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Abstract 

Consider a given pattern H and a randozz text T of length n. We assume that symbols in the text occur independently, 
and various symbols have different probabilities of occurrence (i.e., the so-called asymmetric Bernoulli model). We are 
concerned with the probability of exactly r occurrences of H in the text T. We derive the generating function of this 
probability, and show that asymptotically it behaves as cun’&‘-‘, where cy is an explicitly computed constant, and pl < 1 
is the root of an equation depending on the structure of the pattern. We then extend these findings to random patterns. 
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1. Introduction 

Repeated patterns and related phenomena in words 
(sequences, strings) are known to play a central role 
in many facets of computer science, telecommunica- 
tions, and molecular biology. Some notable applica- 
tions include coding theory and data compression, for- 
mal language theory, finding repeated motifs of a DNA 
sequence, and the design and analysis of algorithms. 
One of the most fundamental questions arising in such 
studies is the frequency of pattern occurrences in an- 
other string known as text. 

The goal of this paper is to study the number of 
occurrences of a given pattern in a random text of 
length n. More precisely, we compute the probabil- 
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ity that a given pattern occurs exactly r times in a 
random text (overlapping copies of the pattern being 
counted separately). The text is generated according 
to the so called asymmetric Bernoulli model, that is, 
every symbol of a finite alphabet Z: is created inde- 
pendently of the other symbols, and the probabilities 
of symbol generation are not the same. If all proba- 
bilities of symbol generation are the same, the model 
is called symmetric Bernoulli model. 

Studying the occurrence of patterns in a random 
string is a classical problem. Feller [4] already in 
1968 suggested some solutions in his book. Several 
other authors also contributed to this problem: e.g., see 
[ 2,3,8,10] and references there. However, the most 
important recent contributions belong to Guibas and 
Odlyzko, who in a series of papers (cf. [ 5-71) laid the 
foundations of the analysis for the symmetric model. 
In particular, in [7] the authors computed the mo- 
ment generating function for the number of strings of 
length n that do not contain any one of a given set of 
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is suffices to estimate the prob- the probability that the pattern H occurs e 
rn occurrence in a random in T, where overlapping copies of H 

tric Bernoulli model. arately. 
k. [,j+n”&j&&” :..;‘13 I.,, _‘T&.pi$naqj~$&in hndings we 

remark also presented some basic results for several tation from [6,7] (cf. also [3,8]). Below, we write 
pattern occurrences in a random text for the symmet- P( Hi) for the probability of the substring Hi = 
ric Bernoulli model, and for the probability of no oc- hi a m . hi. 

currence of a given 
In this paper, we e and H we &fine the 

(1) 

gineering computations. i:W- Y 'i!fJ? irj '~~~@p~ k E FH means that the last k symbols ofF are 

Applications of these results include wir&&‘$$&‘~” ‘i”fA”&i?ff%? the first k symbols of H (i.e., the size k suffix 

munications (cf. [ 1 ] ), approximate pattern matching of F is equal to the size k prefix of H) . If F = H, then the 
(cfr- f9;15_1$;- mole&ar-lJiology-(~cf,~~~f 12$);‘garrres; --.- ‘---’ e~el~~~l~.-.~~-.~~~#~~~~ 

codes (cf. [ 5-7]), and stock market analysis. In polynomial and is denoted by AH(z) = Cd z~&mtid~, 

{a,b,c}, P(a) =2/3, P(b) = l/6, and P(c) = l/6. 
If we assume F = aabccaab and H =,&+&&@+&b~ 
then 



Remark 5 (Illustration to TheoremtiZJtu I&t (X) = 
{a,b}, P(a) = l/3 and P(p) = 2/3. We.,consider 
died .different patterns: .{ U.I%C1.: .I \ > xmri c:, - :\ ,-r 

(a) Let H = bb. Then we obtain AH( F)“L z + 2/3, 

P(H) = 4/9 and for r = 1 ,‘~J9%13’X?n, ‘VlOWi 
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(i) Forany m 

7r.n = O(g$fr,“w~). 
More precisely, 

(11) 

(12) 

(i) Letp, = maxHEx {a}, and let H* be the pat- 
tern for which the maximum of pi is achieved. If 

m = o(n), fhen 

Iirn 1% 7r.n 
- = lo&p*) 7 

n-+oo n 

m=O(l),then 

rr,n N a--,-In 
,’ n-r-lP(H*), 
P* (14) 

where a_,_1 is defined in (8). 

We should observe that the asymptotic formula 
(13) is not too useful if p* = 1, which can happen 
quite often. In general, nevertheless, deriving asymp- 
totics for rr.,, is not too difficult since all terms in 
( 10) are nonnegative. It is known (cf. [ 111) that 
often the main contribution to the sum ( 10) comes 
from a few terms around maxHEw { tr,,, (H) P(H) }. For 
example, more careful analysis can provide asymp- 
totics for m = O(logn), but we will not explore this 
issue any further in this note. 

3. Analysis 

We first prove Theorem 3(i), that is, we derive 
formula (2) for the generating function T,( z ) = 

c n;zo t,Jlz +. Following Guibas and Odlyzko [7], 
we introduce a new probability, namely sr (n) repre- 
senting the probability of H appearing exactly r + 1 
times in a random string T, where one of the occur- 
rences of H is located at the end of the string. Let 
S(z) = C;&(n)z-“. 

First, we will derive TO ( z ) and So ( z ) . From Theo- 
rem 3.3 of [7] we have 

(z - 1) To(z) + z So(z) = z. 

P(H)To(z) -zA~(z)So(z)=O. 

By solving for To(z), So(z), we get 

so(z) = 
PO.0 

(z - ~)AH(z) + P(H) ’ 

To(z) = 
zAdz) 

(Z - ~)AH(z) + P(H) ’ 

(15) 

To illustrate the proof, we will use the analog of die- 
throwing, i.e., we consider that the text T is generated 
by throwing a V-sided die n times. We observe that the 
probability tr (n) , * that H appears exactly r times by 
the nth throw is equal to the sum of the probabilities 
of all possible events at the (n + 1) st throw, given 
that by the nth throw we have exactly r appearances 
of H. At the (n + 1)st throw we can either have one 
more appearance of H at the end of the string (an 
event having probability s, ( n + 1) ) or we can have no 
more appearances of H. The second event appears with 
probability Pt, where PI is the probability of having 
exactly r occurrences of the pattern in a text of length 
n + 1, where there is no pattern occurrence at the end 
of the text, and thus t,(n + 1) = PI + s,_l(n + 1). 
By adding the probabilities of the two events, we get 

t,(n)=f,(n+l)+s,(n+l)-s,-l(n+l), 

i-21, n>O. 
(16) 

Let k be the position of the last occurrence of H in T. 
Then, the probability tr+t (n) that we will have r + 1 
appearances of H by the nth throw can be written as the 
sumoftheproductss,(k)u(n-k), whereu(n-k) is 
the probability of a string of length n - k that it does 
not itself contain H and if appended to H does not form 
any additional H patterns. Note, that in the Bernoulli 
model, sa(n -k+ m) = P(H)u(n - k). Thus, 

n--m 

f,+i(n) = c s,(k) s”‘np(;; m), 
k-d (17) 

r 2 0, n 2 0. 

By multiplying both ( 16) and ( 17) by z -” and 
summing on n we obtain the following system, 

S,(z) = S-l(Z) + +4z), 

Tr+l(Z) = &p(zMz)Z.. 
zFor the simplicity of presentation, in this section we father 

write t,(n) instead of t,,“(H). 
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Solving for T, ( 2 ) , we get 

T,(z) = (1+ s so(z)z”‘)r-l~~~(z)z”. 

(18) 

Finally, by substituting Sa( z ) from ( 15)) we get 

Tr(z) = z”‘P(H) 
(P(H) + (z - l)(A~(z) - zm-’ r 

(P(H) + (z - l)An(zW+‘) - 
’ 

(19) 

which proves formula (2) of Theorem 3 (i). 
Now, we can wrestle with part (ii) of Theorem 3, 

that is, extract an asymptotic behavior of t,, from its 
generating function T,.( z ). By Hadamard’s theorem 
(cf. [ 141) we conclude that the asymptotics of the 
coefficients of Tr( z ) depend on the singularities of 
Tr ( z ) . In our case, the generating function is a rational 
function, thus we can only expect poles (which cause 
the denominator Da( z ) to vanish). The next lemma 
establishes the existence of at least one such pole. 

Lemma 7. The equation & ( z ) = 0 has at least one 
solution in 1 z 1 < 1. The largest so&&ion inside the 
circle 1 z 1 < 1 is denoted by h. 

Proof. The proof is based on the Rouche theorem (cf. 
[ 14]), and it is only a slight modification of Theo- 
rem 11 in [ 81, thus the details are left for the inter- 
ested reader. Cl 

In view of the above, we can expand the generating 
function T, ( z ) around z = pa in the following Lau- 
rent’s series (cf. [ 14,161) : 

?fl 

T,(z) =c a-’ +E(z), 
j=, (z - La)’ 

(20) 

whereFr(z) isanalyticalin ]z] > a.ThetermFr(z) 
contributes only to the lower terms in the asymptotic 
expansion of T,( z ). Actually, it is easy to see that 
for p < ~a we have !&z) = O(p”) (cf. [ 161). The 
constants a-j can be computed according to (9) with 
the leading constant a-,-t having the explicit formula 
(8). Finally, the asymptotic expansion of the root pa, 
as presented in (5)) follows directly from [ 81, how- 
ever, a simple substitution of (5) into D&x) = 0 
also proves its validity. 

We need an asymptotic expansion for the first 
terms in (20). This is a rather standard computation 
(cf. [ 16]), but since we use z-n instead of zR, we 
present below a short derivation for the reader’s con- 
venience. The following chain of identities is easy to 
justify for any p > 0: 

r+l l-+1 

c j=, (z%j = c U-jZ_j j=, (1 - pz-‘)j 

=Eu_,g (“fi; l)pnz-n-j 

j=l nd 

Thus, the nth coefficient of the first term of (20) finally 
becomes (n > t) 

(21) 

The above completes the proof of Theorem 3( ii) after 

noting that (r) = $( 1 + 0( l/n)). Thus, Theorem 3 
has been proved. 

Finally, we prove Theorem 6, which concerns the 
case where both the pattern and the text are random. 
Observe that the inequality ( 12) follows directly from 
the basic equation ( 10). To prove ( 13). we proceed 
as follows. Let q and p < q be the largest and the 
smallest probability of symbols occurrence from the 
alphabet 2. Then, ( 12) becomes 

Taking the logarithm of both sides of the above and 
noting that m/n = o( 1) proves (13). In a similar 
fashion we can prove ( 14), and this completes the 
proof of Theorem 6. 
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