
Future Generation Computer Systems 18 (2001) 265–280

The PaCMAn Metacomputer: parallel computing with
Java mobile agents

Paraskevas Evripidou a,∗, George Samaras a,
Christoforos Panayiotou a, Evaggelia Pitoura b

a Department of Computer Science, University of Cyprus, P.O. Box 20537, 75 Kallipoleos Street, CY-1678 Nicosia, Cyprus
b Department of Computer Science, University of Ioannina, GR 45110 Ioannina, Greece

Abstract

The PaCMAn (parallel computing with Java mobile agents) Metacomputer launches multiple Java mobile agents that
communicate and cooperate to solve problems in parallel. Each mobile agent can travel anywhere in the Web to perform its
tasks. A number of brokers/load forecasters keep track of the available resources and provide load forecast to the clients. The
clients select the servers that they will utilize based on the specific resource requirements and the load forecast. The PaCMAn
mobile agents are modular; the mobile shell is separated from the specific task code of the target application. To this end,
we introduce the concept of TaskHandlers which are Java objects capable of implementing a particular task of the target
application. TaskHandlers are dynamically assigned to PaCMAn’s mobile agents. We have developed and tested a prototype
system with several applications such as parallel Web querying, a prime number generator, the trapezoidal rule and the RC5
cracking application. Our results demonstrate that PaCMAn provide very good parallel efficiency. © 2001 Elsevier Science
B.V. All rights reserved.

Keywords: PaCMAn Metacomputer; TaskHandlers; Java-mobile agent; HPC

1. Introduction

Our motivation is the development of a system that
can harness the vast resources of the Internet that
would have otherwise be idle into a dynamic hetero-
geneous Metacomputer for high performance comput-
ing (HPC). The PaCMAn Metacomputer [11] consists
of three major components: servers, clients and bro-
kers. The clients launch multiple Java mobile agents
[1,4,5] that travel in designated servers in the Web
where they perform their specific tasks. The broker

∗ Corresponding author. Tel.: +357-2-892239;
fax: +357-2-339062.
E-mail addresses: cssamara@ucy.ac.cy (G. Samaras),
skevos@ucy.ac.cy (P. Evripidou), pitoura@cs.uoi.gr (E. Pitoura).

keeps the registry of the servers and clients that par-
ticipate in the Metacomputer. Each agent supports the
basic communication and synchronization tasks of the
classical parallel worker assuming the role of a pro-
cess in a parallel processing application. There is also
a second degree of parallelism achieved by the use of
multithreading inside each agent that strengthens the
concurrent execution of an application. Furthermore,
in the PaCMAn framework, we generalize the paral-
lel agent by separating the mobile shell from the spe-
cific task code of the target application. We achieve
this with the introduction of TaskHandlers, which are
Java objects capable of performing the various tasks.
TaskHandlers are dynamically assigned to our agents.

The driving force motivating the use of Java mobile
agents in PaCMAn is twofold. First, mobile agents

0167-739X/01/$ – see front matter © 2001 Elsevier Science B.V. All rights reserved.
PII: S0167 -739X(00 )00098 -4



266 P. Evripidou et al. / Future Generation Computer Systems 18 (2001) 265–280

provide an efficient, flexible and asynchronous method
for obtaining services in rapidly evolving networks.
Second, mobile agents support intermittent connectiv-
ity, slow networks, and lightweight devices. PaCMAn
applications can be started from lightweight devices
such as laptop computers or even PDAs. After launch-
ing the PaCMAn application, the lightweight device
(client) can disconnect from the network and the ap-
plication will continue executing uninterrupted. The
client will receive the output of the application it has
launched, whenever it reconnects to the network again.
Thus, the PaCMAn framework is appropriate for the
emerging wireless environments.

At any given time, there is a vast number of comput-
ers connected to the Internet that are idle. The collec-
tive computational power of these computers dwarfs
the computational power of all the world’s high perfor-
mance computers put together. The topology of these
loosely coupled resources changes very dynamically.
These are the resources that PaCMAn is targeting. Tra-
ditional parallel processing techniques such as MPI
and PVM are better suited for tightly coupled systems
such as multiprocessors and NOWs with high perfor-
mance networks. A strong point of MPI and PVM is
the use of highly optimized conventional languages
such as Fortran, C and C ++ that have better compu-
tational performance than Java. However, this might
change in the future. There are several attempts such
as the Java Grande Forum [25] to make Java a better
environment for HPC than the traditional languages.

PaCMAn also has an advantage over conventional
techniques when there are large volumes of distributed
data. An ideal application for PaCMAn is distributed
data mining. The ability of PaCMAn to launch any
number of mobile agents to travel in the Web and
perform tasks in parallel makes it ideal for applica-
tion that have huge volumes of distributed data. The
1997 press release of the RSA code breaking chal-
lenge stated among others [23]:

“Perhaps a cure for cancer is lurking on the Internet”

Distributed data mining with PaCMAn on the con-
stantly updated data warehouses of medical institu-
tions worldwide could be utilized to explore such
assertions.

Most of the existing Web-based Metacomputer
projects [15,21,22] are applet based. Thus, the server
machines are randomly becoming available when

the computer owner points to the Web page that
hosts these systems. PaCMAn on the other hand is
proactive. At any given time, a client can use all the
servers that are registered as available at that time.
For example, companies can register their computer
as available after work hours on weekdays and for
the entire weekends. Home computers on the other
hand can register as available during work hours. Of
course, users have the ability to make their computer
unavailable explicitly by turning off the PaCMAn
daemon or implicitly when the local load reaches a
predetermined threshold.

The current implementation of PaCMAn is based on
the Aglet Technology [2], developed by IBM, Tokyo,
which is a Java-based framework for building mobile
agent. We have also tested other mobile agent sys-
tems [7] and we are currently porting PaCMAn to the
Voyager [24] system which is RMI and CORBA based.

Section 2 presents a brief overview of mobile
agents and makes a qualitative assessment of the mo-
bile agents characteristic that make them suitable for
PaCMAn. Section 3 presents the basic characteristics
of the Aglet Technology. In Section 4, we describe the
PaCMAn framework and in Section 5, we focus on
the object definitions of the framework. In Section 6,
we present our prototype implementation, experimen-
tal results from sample applications and performance
analysis. Section 7 briefly reviews other approaches
that use Java for HPC. In Section 8, we present our
concluding remarks.

2. Mobile agents

A software agent is an autonomous program that
resides on computers and/or networks. At any point
it has the ability to interact with its environment, and
adapt its course of action in a way that maximizes its
progress towards its goal.

Mobile agents are self-contained agents that can
navigate autonomously. At each site that they visit,
they can perform a variety of tasks [13]. The underly-
ing computational model resembles the multithread-
ing environment in the sense that like individual
threads, each agent consists of program code and a
state. Communication is usually performed through
the exchange of messages. Mobility is a fundamental
extension of this model, each agent can autonomously
relocate itself or its clones.



P. Evripidou et al. / Future Generation Computer Systems 18 (2001) 265–280 267

To perform useful work, each mobile agent needs
to interact with the server environment it visits. Thus,
a daemon like interface (i.e. an agent execution en-
vironment) is provided at the server site that receives
the visiting agents, interprets their state and sends
them to other daemons as necessary. This allows the
visiting agent to access services and data on the cur-
rent server. Each daemon must be explicitly started at
each site that wishes to participate in the mobile-agent
based Metacomputer. Issues of security and authen-
tication can also be handled by the agent system
interface.

Java mobile agents, the most popular kind of mo-
bile agents nowadays, inherit the universal portability
and seamless interface of the Java programming lan-
guage. Furthermore, their execution environment is the
Java virtual machine (JVM) that is constantly being
improved and optimized. PaCMAn and other similar
systems for distributed processing over the Web ben-
efit from this increasing investment in Java and the
Web in general.

One question that may arise is, why are we utiliz-
ing mobile agents and not just mobile objects [6]. The
main difference between the two is that agents are au-
tonomous and more flexible entities with dynamic be-
havior. Have we had used mobile objects, we would
had to extend them extensively in order to attain the
dynamic behavior required by PaCMAn. For example,
the concept of dynamic TaskHandlers could not be
supported by mobile objects directly and would have
required considerable extensions (which in essence
would have amounted in us constructing our own ver-
sion of a rudimentary mobile agents system).

The fact that we based our system on mobile agents
give us more flexibility to expand in other applica-
tion areas such as data mining and tasks that com-
bine intelligent behavior and computation. It is in our
future plans to introduce more “intelligent” commu-
nication in our system, following the KQML/FIPA
standard.

3. The Aglet technology: a Java-based agent
execution environment

The Aglet technology [2,3] (also known as the
Aglets workbench) is a framework for programming
mobile network agents in Java. Developed by the IBM

Japan research group, the Aglet technology was first
released in 1996. From a technical point of view, the
IBM’s mobile agent called Aglet (Agile applet) is a
lightweight Java object that can move autonomously
from one computer server to another for execution,
carrying along its program code and state as well as
any data obtained so far.

An Aglet can be dispatched to any remote server that
supports the JVM. This requires that the remote server
has preinstalled the Tahiti daemon, a tiny Aglet server
program implemented in Java. A running Tahiti server
listens to the server’s ports for incoming Aglets, cap-
tures them, and provides them with an Aglet context
(i.e. an agent execution environment) in which they
can run their code from the state that it was halted be-
fore they were dispatched. Within its context, an Aglet
can communicate with other Aglets, collect local in-
formation and when convenient halt its execution and
be dispatched to another server. An Aglet can also be
cloned or disposed.

To allow Aglets to be launched from within applets,
the IBM Aglet team provided the so-called FijiApplet,
an abstract applet classes that is part of a Java package
called Fiji Kit. The FijiApplet maintains some kind of
an Aglet context (like the Tahiti Aglet server). From
within this context, Aglets can be created, dispatched
from and retracted back to the FijiApplet.

For a Java-enabled Web browser to host and launch
Aglets to various destinations, besides the FijiApplet
applet class, two more components are required and
provided by the Aglet Framework. These are an Aglet
plug-in to allow the browser to host Aglets and an
Aglet router that must be installed at the Web server.
The Aglet router is implemented in Java and is avail-
able as a stand-alone Java program or as a servlet
component for Web servers that support servlets. 1

Its purpose is to capture incoming Aglet and forward
them to their destination.

The Aglet framework provides security guarantees
in addition to the standard Java security. The secu-
rity manager of the Tahiti server performs various
checks on a visiting agent before it is allowed to run.
Furthermore, if during execution, the Aglet requires
some protected services (such us disk access), it must
first be validated by the security manager before gain-

1 Servlet: a server-side applet that dynamically extends the func-
tionality of a Web server.



268 P. Evripidou et al. / Future Generation Computer Systems 18 (2001) 265–280

ing access to these resources. More advance security
schemes will be implement by the PaCMAn frame-
work at a later stage.

4. The PaCMAn framework

The PaCMAn Metacomputer consists of a number
of computers located anywhere in the Internet that
register with the PaCMAn broker as servers or clients
or both. Fig. 1 depicts the basic components of the
PaCMAn Metacomputer:

• Broker: It keeps track of the system configuration.
All participating clients and servers and their capa-
bilities are registered with the broker. The broker
also monitors the systems resources and performs
network traffic/load forecasting [9]. In our system,
we have adopted an agent-based version of the net-
work weather service (NWS) [14]. NWS uses CPU
and network sensors to create its forecast. The cur-
rent implementation of NWS provides both a C API
and CGI interface. Currently, the PaCMAn broker
can utilize NWS without many modifications. The
agent daemon process at the server site can start the
forecaster whenever it is ready to participate in the
PaCMAn Metacomputer. The broker can dispatch
special agents that visit these nodes, access the fore-
cast and report it back to the broker.

• Server: It is a Java enabled computer (has installed
the Java run time environment) that runs the Tahiti
Aglet server, in order to host incoming PaCMAn
mobile agents.

Fig. 1. The PaCMAn Metacomputer.

• Client: It is a Java enabled computer that runs the
Tahiti Aglet server, in order to launch/host PaCMAn
mobile agents. To be able to launch Aglets from
within applets, the Fiji Kit is installed on each client.
It includes the FijiApplet, an abstract applet class,
which allows the browser to host Aglets, and the
Aglet router that must be installed at the Web server.

An auxiliary structure of the PaCMAn infrastruc-
ture is the virtual circular queue (VCQ) (Fig. 2). The
VCQ is a distributed circular buffer implemented with
Java RMI. It facilitates distributed producer–consumer
collaborative work. Portions of the queue reside on
different servers that can be distributed in the Internet.
Producers of work (JobSlice in our terminology) store
it in a portion of the circular queue that is closer to
them. If the local portion of the queue is full, the queue
server passes the JobSlice to one of its neighbors. Con-
sumers fetch work from the queue. If the local portion
of the queue is empty, the local queue server requests
a JobSlice from one of its neighbors. The PaCMAn
VCQ also supports automatic queue balancing: two
neighboring queue servers compare their queue sizes
and balance them by transferring JobSlices. This pro-
cedure is repeated in a round-robin fashion until the
entire queue is balanced.

The VCQ due to its static nature is suitable for
jobs that have fairly long duration (days, weeks or
months) such as the RSA code breaking challenge. For
such applications, the participating PaCMAn servers
could change very frequently during the lifetime of
the application. So the presence of a stationary queue
enables the seamless continuation of the work.

To realize our approach, a number of components
are defined to complement the existing agent execu-
tion environment (i.e. the Aglets). In particular, the
existing Aglets are extended with parallel processing
capabilities. In addition, a library of task-specific ob-
jects, called TaskHandlers, is implemented to realize
the computation portion of the application. Specif-
ically, the following components comprise the pro-
posed framework:

• PaCMAn mobile agent: The main responsibility of
the PaCMAn mobile agent is first to create and co-
ordinate other PaCMAn mobile agents and then to
initiate a variable number of TaskHandler objects to
perform the job specified by it’s currently assigned
JobSlice. The basic structure of the PaCMAn agent



P. Evripidou et al. / Future Generation Computer Systems 18 (2001) 265–280 269

Fig. 2. An example of the VCQ distributed on a number of buffer servers on four geographically distant, in the Internet sense, areas.

is depicted in Fig. 3. The decision of which ob-
ject, from the TaskHandler library, will be initiated
is done dynamically at run time based on the cur-
rent demands, which in turn are determined by the
currently assigned JobSlice object.

The PaCMAn mobile agent can assume various roles
in the PaCMAn framework the most common are:

• Mobile worker (MW): This is the workhorse of
the PaCMAn system. It performs all the necessary

Fig. 3. The dynamic relationship of the PaCMAn mobile agent, TaskHandler and JobSlice.

computation, communication and synchronization
tasks. The MW initializes and uses the appropri-
ate TaskHandler. The mode of operation of the
MW is similar in concept with the single pro-
gram multiple data (SPMD) parallel model: the
MW runs in all the servers selected for the ap-
plication, the same code/process running in all
the servers but on different data at each server.
The task instructions are passed to it through a
JobSlice.



270 P. Evripidou et al. / Future Generation Computer Systems 18 (2001) 265–280

• Mobile-coordinator/dispatcher (MCD): The MCD
does not participate in the computation. Instead,
it performs task-specific coordination among the
MWs. This is done by dynamically assigning tasks
to the MWs through the use of JobSlices and also
by providing information about the status of other
MWs. For example, in a computationally intensive
application, the MCD can produce a large number
of JobSlices (much larger than the number of the
MWs), effectively dividing the entire task into a
number of subtasks, and dynamic assign a JobSlice
to each MW whenever it requests it. This mode of
operation is appropriate for application where the
load cannot be balanced statically, such as the prime
number generator.

• TaskHandler library: It is a collection of Java ob-
jects that are serializable, and thus can travel along
with our PaCMAn mobile agents. The TaskHan-
dler is an object that is in the disposal of an agent
to use when it needs to perform a specific com-
putational task. For example, when the need arise
for a database query, the agent can utilize the
DBMS TaskHandler. The TaskHandler objects are
instantiated by the mobile agents in new separate
threads that run along with the agents. Initially, the
library has only our TaskHandler abstract class. It
can be enriched with other TaskHandler objects
that must be descendants of our TaskHandler ab-
stract class (this is done both for technical reasons
and to ensure a common interface, although it can
be overridden). Finally, this library contains an ob-
ject called the JobSlice object. The JobSlice object

Fig. 4. The agents’ hierarchy.

holds all the necessary initialization information
for the TaskHandler which will be used. JobSlices
are essential to the framework, as in effect they act
as the main pipeline between our mobile agents
and the TaskHandler objects. The only thing that
our agent needs to start working on a problem is
a JobSlice. When the current JobSlice is finished,
the agent can request a new one. The JobSlice is
generic and can be used by all the TaskHandler
objects of the library.

As stated earlier the VCQ is stationary and is bet-
ter suited for long running jobs. The MCD on the
other hand is used for dynamic agent coordination.
The MCD moves if there is a need to provide syn-
chronization to a group of MWs. Of course, it is pos-
sible to implement a more dynamic VCQ by linking
together a number of MCDs.

Fig. 3 depicts some code segments that illustrate the
dynamic nature of the JobSlice and the TaskHandler.
The mobile shell has a JobSlice and a TaskHandler
variable. These are used to reference the JobSlice and
TaskHandler objects, respectively. The JobSlice object
is given to the mobile shell whereas the TaskHandler
object is created by the shell. Which class is used as
a TaskHandler is determined by the JobSlice object.

5. Object definitions of the PaCMAn framework

MW: As shown in Fig. 4, the MW is defined to be
a descendant of the Aglet class (in the figure, this is



P. Evripidou et al. / Future Generation Computer Systems 18 (2001) 265–280 271

represented with the PaCMAn mobile agent). Besides
the functionality inherited from the Aglet class, the
additional responsibilities of an MW are to:

• Maintain a list of locations and Ids of the other
MWs and MCD.

• Create and dispatch other MWs.
• Communicate with other MWs.
• Communicate with an MCD to get more JobSlices

and or instructions about its course of action.
• Instantiate and use TaskHandler objects, either to

complete its given task or to handle a message such
as joining partial results.

In our framework, the mobility and basic commu-
nication 2 events are inherited from the Aglets frame-
work and overridden as needed. Due to this fact and the
concept of TaskHandler objects that are dynamically
assigned, the object definition of the MW strongly re-
sembles the object definition of an Aglet. That is be-
cause most of the actions taken by an MW are results
of, or have as a result, some form of communication
with other members of the PaCMAn framework or
some event triggered by the Aglets framework.

In order to send a message from Aglet A to Aglet
B, Aglet A must know Aglet B’s agletID (a unique
identity) and its location. The agletID is not prede-
termined but is created (by the Tahiti server), when
an Aglet is created. Thus, only after the creation of
all the PaCMAn mobile agents and only the “leader”
PaCMAn mobile agent has access to this information.
This makes it necessary to organize this information in
a routing table. The routing table contains the URL of
each PaCMAn mobile agent, its agletID and its logical
ID (a serial number given by our application). At an
early point during execution, the leader broadcasts the
routing table to all other agents. When a mobile agent
moves, the routing table needs to be updated. Broad-
casting a message can do this. The departing mobile
agent has to leave its proxy on the Tahiti server at its
initial location in case messages are in transit while
the routing tables are updated.

The Aglets framework provides us with the basic
communication methods for both handling and gener-
ating messages:

2 The communication scheme in the Aglet framework is based
on event handling. When a message arrives an event is triggered
and as a result the handleMessage method is called.

1. sendMessage(Message), sendOnewayMessage-
(Message), sendAsyncMessage(Message), send-
FutureMessage(Message) which are responsible
for sending messages in a peer to peer scheme.

2. getXXXXReply() methods which get a reply that
it was sent in response for an older message.

3. waitForReply() which waits for a reply from a mes-
sage sent.

4. sendReply(XXXX) methods which send a reply to
a newly arrived message.

On the handling side, there is no need for receiv-
ing methods (like those in MPI). Message receipt is
both implicit and explicit. When a message arrives
at an Aglet, it is handled implicitly by the han-
dleMessage(Message) method except in the case an
explicitly getXXXXReply() method is used. In the
Aglet workbench, there were no broadcast and col-
lective operations, thus in our extension, we included
such methods for broadcast and collective operations.
Aglets have multicasting facilities but not true broad-
casting. Aglets’ multicasting works only within a
single context [3]. Furthermore, Aglets’ multicasting
works by letting Aglets register to receive specific
type of messages. Since PaCMAn is designed to work
with multiple servers and thus different contexts, we
had to implement our broadcast operations in the
same fashion as MPI broadcast. The same applies to
collective operations.

The mobility events provided by the Aglet frame-
work are described in great detail in the Aglet docu-
mentation [2]. Apart from these, the run() method is
the central to the MW as this is the method responsible
for the creation and utilization of the main TaskHan-
dler object(s). All other methods of an MW exist
as auxiliary methods of the run() method. TaskHan-
dler objects implement the task-specific actions and
other needed actions, like reformatting the results (in-
stead of having specific methods of the MW for that
purpose). TaskHandlers are dynamically assigned to
the run() method. Fig. 3 depicts the relationship of
the PaCMAn mobility agent, with the JobSlice and
TaskHandler objects.

Mobile coordinator/dispatcher: The MCD can be
defined either to be a direct descendant of the Aglet
class or by refining the MW. This is because the MCD
is identical with an MW that uses a TaskHandler to
do the coordination and dispatching (again, in Fig. 4



272 P. Evripidou et al. / Future Generation Computer Systems 18 (2001) 265–280

this is represented with the PaCMAn mobile agent).
The basic functionality–responsibilities of an MCD
are:

• All the functionality of the MW (in the case where
the MCD is its descendant).

• Maintaining and handling (giving away, adding,
etc.) a list of JobSlices.

• Communicating with other members of the frame-
work.

• Tracking the PaCMAn mobile agents status.

The MCD exists to serve requests for JobSlices and
to help coordinating tasks like the combination of par-
tial results. For example, the MCD can be used to
balance the computation load required for the produc-
tion of some partial result, when it is difficult to do
so statically. The MCD can also maximize the utiliza-
tion of our resources. The database application that we
use for testing consists of two lines of computations.
First, each MW travels to a distributed database and
performs its query. Then, the partial results are joined.
Thus, some MWs will be waiting for others to finish,
in order to join their results. The MCD can minimize
this waiting time, by instructing the “finished” mo-
bile agents to work together (by exchanging and join-
ing their ResultSlices, while others are still producing
theirs), instead of waiting for a predetermined mobile
agent to finish (static scheduling).

Broker: The broker can be defined as a direct de-
scendant of the Aglet class. The basic functionality —
responsibilities of a broker are to:

• Maintain a list of available Tahiti servers, as well
as network traffic and load information for these
servers.

• Maintain a list of the PaCMAn mobile agents cur-
rently running. Information about their whereabouts
should also be kept.

• Maintain information on useful (and/or needed) re-
sources.

• Communicate with other members of the frame-
work.

The broker’s job is to enforce a load-balancing
mechanism on the PaCMAn framework. This is done
by constantly monitoring the activity of the servers.
An agent-based version of the network weather fore-
cast [14] system has been adopted for our work
because it fulfills all our requirements.

TaskHandler and JobSlice objects: The TaskHan-
dler object defined to be a descendant of the TaskHan-
dler class. The basic functionality–responsibilities of
a TaskHandler object are to:

• Be aware of its current state.
• Be implemented as an object that can exist in a

thread (in other words to implement Runnable).
• Be able to return a ResultSlice 3 to the Aglet that

uses it.
• Accept commands in the form of messages from

the PaCMAn mobile agent that owns it.
• Accept new JobSlices from the PaCMAn mobile

agent that owns it.
• Carry the code for the application specific task.

The JobSlice object is a Java object with the fol-
lowing functionality–responsibilities:

• Contain the task initialization data.
• Know which TaskHandler can perform the specific

JobSlice task.
• Know if it is a normal or a result slice.

5.1. Extending the PaCMAn framework

In the Java agent-based technology, an agent can be
further viewed as an object that can be inherited, en-
hanced or refined just like any other object. The Aglets
can be viewed as the basic abstract object that pro-
vides us with the basic capabilities of mobility, com-
munication, ability to cloning themselves, i.e. imple-
menting all the capabilities supported by the Aglets
Framework.

The PaCMAn framework enhances these capabili-
ties with the addition of parallel processing features.
We create a hierarchy that can later on be used to
create more complex and sophisticated applications.
Fig. 4 shows the PaCMAn hierarchy. In order to over-
come the lack of multiple inheritance in Java, we had
to use both interfaces 4 and classes.

3 A ResultSlice object is technically a JobSlice object created by
the processing of other JobSlices.

4 Interfaces are somewhat like abstract classes (they contain
method declarations but not code whereas abstract classes may
contain code). The difference is that a class can implement as
many interfaces as it likes instead of only one, which is the case
when extending another class.



P. Evripidou et al. / Future Generation Computer Systems 18 (2001) 265–280 273

To enhance the new Aglets with additional capabil-
ities is now straightforward. For example, to extend
the parallel framework with database capabilities we
only have to create a database TaskHandler [8], make
it a descendant of the TaskHandler class and extend
the PaCMAn mobile agent in order to use the DBMS
TaskHandler (which could be any of the Developer’s
TaskHandler in Fig. 4). Such a scenario is demon-
strated in the section below.

5.2. Implementation roadmap

The PaCMAn framework provides a great degree
of generality. The static part of our agent which is re-
sponsible for the mobility, the general coordination,
the creation and manipulation of other agents. The dy-
namic part deals with the assignment of TaskHandlers.
PaCMAn framework a user must follow the following
steps:

1. The client creates a PaCMAn-MW that acts as the
master process:
• Extends the PaCMAn mobile agent class or im-

plements our PaCMAn mobile agent interface 5

or
• Programs the Parallel-applet either by extend-

ing our Parallel-applet class or by writing a new
one which extends the IBM’s FijiApplet abstract
class. (This applet is used as the interface be-
tween the user and the PaCMAn mobile agent.)

• Programs the TaskHandler objects by extend-
ing our TaskHandler abstract class (thus adding
the necessary objects in the TaskHandler library)
or by using an existing one from the current
TaskHandler library.

2. The client machine contacts the broker and requests
a network-based forecast. Based on the forecast, the
client machine decides on the number and location
of the servers it will utilize.

3. A number of PaCMAn-MW and PaCMAn-MCD
are created and launched.

4. The PaCMAn-MWs arrive at their destinations and
request from the TaskHandlers to perform specific
tasks. While waiting the first TaskHandler to per-
form its tasks, more TaskHandler objects can be

5 We provide this option for compatibility with other frameworks
that use IBM’s Aglets.

launched to accomplish other tasks as determined
by the available JobSlices.

5. Finally the PaCMAn-MWs coordinate among
themselves, possibly with the aid of a PaCMAn-
MCD, to collect the partial results and returns
them to the user.

6. Prototype implementation and testing

Our prototype implementation consists of the PaC-
MAn agents, the TaskHandler library and the PaCMAn
GUI. The PaCMAn family agent and the TaskHandler
library have been extensively explained in the previ-
ous sections. The PaCMAn interface is a generic user
interface that is used to start PaCMAn applications.
Through this interface the user can input the neces-
sary parameters (for each application), start the appli-
cation and finally see the produced results. The exe-
cution steps taken once the application starts, through
the GUI, are the following (Fig. 5):

1. An MW (and possibly an MCD) is created. This
first MW acts as the leader. Note that when an
MCD is not created the user interface provides the
leader with all the necessary JobSlices (for all the
MWs). In the case that an MCD is used, only the
MCD is provided with a JobSlice. From that point
on the MWs get their JobSlices from the MCD.

2. If necessary creates and fires other MWs and MCDs
(passing the appropriate JobSlices to them).

3. The MWs dispatch themselves to the appropriate
server. Note all MWs other than the leader start
from this step.

4. Each MW creates a TaskHandler object and ini-
tiates it in new separate thread. Which TaskHan-
dler will be loaded is determined from the Job-
Slice currently assigned to the MW. To complete
the TaskHandler initialization the MW passes it’s
JobSlice to the TaskHandler.

5. The TaskHandler perform its task concurrently with
the MW.

6. The MW requests from the TaskHandler to perform
a specific task. While waiting for the first TaskHan-
dler to perform its tasks more TaskHandler objects
can be launched to accomplish other tasks.

7. Finally the MW collects, in coordination with the
other MWs and under the guidance of the MCD,



274 P. Evripidou et al. / Future Generation Computer Systems 18 (2001) 265–280

Fig. 5. Execution steps.

the results (the produced ResultSlices) and returns
them to the user. In other words the results are
channeled through various MWs back to the user.
If necessary more TaskHandlers are created and
utilized to join the results (just like the database
application case).

To evaluate the performance of PaCMAn prototype
we developed some sample applications, which were
tested and analyzed. These applications demonstrate
that all of the PaCMAn framework components with
the exception of the broker and the VCQ that have
not been fully integrated in the prototype yet. The test
suite used for the performance analysis was made up
with following applications:

1. Parallel database querying over the network [10]:
This is a medium computation load application that
is split into two parts. This application is a database
application in which the client wants to retrieve
data that are distributed in a number of different
servers. Thus the actual problem is first to retrieve
the data and then join them as needed.

2. Computing prime numbers: This is a heavy
computation load application that is difficult to
load-balance statically; It counts the number of
prime numbers in a given range.

3. The trapezoidal rule: This is a light computation
load application: an implementation of the classic
trapezoidal rule problem.

4. Cracking the RC5 algorithm [12]: This is a medium
computation load application; it searches for the
decryption key in a given range.

For the implementation of the above applications,
we just need to create the appropriate TaskHandlers
that would perform the given tasks:

1. DBMS TaskHandler, which performs the task of
the data connection and retrieval.

2. Join TaskHandler, which joins the results produced
by the DBMS TaskHandler.

3. Primes TaskHandler, which finds the prime num-
bers in a given range.

4. Trap TaskHandler, which calculates the area of a
trapezoid.

5. RC5 TaskHandler, which finds the key (if it exists)
in a given range.

Each of these TaskHandlers is an autonomous
Java object and can exist outside the scope of the
PaCMAn framework. For example the code of the
Primes TaskHandler was taken from another applica-
tion and it was easily adapted to the PaCMAn frame-
work. This is also the case for the RC5 TaskHandler
that was provided to us by Patel et al. [12]. We tested
the above applications with a group of eight servers.
Furthermore there were the following test modes:

• Mode 0: One agent moving from server to server
gathering and joining all the results (applicable only
to the database application).



P. Evripidou et al. / Future Generation Computer Systems 18 (2001) 265–280 275

Fig. 6. Database application speed-ups.

• Mode 1: N agents on N servers and every agent
sends its results to one (the leader) agent.

• Mode 2: N agents on N servers and the produced
results are joined in a tree reduction order.

The database application: This is Web-database query
application. The data is distributed on a number of
databases residing on different servers. MWs are
launched to perform queries independently and then
cooperated to join the results of the individual queries.
The speed-ups for this experiment are tabulated in
Fig. 6. Sample size refers to the number of records
returned by each query. The speed-up of modes 1
and 2 are 282 and 315% compared with mode 0. The
reason we achieved such high speed-ups is that mode
0 simulates a serial execution while mode 1 and 2 are
parallel implementations. The improvement (1–10%)
between modes 1 and 2 is due to the fact that in mode
2 we have more parallelism during the joining phase.
We expect higher speed-ups of mode 2 compared to
mode 1 in application where the joining of the partial
results requires heavy duty computation.

The prime generator: It is very difficult to have static
load balancing in applications such as the prime num-
ber generator. Thus, we have experimented with three
different implementations. In the first case, there was
no load balancing, the entire range is divided into as
many equal parts as mobile agents used. In the second
case, we statically load balanced the application while
in the third case we have dynamic load-balancing

through the use of an MCD. Under this implementa-
tion we have divided the range into a large number of
JobSlices and loaded them on the MCD. Whenever a
mobile agent finishes the range specified by its Job-
Slice it requests a new JobSlice from the MCD. The
test parameters for this application are the number of
servers and the sample size (the largest number that
is going to be checked). We tested this application for
problem sizes 216–219. The execution timings from
the experiments are summarized in Fig. 7. The relative
speed-ups are summarized in Fig. 8. The speed-ups
reported are calculated with respect to the execution
time with only one mobile agent in one server.

Fig. 8 demonstrates as expected that the better
the load-balancing is, the more efficient the parallel
processing is. It is worth noting that as the problem
becomes larger the dynamic load-balancing per-
formed by the MCD becomes more efficient. This
somewhat unexpected behavior is because our static
load-balancing did not achieve the absolute perfect
balance. On a closer examination, we have concluded
that the MCD provides better performance as the
number of servers increases. This is due to the fact
that even with identical machines you can never get
the exact same throughput. This becomes noticeable
only with sufficiently large problems where even the
slightest difference in performance has a great impact.

The trapezoidal rule: The results from the trape-
zoidal rule tests are depicted in Fig. 9. Test parameters
here are the number of servers and the sample size. The



276 P. Evripidou et al. / Future Generation Computer Systems 18 (2001) 265–280

Fig. 7. Primes generator timings.

Fig. 8. Primes generator speed-ups.

sample size refers to the number of the trapezoidals.
The speed-ups and the parallel efficiency achieved are
very respectable.

The RC5 cracker: Fig. 10 depicts the test results for
the RC5 cracker. The test parameters are the number
of the servers and the sample size. The sample size
refers to the length of the range that is searched. The
results show very good, almost linear, speed-ups as
was the case for the trapezoidal rule.

Overall the experimentation with the prototype
showed that the PaCMAn approach provides good
parallel efficiency ranging from 79 to 88% over the
entire test suite. These are very respectable figures
for a network-based Metacomputer. The results for
using mode 2 did not appear to improve performance
in any application other than the database one. Mode
2 is suitable for large number of workers and/or
when there is heavy computation requirements in the



P. Evripidou et al. / Future Generation Computer Systems 18 (2001) 265–280 277

Fig. 9. Trapezoidal rule timings and speed-ups.

Fig. 10. RC5 cracker timings and speed-ups.



278 P. Evripidou et al. / Future Generation Computer Systems 18 (2001) 265–280

joining phase of the partial results. We will be able to
test this mode more rigorously with the UNIX port of
PaCMAn.

7. Related work

A number of Java-based systems have been pro-
posed for Metacomputing. Although the goal is more
or less the same, to utilize heterogeneous hosts for
HPC, the approaches differ. In this section, we provide
a brief overview of systems that have similar goals
and/or approach with PaCMAn.

The systems that are more closely related to PaC-
MAn are the volunteer-based systems. The basic
idea is to have a collection of applets that commu-
nicates with each other to solve problem distributed.
This is possible with the use of brokers that routes
the messages between the applets. Example of such
systems are Javelin [15], Charlotte [21] and Bayani-
han [22]. The common ground of these systems and
PaCMAn is the use mobile code, applets and mobile
agents, respectively, to solve a problem in parallel.
The applet-based approach is passive, it relies on
servers to volunteer, each time their participation, by
pointing to the systems WWW page. PaCMAn on the
other hand is proactive. After a server is registered it
can be used without any need for collaboration from
the owner of the server. A performance drawback of
the applet-based is that all communication has to be
routed through the broker. Furthermore, these systems
are browser-centric so they have to incur all the extra
security restrictions imposed by the browsers.

A different approach is to implement in Java the
functionality of classical parallel processing and co-
ordination systems such as PVM. The JPVM library
[20] implements in Java the basic functionality of the
C and Fortran interface of PVM. The mobility of our
system makes it more dynamic and puts it in a better
position to utilize the Internet for Metacomputing that
these adaptations of such “legacy” systems.

New Java dialects and extensions of the JVM is an-
other research direction for utilizing Java for HPC.
One such project is the Java/DSM (distributed share
memory) [16] which extends the JVM to provide a
shared memory abstraction over a group of physically
distributed machines, thus creating a Metacomputer
which is similar in concept with the PaCMAn Meta-

computer. PaCMAn is a more dynamic system that uti-
lizes mobility and uses the message passing paradigm.
Other dialects and extensions of Java (expansion by
implementing a compiler) provide parallel execution
models and constructs. Titanium [17], a Java dialect,
is one of them. A similar approach is the use of Java
bytecode optimizers that discover implicit parallelism,
like javab [18]. One very interesting approach is the
automated generation of binding for native libraries
such as MPI [19]. The last two approaches are of in-
terest to us because they could be used in conjunction
with PaCMAn. Such a combination will provide an
optimized bytecode that runs faster on the lowest layer
were the PaCMAn Metacomputer will operate on the
higher layer.

8. Concluding remarks

In this paper we have presented the PaCMAn sys-
tem, an Internet based Metacomputer that can utilize
heterogeneous resources to tackle large problems in
parallel. The PaCMAn Metacomputer has three ba-
sic components: servers, brokers and clients. Clients
launch multiple Java mobile agents that roam around
the Internet and visit registered servers to perform
their task in parallel by communicating and cooper-
ating. The brokers/load forecasters keep track of the
available resources and provide load forecast to the
clients. Our system is modular and dynamic. The mo-
bile shell is separated from the application code. The
application code is implemented as TaskHandler ob-
jects which are implicitly loaded to our Mobile shell.
Thus, the end-user of our system does have to deal
with the underlining primitives that support mobility
and coordination. The transformation of a Java Ap-
plet to a PaCMAn TaskHandler is a straight forward
process and we are planning to have it automated.

An application that is implemented accordingly to
the PaCMAn framework is boosted by the inherited
benefits of using Java mobile agents and the WWW
interface. An important advantage is that the num-
ber of processes can change dynamically. The servers
that will host the PaCMAn-MW can be decided at
run time, after considering the network traffic or the
workload of the available servers. PaCMAn-MW can
be reused as they can receive new instructions and
then use new tasks, i.e. initiate different TaskHandler



P. Evripidou et al. / Future Generation Computer Systems 18 (2001) 265–280 279

objects according to its instructions. Furthermore, the
servers that host worker processes are not required to
be part of the same local network with the client. A
server can be located anywhere in the entire Web. A
PaCMAn-MW can move to servers where the available
resources and environment are suitable for its kind of
work. Our system works equally well in wireline and
wireless networks. PaCMAn-MWs can be launched
(and forgotten) from a laptop or a palmtop computer
during a short Web session. The PaCMAn-MW can
roam around the unstructured network to perform its
tasks and then wait until the communication link is
again available to return home with their task results.

We have developed three versions of PaCMAn,
two of them are based on the Aglet framework and
one on the Voyager. The prototype used for exper-
imentation presented here is using the aglets and it
is PC-based. The Unix version that uses aglet and
the Voyager version are currently been tested. The
experimental results from our prototype showed that
PaCMAn systems can have very good parallel ef-
ficiency. Our future plans are to use PaCMAn for
distributed data-mining and also develop versions of
PaCMAn that utilize native libraries.

Acknowledgements

The authors wish to thank Stavros Papastavros for
his contributions in the earlier system for Parallel pro-
cessing with Java mobile agents [26] that we devel-
oped and its valuable input during the development of
PaCMAn.

References

[1] E. Pitoura, G. Samaras, Data Management for Mobile
Computing, Kluwer Academic Publishers, Dordrecht, 1997.

[2] Aglets Workbench, IBM Japan Research Group.
http://aglets.trl.ibm.co.jp.

[3] Danny B. Lange, M. Oshima, Programming and Deploying
Java Mobile Agents with Aglets. ISBN 0-201-3258-9.

[4] D. Chess, B. Grosof, C. Harrison, D. Levine, C. Parris,
G. Tsudik, Itinerant agents for mobile computing, J. IEEE
Personal Comm. 2 (5) (1993).

[5] J.E. White, Mobile Agents. General Magic White Paper.
http://www.genmagic.com/agents, 1996.

[6] J. Nelson, Programming Mobile Objects with Java, Wiley,
New York. ISBN 0471254061.

[7] G. Samaras, Marios D. Dikaiakos, C. Spyrou, A. Liverdos,
Mobile agent platforms for web databases: a qualitative
and quantitative assessment, in: Proceedings of the First
International Symposium on Agent Systems and Applications
and Third International Symposium on Mobile Agents
(ASA/MA 99), Palm Springs, CA, October 1999.

[8] S. Papastavrou, G. Samaras, E. Pitoura, Mobile agents for
WWW distributed database access, in: Proceedings of the 15th
International Data Engineering Conference, Sydney, Australia,
March 1999.

[9] D. Barelos, E. Pitoura, G. Samaras, Mobile agents procedures:
metacomputing in Java, in: Proceedings of the ICDCS
Workshop on Distributed Middleware (in conjuction with
the 19th IEEE International Conference on Distributed
Computing Systems (ICDCS99)), Austin, TX, June 1999.

[10] C. Panayiotou, G. Samaras, E. Pitoura, P. Evripidou, Parallel
computing using Java mobile agents, in: Proceedings of the
25th Euromicro Conference, Milan, Italy, September 1999.

[11] P. Evripidou, G. Samaras, E. Pitoura, C. Panayiotou, PaCMAn
mobility for high performance computing, in: Proceedings of
the Workshop on Java for High-Performance Computing (in
conjunction with the 1999 ACM International Conference on
Supercomputing), Rhodes, Greece, June 1999.

[12] A. Patel, P. Gladychev, D. Omahony, Cracking RC5 with Java
applets, Concurrency Practice and Experience 10 (11–13)
(1998) 1165–1171.

[13] L. Bic, M. Dillencourt, M. Fukuda, Mobile Agents, Co-
ordination and Self-Migrating Threads: A Common Frame-
work. http//:www.ics.uci.edu/bic/messengers/messengers.htm.

[14] R. Wolski, N.T. Spring, J. Hayes, The network weather
service: a distributed resource performance forecasting service
for metacomputing, J. Future Generation Comput. 15 (1999)
757–768.

[15] Bernd O. Christiansen, et al. Javelin: Internet-based parallel
computing using Java, in: Proceedings of the ACM Workshop
on Java for Science and Engineering Computation, Las Vegas,
NV, June 21, 1997.

[16] W. Yu, A. Cox, Java/DSM: a platform for heterogeneous
computing, in: Proceedings of the ACM Workshop on Java
for Science and Engineering Computation, July 1997.

[17] K. Yelick, et al. Titanium: a high-performance Java
dialect, in: Proceedings of the ACM Workshop on Java
for High-Performance Network Computing, Stanford, CA,
February 1998.

[18] A.J.C. Bik, D.B. Cannon, javab Manual, ACM 1998, in:
Proceedings of the Workshop on Java for High-Performance
Network Computing, Stanford, CA, February 1998.

[19] V. Getov, S. Flynn-Hummel, S. Mintchev. High-performance
parallel programming in Java: exploiting native libraries,
in: Proceedings of the ACM Workshop on Java for
High-Performance Network Computing, Stanford, CA,
February 1998.

[20] A.J. Ferrari, JPVM: network parallel computing in Java,
in: Proceedings of the ACM Workshop on Java for
High-Performance Network Computing, Stanford, CA,
February 1998.



280 P. Evripidou et al. / Future Generation Computer Systems 18 (2001) 265–280

[21] A. Bartloo, et al., Charlotte: Metacomputing on the Web, in:
Proceedings of the Ninth International Conference on PDCS,
1996.

[22] L. Sarmenta, S. Hirano, Bayanihan: building and studying
Web-based volunteer computing systems using Java, Future
Generation Comput. Syst. 15 (6) (1999).

[23] DESCHALL. Internet-Linked Computer Challenge Data
Encryption Standard, Press Release, 1997.

[24] Voyager, ObjectSpace. http://www.objectspace.com/.
[25] Java Grande Forum. http://www.javagrande.org/.
[26] S. Papastavros, G. Samaras, P. Evripidou, Parallel Web

querying using Java mobile agents and threads, Technical
Report TR-98-7, Department of Computer Science, University
of Cyprus, Cyprus, May 1998.

Paraskevas Evripidou was born in
Nicosia, Cyprus in 1959. He received
the HND in Electrical Engineering from
the Higher Technical Institute in Nicosia,
Cyprus in 1981. In 1983, he joined the
University of Southern California with a
scholarship from the US Agency for In-
ternational Development. He received the
BSEE, MS and PhD in Computer Engi-
neering in 1985, 1986 and 1990, respec-

tively. Currently he is an Associate Professor at the Department
of Computer Science at the University of Cyprus. From 1990 to
1994 he was on the Faculty of the Department of Computer Sci-
ence and Engineering of the Southern Methodist University as an
Assistant Professor (tennure track). His current research interests
are in parallel processing, computer architecture, parallelizing
compilers, real-time systems, Java-powered tools for teleworking,
parallel processing with mobile agents and parallel input/output
and file systems. Dr. Evripidou is a member of the IFIP Working
Group 10.3, the IEEE Computer Society and ACM SIGARCH.
He is also a member of the Phi Kappa Phi and Tau Beta Pi honor
societies. He was the Program Co-chair and General Co-chair
of the International Conference on Parallel Architecture and
Compilation Techniques in 1999 and 1995, respectively.

George Samaras received a PhD in
Computer Science from Rensselaer Poly-
technic Institute, USA in 1989. He is
currently an Associate Professor at the
University of Cyprus. He was previously
at IBM Research Triangle Park, USA and
taught in the University of North Carolina
at Chapel Hill (adjunct Assistant Profes-
sor, 1990–1993). He served as the lead
architect of IBM’s distributed commit ar-

chitecture (1990–1994) and co-authored the final publication of
the architecture (IBM Book, SC31-8134-00, September 1994). He
was a member of IBM’s wireless division and participated in the
design/architecture of IBM’s WebExpress, a wireless Web brows-
ing system. He recently (1997) co-authored a book on data man-
agement for mobile computing (Kluwer Academic Publishers). He
has a number of patents relating to transaction processing technol-
ogy and numerous technical conference and journal publications.
His work on utilizing mobile agents for Web-database access has
received the best paper award of the 1999 IEEE International Con-
ference on Data Engineering (ICDE/99). He has served as proposal
evaluator at a national and international level and he is regularly
invited by the European Commission to serve as project evalua-
tor and auditor in areas related to mobile computing and mobile
agents. He also served at IBM’s internal international standards
committees for issues related to distributed transaction processing
(OSI/TP, XOPEN, OMG). His research interest includes mobile
computing, mobile agents, transaction processing, commit proto-
cols and resource recovery, and real-time systems. He is a voting
member of the ACM and IEEE Computer Society.

Christoforos Panayiotou was born in
Athens, Greece in 1977. In 1992, he
moved to Cyprus, where he concluded his
high school education. In 1999, he re-
ceived the BS in Computer Science from
the University of Cyprus. His diploma
project was in the area of mobile agents for
HPC. Currently he is a graduate student
of the Department of Computer Science at
the University of Cyprus. His research in-

terests include Internet technologies, mobile computing and HPC.

Evaggelia Pitoura received her BSc from
the Department of Computer Science and
Engineering at the University of Patras,
Greece in 1990 and her MSc and PhD
in Computer Science from Purdue Univer-
sity in 1993 and 1995, respectively. Since
September 1995, she is on the faculty of
the Department of Computer Science at
the University of Ioannina, Greece. Her
main research interests are data manage-

ment for mobile computing and multidatabases. Her publications
include several journal and conference articles and a recently pub-
lished book on mobile computing. She received the best paper
award in the IEEE ICDE 1999 for her work on mobile agents.
She has served on a number of program committees and was Pro-
gram Co-chair of the MobiDE workshop held in conjunction with
MobiCom’99.


