. We see that for both Elements values 2
and 5, the Compressed broadcast outperforms the
Sequential broadcast. However for Elements ¼ 2
the curve has the minimum at HDSize ¼ 10 and
for Elements ¼ 5 the curve has the minimum at
HDSize ¼ 1: This means that for smaller Elements

values, broadcast disks may improve the perfor-
mance, but for larger values of Elements, the
broadcast disks scheme creates more overhead
(due to the increase of the overall broadcast size
created by the repetitive broadcast of the values on
the fast disk) than gains. Higher Elements values
lead to higher probability that the necessary data
are located on ‘‘slow’’ disks, so the overhead of
repetitive fast disks overwhelms the gains pro-
duced by the different speed of the disk rotation.
This observation is valid for both the Compressed
and the Sequential broadcast.

In the second set of experiments, we set HDSize

as a constant (equal to 5, 10 and 15) and varied
Frequency. The results are shown in Fig. 10. We
intentionally set Elements parameter to 2, because
the previous experiment showed that higher values
are not appropriate for the broadcast disks
scheme. The results from Fig. 10 show that an
optimal relative frequency of the disks does exist
for certain values of HDSize. In this experiment, it
is 3 for HDSize ¼ 5; 2 for HDSize ¼ 10; and the
disks scheme does not improve performance
(Frequency ¼ 1 in fact means that the broadcast
is flat) for HDSize ¼ 15: Hence, we found another
parameter responsible for the decision if disks



ARTICLE IN PRESS

Frequency
0 1 2 3 4 5 6 7

A
cc

es
s 

T
im

e

0

2000

4000

6000

8000

10000

12000

14000
HDSize=5, Sequential Bcast
HDSize=10, Sequential Bcast 
HDSize=15, Sequential Bcast 
HDSize=5, Compresed Bcast 
HDSize=10, Compressed Bcast 
HDSize=15, Compressed Bcast 

Fig. 10. Performance of different relative frequencies (fast,

slow disks) for broadcast disks.
Fig. 11. Access time gain for different cache organizations in

the case of the linear profile.

Fig. 12. Hit rate for different cache organizations in the case of

the linear profile.
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scheme should be used or should not. This result is
valid for both the Sequential and the Compressed
broadcasts.

7.3. Client side cache and adaptive broadcast

In this section, we consider two techniques
which can reduce the effect of the ‘‘incompat-
ibility’’ of the broadcast organization and the
client access pattern. One technique is the client
side cache and the other is the server adaptive
broadcast. In all the following experiments, Size

and Versions are each set to 25.
We consider an adaptive compressed broadcast

organization. Figs. 11–12 (Elements ¼ 10� 1;
Cachesize ¼ 30) show the Access time gains and
the Hit rates for the Linear profile of 20 clients for
20 broadcast cycles. Four different cache organi-
zations are considered. The results for the other
two profiles, Binary and Random, of 20 clients for
20 broadcast cycles are shown in Figs. 13–14
(Elements ¼ 15� 2; Cachesize ¼ 90) and 15–16
(Elements ¼ 4� 2; Cachesize ¼ 60), respectively.
For all profiles, the highest hit rate was obtained
for (100) and (001) cache organizations (15–20%)
and the lowest for (010) cache organization
(around zero). The ‘‘aggregate’’ (111) cache
organization behaved a little worse than (100)
and (001). Similar results were obtained for the
access time gain, which was 2–4% for (100) and
(001) cache organizations and practically zero for
(010). The (111) cache organization again was a
little worse than (001) and (100) types.

Similar experiments were performed with non-
adaptive server broadcast. The behavior of the
cache was the same: (100) and (001) caches had the
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access time gain about 2–4%, (111) cache had it
about 1–3%, and (010) had no gain in the access
time at all.

We describe the next experiment with adaptive
and non-adaptive (vertical) broadcast; these ex-
periments are performed for all four cache
organizations as well as without a cache. To make
the figures more clear, we include the data for
(111) cache only. The other cache organization
showed very similar behavior.

Fig. 17 (Elements ¼ 10� 1) shows the Access
time vs. Broadcast cycle for the adaptive and non-
adaptive broadcast with (111) type client cache in
the case of the Linear profile of 20 clients for 20
broadcast cycles. Initially (broadcast cycle ¼ 1),
most of the clients have the Snapshot access
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pattern. In case of non-adaptive broadcasting
server, which is chosen by default to be the
Vertical, the access time is low because the
broadcast organization (Vertical) and the client
access pattern of the majority of clients (Snapshot)
match. Later (higher broadcast cycles) the access
time steadily goes up and reaches the maximum at
the end of broadcast (broadcast cycle ¼ 20). At
this point all clients use the Historical access,
which does not match the broadcast organization.
In the case of adaptive broadcast, the broadcast
organization in the beginning (broadcast cycle 1) is
Vertical that satisfies most of the clients. Therefore
the access time is small. Then for broadcast cycles
close to 10, the number of clients with the
Snapshot and the Historical access types is the
same, so about a half of the clients are satisfied. As
a result, the access time goes up. When broadcast
cycle reaches 10, the adaptive broadcast switches
from the Vertical to the Horizontal and the access
time goes down.

Fig. 18 (Elements ¼ 15� 2) shows the Access
time vs. Broadcast cycle in the case of the Binary
profile of 20 clients for 20 broadcast cycles. As can
be seen, non-adaptive broadcast produces bursts
of low and high access time, in accordance with the
matching and non-matching the client access
pattern to the server broadcast organization. As
expected, the adaptive broadcast removes those
bursts and makes the performance much smoother
and closer to the best possible one (i.e., minimum
access time).

Fig. 19 (Elements ¼ 4� 2) shows the Access
time vs. Broadcast cycle in case of the Random
profile of 20 clients for 20 broadcast cycles. On
the average, the access time gain due to adaptive
broadcast is about 15%. The gain depends on the
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ratio of the clients with different interests. The
farther from unity this ratio is, the greater the gain.
We also performed experiments with different
Instability parameters and found that the access
time reduction is insensitive to that. However, the
high values of Instability incurs higher overhead
due to the frequent messages from the client to the
server on the uplink channel.

The simulation data show that both adaptive
broadcast and client side cache are good tools for
the multiversion broadcast performance improve-
ment in the case of ‘‘incoherent’’ (i.e., Vertical–
Historical or Horizontal–Snapshot) server broad-
cast organization and client access pattern. Cach-
ing is a local method and relies only on local
resources whereas adaptive broadcast is a global
method and involves extra communication. Both
techniques are compatible and hence can be
applied at the same time, creating an even greater
cumulative positive effect.

Finally, it should be noted that feedback
messages are not uncommon in a typical broadcast
push environment in which the server relies on
such feedback messages to decide on the content of
the broadcast. Our adaptive broadcast proposal
can be implemented in conjunction with a docu-
ment selection method so that the data items and
their organization on the broadcast cater better to
the needs of the majority of the clients, hence
achieving even greater scalability.
8. Related work

The work in this paper falls within the solutions
that use multicast/broadcast communication to
support scalable dissemination of information.
These solutions efficiently disseminate data to a
large number of users by any combination of the
following two schemes: broadcast pull and broad-

cast push. In broadcast pull, the clients make
explicit requests for data. If multiple clients
request the same data at approximately the same
time, the server may aggregate these requests, and
only broadcast the data once. Such a scheme
makes an effective use of the low-wireless band-
width and clearly improves user-perceived perfor-
mance. Several preemptive and non-preemptive
scheduling algorithms have been proposed that
attempt to achieve maximum aggregation both
based on the exact match of the requests [1,11–
13,34,36] and based on derivation dependency
among requests [14,15].

In broadcast push, which is the context of our
work, techniques for data organization, indexing
for selective tuning and caching have been
investigated. Among the first data organizations
was the broadcast disks organization studied in
Section 3.4 [9], while a scheme to generate non-
uniform broadcasts that support range queries is
described in [16]. Power conservative indexing
methods for single-attribute and multi-attribute
based queries appeared in [17–19,37].

The most commonly used caching policy LRU
may lead to suboptimal performance in multicast
environments and several algorithm has been
investigated to improve it. For example, Land-
lord/Greedy-Dual-Size [20,21] attempts to im-
prove LRU by taking into account the cost of
downloading a page whereas the PT [22] and Gray
[23] algorithms take in addition the popularity of a
page. As part of our future work, we plan to
evaluate such methods in the context of multi-
version broadcast environments.

The concept of autoprefetching has been pro-
posed in the context of mobile computing systems
in an effort to improve cache performance to
reduce access time without increasing power
consumption [24,25]. These schemes dynamically
predict what data to be prefetched based on the
data access frequency and update frequency. These
approaches share similar objective with our
proposed multiversion autoprefetch scheme but
our scheme uses a simple prediction which
autoprefetches only new versions of the already
cached data items. That is, in some sense, our
autoprefetch behaves similar to a data recharging
mechanism [26].

As mentioned in the introduction, a major goal
of our work on multiversion broadcasts has been
to achieve consistency and concurrency in broad-
cast environments. In [27], the authors discuss the
tradeoffs between concurrency of data and per-
formance issues when some of the broadcast
data items are updated by the processes running
on the server. However, the updates do not have
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transactional semantics associated with them
either at the server or at the clients. Realizing that
serializability as the correctness criterion may be
expensive, and perhaps unnecessary in such
environments, and hence various protocols
[2,5,28–30] attempt to cater to less demanding
correctness requirements. All these protocols have
been formally analyzed within a unified frame-
work [31].

Finally, research on balancing the broadcast
push of information and broadcast pull data
delivery methods appeared in Refs. [1,32,33].
9. Conclusions

In this paper, we identify two basic multiversion
organizations, namely Vertical and Horizontal
broadcasts and propose an efficient compression
scheme applicable to both. We also examine the
applicability of these schemes in the context of
both single disk and multiple disk broadcasts. We
consider multiversion client data caching and
introduce appropriate cache replacement techni-
ques.

Our performance evaluation results showed that
besides the size of a broadcast, the organization of
the broadcast has an impact on performance, as
different kinds of clients need different types of
data. We recognized three kinds of clients’
applications based on their access behavior:
‘‘historical’’ that access many versions of the same
data, ‘‘snapshot’’ that access different data of the
same version and ‘‘browsing’’ that access data and
versions randomly.

Specifically, if the primary interest of clients is
‘‘historical’’ applications, the best way to broad-
cast is the Horizontal broadcast. If the primary
interest of clients is ‘‘snapshot’’ applications, the
best way to broadcast is the Vertical broadcast. In
case of mixed environment it is possible to create
adaptive broadcast with no extra cost due to
flexibility of the broadcast format.

The suggested compression technique does not
require extra time for client side decompression
and works for both Vertical and Horizontal
broadcasts. The auxiliary symbols overhead is
small if the size of one data element significantly
exceeds a few bits. The effectiveness of a com-
pressed broadcast depends on the repetitiveness of
the data. The less frequent the data change, the
better the gains are. But even in the worst case
(completely random data), the compressed broad-
cast does not exhibit worse performance than the
uncompressed broadcast.

The use of our compression scheme in the client
cache exhibited similar advantages as in the case of
the compressed broadcast, effectively increasing
the size of the cache and consequently, the number
of hits. However, the most interesting property
exhibited by the client caching is that it can be used
as a tool to ameliorate the negative effects due to
any incompatibilities between a broadcast organi-
zation and a client data access behavior.
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