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Abstract

Consider a given pattern H and a randcm text T of length n. We assume that symbols in the text occur independently,
and various symbols have different probabilities of occurrence (i.e., the so-called asymmetric Bernoulli model). We are
concerned with the probability of exactly r occurrences of H in the text T. We derive the generating function of this

probability, and show that asymptotically it behaves as an”

n—r—

!, where a is an explicitly computed constant, and py < 1

is the root of an equation depending on the structure of the pattern. We then extend these findings to random patterns.
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1. Introduction

Repeated patterns and related phenomena in words
(sequences, strings) are known to play a central role
in many facets of computer science, telecommunica-
tions, and molecular biology. Some notable applica-
tions include coding theory and data compression, for-
mal language theory, finding repeated motifs of a DNA
sequence, and the design and analysis of algorithms.
One of the most fundamental questions arising in such
studies is the frequency of pattern occurrences in an-
other string known as text.

The goal of this paper is to study the number of
occurrences of a given pattern in a random text of
length n. More precisely, we compute the probabil-
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ity that a given pattern occurs exactly r times in a
random text (overlapping copies of the pattern being
counted separately). The text is generated according
to the so called asymmetric Bernoulli model, that is,
every symbol of a finite alphabet ¥ is created inde-
pendently of the other symbols, and the probabilities
of symbol generation are not the same. If all proba-
bilities of symbol generation are the same, the model
is called symmetric Bernoulli model.

Studying the occurrence of patterns in a random
string is a classical problem. Feller [4] already in
1968 suggested some solutions in his book. Several
other authors also contributed to this problem: e.g., see
[2,3,8,10] and references there. However, the most
important recent contributions belong to Guibas and
Odlyzko, who in a series of papers (cf. [5-7]) laid the
foundations of the analysis for the symmetric model.
In particular, in [7] the authors computed the mo-
ment generating function for the number of strings of
length n that do not contain any one of a given set of
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is suffices to estimate the prob-
pattern occurrence in a random
the symmetric Bernoulli model.
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(i) Forany m

7o = O(max{t,a(0)}). (11)
More precisely,
géa,;‘({tr,n (H)P(H) }

< Tra < ym géa?)_“{tr.n(H)P(H)}- (12)

(i) Let p. = maxuen{pn}, and let H* be the pat-
tern for which the maximum of py is achieved. If
o m=o(n), then

lim

n—oo

“’—’if—- =log(p.), (13)

e m=0(1), then
Trn © a—r—lnrp:_r—lP(H*)’ (14)

where a_,_ is defined in (8).

We should observe that the asymptotic formula
(13) is not too useful if p, = 1, which can happen
quite often. In general, nevertheless, deriving asymp-
totics for 7., is not too difficult since all terms in
(10) are nonnegative. It is known (cf. [11]) that
often the main contribution to the sum (10) comes
from a few terms around maxuep{?.,(H) P(H)}. For
example, more careful analysis can provide asymp-
totics for m = O(logn), but we will not explore this
issue any further in this note.

3. Analysis

We first prove Theorem 3(i), that is, we derive
formula (2) for the generating function T,(z) =
2 nsotrnz " Following Guibas and Odlyzko (7],
we 1ntroduce a new probability, namely s,(n) repre-
senting the probability of H appearing exactly r + 1
times in a random string T, where one of the occur-
rences of H is located at the end of the string. Let
§:(2) =Y sr(n)z ™™

First, we will derive To(z) and Sp(z). From Theo-
rem 3.3 of [7] we have

(z - DT(z)+2S(z) =2z
P(H)To(z) — z Ag(z) So(z) =0.

By solving for To(z), So(z), we get

. P(H)
() = T a0 TP ® s)
To(z) = s it2)

(z — DAg(z) +P(H)'

To illustrate the proof, we will use the analog of die-
throwing, i.e., we consider that the text T is generated
by throwing a V-sided die n times. We observe that the
probability ¢,(n),? that H appears exactly 7 times by
the nth throw is equal to the sum of the probabilities
of all possible events at the (n + 1)st throw, given
that by the nth throw we have exactly r appearances
of H. At the (n + 1)st throw we can either have one
more appearance of H at the end of the string (an
event having probability s,(n+1)) or we can have no
more appearances of H. The second event appears with
probability Py, where P; is the probability of having
exactly r occurrences of the pattern in a text of length
n+ 1, where there is no pattern occurrence at the end
of the text, and thus t,(n + 1) = P, + s, (n+ 1).
By adding the probabilities of the two events, we get

t(m)y=t(n+ D) +sn+1)—s,_1(n+1), (16)
rz1, n>0.

Let k be the position of the last occurrence of Hin T.
Then, the probability ¢, (n) that we will have r + 1
appearances of H by the nth throw can be written as the
sum of the products s, (k)u(n— k), where u(n—k) is
the probability of a string of length n — k that it does
not itself contain H and if appended to H does not form
any additional H patterns. Note, that in the Bernoulli
model, sg(n — k+ m) = P(H)u(n — k). Thus,

n—m
haa(m) = Y sr(ly 2,
pars (H) (17)

r=20 n20.

By multiplying both (16) and (17) by z™" and
summing on »# we obtain the following system,

§,(2) = Sy_1(2) + L}ﬁn(z),

1
Tr1(2) = ;(—er(z)So(z)z'"-

2For the simplicity of presentation, in this section we rather
write 1,(n) instead of f,n(H).
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Solving for 7.(z), we get

S3(2)z™.
(18)

T.(2) = (14 == So(2)z")|

1-
z P(H) P(H)

Finally, by substituting So(z) from (15), we get

(P(H) + (z = 1)(4n(z) — 2"~ 1))}

T, = ,m
(z) =" P(H) (P(H) + (z — DAg(z))*!

(19)

which proves formula (2) of Theorem 3(i).

Now, we can wrestle with part (ii) of Theorem 3,
that is, extract an asymptotic behavior of #,,, from its
generating function 7,(z). By Hadamard’s theorem
(cf. [14]) we conclude that the asymptotics of the
coefficients of T,(z) depend on the singularities of
T.(z). In our case, the generating function is a rational
function, thus we can only expect poles (which cause
the denominator Dy(z) to vanish). The next lemma
establishes the existence of at least one such pole.

Lemma 7. The equation Dy(z) = 0 has at least one
solution in |z| < 1. The largest solution inside the
circle |z| < 1 is denoted by py.

Proof. The proof is based on the Rouché theorem (cf.
[14]), and it is only a slight modification of Theo-
rem 11 in [8], thus the details are left for the inter-
ested reader, O

In view of the above, we can expand the generating
function T,(z) around z = py in the following Lau-
rent’s series (cf. [14,16]):

r+l

T(z)—z(

where T,(z) is analytical in |z| > py. The term T.(z)
contributes only to the lower terms in the asymptotic
expansion of T,(z). Actually, it is easy to see that
for p < py we have T,(z) = O(p") (cf. [16]). The
constants a_; can be computed according to (9) with
the leading constant a_,_| having the explicit formula
(8). Finally, the asymptotic expansion of the root py,
as presented in (5), follows directly from [8], how-
ever, a simple substitution of (5) into Dy(py) =0
also proves its validity.

+T(z), (20)

We need an asymptotic expansion for the first
terms in (20). This is a rather standard computation
(cf. [16]), but since we use z ™" instead of z", we
present below a short derivation for the reader’s con-
venience. The following chain of identities is easy to
justify for any p > 0:

r+1 r+l

= a-jz7)
;(z—p)f Z(I—PZ“)’
r+l
_Z -JZ(njil ) R

j=t n=0

00 min{r+1,n}
o n=1I\ nj
SNAIDS a_,.(j_l>p .
n=1 Jj=1

Thus, the nth coefficient of the first term of (20) finally
becomes (n > r)

r+1 r+1 y
-”](Z (Z—p}{)-l) ;a—]( ) Py -’.
(21)

The above completes the proof of Theorem 3(ii) after
noting that ( ) = i Z.(1+ O(1/n)). Thus, Theorem 3
has been proved

Finally, we prove Theorem 6, which concerns the
case where both the pattern and the text are random.
Observe that the inequality (12) follows directly from
the basic equation (10). To prove (13), we proceed
as follows. Let g and p < g be the largest and the
smallest probability of symbols occurrence from the
alphabet 3. Then, (12) becomes

" géa,;%{tr,n(ﬂ)} S Trn € (VQ)mgéa;é{tr,a(H)}-

Taking the logarithm of both sides of the above and
noting that m/n = o(1) proves (13). In a similar
fashion we can prove (14), and this completes the
proof of Theorem 6.
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