
BITPEER: Continuous Subspace Skyline Computation
with Distributed Bitmap Indexes

Katerina Fotiadou
Computer Science Department
University of Ioannina, Greece

kfotiado@cs.uoi.gr

Evaggelia Pitoura
Computer Science Department
University of Ioannina, Greece

pitoura@cs.uoi.gr

ABSTRACT
In this paper, we propose a bitmap approach for efficient
subspace skyline computation in a distributed setting. Our
approach computes extended skylines which have been shown
to include all points necessary for computing the skyline at
any subspace. We present an algorithm for computing ex-
tended skylines using a bitmap representation along with a
storage efficient bucket-based variation of this representa-
tion. We provide a caching scheme so that subspace skyline
queries can re-use the results of previously computed similar
queries. We also introduce a method for grouping continuous
subspace queries for supporting their efficient computation.
Finally, we present preliminary experimental results of the
performance of our approach.

1. INTRODUCTION
Peer-to-peer systems have attracted a lot of attention as a

means of data sharing and exchange amongst dynamic pop-
ulations of users. In such settings, it is central that users
are equipped with powerful query languages that would al-
low them to locate the data items that are of interest to
them. In this paper, we focus on supporting skyline queries.

Skyline queries return those data points in a multidimen-
sional dataset that are not dominated by any other point
in the set [2]. A data point p1 dominates some other data
point p2, if it is not worse than p2 in any dimension and it
is better than p2 in at least one dimension. Subspace skyline
queries consider dominance in subspaces of the dimensions
of the dataset. Such queries are appealing, since they allow
users to locate the best points along the dimensions that are
of interest them. For instance, a user looking for movies may
pose skyline queries on selected dimensions, for example, on
the duration, year of production or language dimensions, as
long as, the domain of each dimension is ordered (either,
naturally or according to user preferences).

We assume that the dataset is distributed among a set
of nodes (peers). Subspace skyline queries may be posed at
any peer and are computed over the whole dataset. In par-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

ticular, each peer computes the skyline of its local dataset.
Then, the peers exchange their skyline points, so that the
overall skyline points are computed. This way peers do not
need to communicate their whole dataset which is important
from both a privacy and an efficiency perspective. To bet-
ter coordinate the execution of skyline queries, peers form
groups co-ordinated by some peer in the group, called a su-
perpeer. The superpeer maintains the skyline points of the
datasets of its group members.

Many approaches have been proposed for the efficient com-
putation of both skylines and subspace skylines queries. We
adopt a Bitmap approach [10] because of (a) the small size
of the representation of the dataset that results in reduced
storage overheads and more importantly in reduced commu-
nication overheads for its transmission among the peers, (b)
the fast bitwise computation it provides and (c) its support
for progressive evaluation, so that, it is cost-efficient to check
whether a new data point belongs to the skyline.

For subspace skyline computation, the main challenge lies
in achieving computation sharing among the skylines of dif-
ferent subspaces, since, in general, there is no subset rela-
tionship between the skylines of subset subspaces [15]. We
compute extended skylines [11] which contain all data points
that are necessary for computing any subspace skyline. We
show how to efficiently compute extended skylines using
bitmaps. It turns out that extended skylines work also well
with a storage efficient bucket-based variation of bitmaps.

An important performance issue is re-using previous com-
putations. To this end, we exploit skyline caching. Peers
cache the results of previous subspace skyline queries and
re-use them when a similar query is issued. By caching ex-
tended skyline points, results can be re-used not only by the
same but also by similar queries. We also consider contin-
uous queries, that is, queries that are executed more than
once, either periodically or when there is some change in the
dataset that affects their result. Continuous skyline queries
are very useful, since they allow users to monitor the dataset
and get informed about new interesting points, such as a
more interesting movie or a better priced air-ticket. We pro-
pose an approach for grouping continuous queries, to avoid
computing each one of them separately.

In a nutshell, in this paper, we:

• propose a bitmap approach for computing extended
skyline queries along with a cost-efficient bucket vari-
ation,

• present a caching scheme for subspace skylines in peer-
to-peer systems, and

• introduce a method for grouping continuous subspace
skyline queries for efficiency.

The remainder of this paper is structured as follows. In
Section 2, we introduce the basic bitmap-based algorithm
for subspace skyline computation. In Section 3, we present
its deployment in a peer-to-peer setting and the related al-
gorithms. In Section 4, we discuss caching and in Section
5 continuous subspace skyline evaluation. In Section 6, we
report our experimental results. Finally, in Section 7, we
compare our work with related research, while in Section 8,
we offer our conclusions.

2. BITMAP-BASED SUBSPACE
SKYLINE COMPUTATION

2.1 Background
Assume a space (i.e. dimension set) D defined by a set of

d dimensions {d1, d2, . . . , dd}. Let S be a dataset of data
points on D. For each point p ∈ S, we use p(i) to denote
the value of point p in dimension di.

Informally, a point p dominates a point q, if p is not worse
than q in any dimension and it is better than q in at least
one dimension. More formally, given a dataset S on space
D = {d1, d2, . . . , dd}, the dominance relation, �d, defines a
partial order on the points in S, such that p ∈ S dominates
q ∈ S, p �d q, if and only if (i) ∀ i, 1 ≤ i ≤ d, p(i) ≥ q(i) and
(ii) ∃ j, 1 ≤ j ≤ d, such that p(j) > q(j). The dominance
relation is non-reflexive, antisymmetric and transitive.

The skyline of a dataset S is the set of points in S that
are not dominated by any other point in S.

2.1.1 Bitmap Representation
Many algorithms have been proposed for computing the

skyline of a set of data points. In this paper, we use the
bitmap representation introduced in [10].

Assume that each point p can take ki distinct values for
each dimension i. We use vij to represent the j-th value of
the i-th dimension, where vi1 > . . . > viki

. Each point p
is represented by an m-bit vector, with ki bits assigned to
each value p(i), thus m =

Pd
j=1kj . The first k1 bits are

assigned to p(1), the next k2 to p(2) and so on. Let the j-th
bit corresponds to value vij . If p(di) is the vil-th value of
di, then the ki bits of p(di) are set as follows, the bits at
positions 1 to l − 1 are set to 0 and the bits at positions l
to ki are set to 1.

An example is shown in Fig. 1. There are 4 points with
d = 3 dimensions. Dimension d1 has four distinct values
(namely, 4, 3, 2, 1), d2 has 3 distinct values (namely, 3, 2,
1) and d3 has 2 distinct values (namely, 2, 1). For instance,
point (1, 1, 2) is represented by the bit vector (000100111).

The array of vectors for representing the data points in
the dataset S is stored column-wise as an array of bit slices.
Let BSij represent the bit-slice for the jth distinct value of
dimension di. Assume that the value p(di) corresponds to
value uimi

of di. To check whether a point p belongs to the
skyline, we perform the following steps:

1. We compute the bitslice A as A = BS1m1
AND BS2m2

AND . . . AND BSdmd
, where AND stands for the

bitwise and operation. Note that the nth bit in A is 1
if only if the nth point is S has value in each dimension
greater or equal of the value of p in this dimension.

3 2 1
4

2

2
1
3

1
2

11
0 1 1 1
1 1 1
0

1
0 1 1

0 1 1
0 0 1
1 1

0 1
0 1
1 11

4 3 2 1 3 2 1 2 1

00 0 1 0 0 1 11

d1d1
d2d2

d3d3

BS11 BS13

Figure 1: Data points and the corresponding bitmap
structures

2. We compute the bitslice B as B = BS1m1−1 OR BS2m2−1

OR . . . OR BSdmd−1 , where OR stands for the bit-
wise or operation and BSi0 = 0 for all i. Note that
the nth bit in B is 1 if and only if the nth point in S
has value in some dimension that is greater than the
corresponding value of p.

3. Finally, let C = A AND B. Point p belongs to the
skyline of S if and only if all bits of C are 0.

For example, for point (3, 2, 1) in Fig. 1, A = BS12 AND
BS22 AND BS32 = 0110 AND 0101 AND 1111 = 0100, B
= BS11 AND BS21 AND BS31 = 0010 OR 0001 OR 1001
= 1011, and C = A AND B = 0000, which means that (3,
2, 1) belongs to the skyline. Whereas for point (1, 1, 2), A
= 1111 AND 1111 AND 1001 = 1001, B = 0111 OR 0101
OR 0000 = 0111, and C = 0001, which means that (1, 1, 2)
does not belong to the skyline.

2.1.2 Subspace Skyline
Each non-empty subset U of D, U ⊆ D, is called a sub-

space. We denote with pU the projection of point p ∈ S to
U . Specifically, pU is the tuple (p(di1), p(di2), . . . , p(di|U|))
where di1 , di2 , . . . di|U| ∈ U . The skyline of a set of data

points S in the subspace U , SKYU (S), is the skyline of the
projection of these points in this subspace. Specifically, the
projection of a point p (p ∈ S) in U ⊆ D belongs to the
skyline of U , if pU is not dominated by any point qU ∈ U
for all q ∈ S. There are 2d − 1 possible subspace skyline
queries.

It turns out that in general, for two subspaces U and V ,
U ⊂ V , there is no containment relationship between their
skylines as the following theorem states [15]:

Theorem 1. Let S be a dataset of d-dimensional points
in D. Let two subspaces U ⊆ D and V ⊆ D where U ⊂ V .
In subspace V , for each point q that belongs to the skyline of
subspace U it holds:

- either q is dominated in V by a point p ∈ SKYU (S)
or

- q belongs to the SKYV (S)

This means that the skyline of U is not necessarily a subset
of the skyline of V or vice versa. This happens only if the
distinct value condition holds as it is easy to conclude from
the theorem above:

Corrolary 1. Let S be a dataset of d-dimensional points
in D. If for any two point p and q, p(di)
= q(di) ∀ di ∈ D,
then for any two subspaces U ⊆ D and V ⊆ D where U ⊂
V , it holds SKYU (S) ⊆ SKYV (S).

2.1.3 Extended Skyline
For efficiently computing subspace skyline queries, the

ext-dominance relation is proposed in [11]. For each sub-
space U , a point p ext-dominates q if for each dimension di

of U , p(di) > q(di). The extended skyline of U is the set of
data points that are not ext-dominated by any other point.
In other words, for two points in the extended skyline either
(skyline) dominance holds or they have the same value in at
least one dimension. The following two properties hold [11]:

Property 1. Each point that belongs to the skyline of
U also belongs to the extended skyline of U , SKYU ⊆ ext-
SKYU .

Property 2. Each point that belongs to the skyline of a
subspace V , V ⊆ U , also belongs to the extended skyline of
U , SKYV ⊆ ext-SKYU .

That is, the extended skyline of all dimensions is such that
the skyline of any subspace can be computed from it.

2.2 Bitmap-based Extended Skyline Compu-
tation

The bitmap algorithm can be used to check whether a
point p belongs to the skyline of any subspace just by using
only the bitslices of the dimensions in this subspace. For
example, take the projection of point (3, 2, 1) in Fig. 1
in subspace U = {d1, d3}, that is, point (3, 1). To check
whether (3, 1) belongs to the subspace skyline SKYU , we
compute A = 0110 AND 1111 = 0110, B = 0010 OR 1001
= 1011, and C = A AND B = 0010, which means that (3,
1) does not belong to SKYU , although it belongs to SKYD.
In fact, point (3, 1) is dominated in U by point (4, 1), i.e.,
the projection of (4, 1, 1).

Next, we present a bitmap algorithm for computing the
extended skyline for a set of data points S. The algorithm
uses the same bitmap representation for the points in dataset
S as the original algorithm, but it is simpler. In particular,
to check whether a point p belongs to the extended skyline,
we perform just the following step:

1. We compute the bitslice C as C = BS1m1−1 AND
BS2m2−1 AND . . . AND BSdmd−1 , where AND stands
for the bitwise and operation and BSi0 = 0 for all i.
Point p belongs to the extended skyline of S if and
only if all bits of C are 0.

Referring to our example points in Fig. 1, using the above
step to check whether point (1, 1, 2) belongs to the extended
skyline, we get C = 0111 AND 0101 AND 0000 = 0000.
Thus, point (1, 1, 2) belongs to the extended skyline, al-
though it does not belong to the skyline. This is because
(1, 1, 2) has the same value in d3 with point (2, 3, 2) which
belongs to the skyline. Point (3, 2, 1) belongs to the skyline,
so it should also belong to the extended skyline by Property
2. Indeed, using the above step, we get C = 0010 AND
0001 AND 1001 = 0000.

One shortcome of the bitmap approach to computing the
(extended) skyline of a dataset S is that we need to check
the membership of each point p in S. We describe next a
couple of pruning steps for quickly including or excluding
groups of points from the extended skyline computation.

Assume that point p is known to belong to the extended
skyline. By the definition of the extended skyline, we know

that: (a) all points that have a value larger than the corre-
sponding value of p in at least one dimension belong to the
extended skyline, and that (b) all points that have values
smaller than p in all dimensions do not belong to the ex-
tended skyline. We call the points that satisfy (a) definitely
extended sklyline (DSK) points and the points that satisfy
(b) definitely not extended skyline (DNSK) points.

Let p belong to the extended skyline and value p(di) cor-
respond to value uimi

of di. To compute the DSK points,
we perform the following test:

[DSK test] We compute the bitslice D as D = BS1m1−1

OR BS2m2−1 OR . . . OR BSdmd−1 and BSi0 = 0 for
all i. The nth bit in D is 1 if and only if the nth
point in S has value in some dimension that is greater
than the corresponding value of p. We include all such
points in the extended skyline.

To compute the DNSK points, we perform the following
test:

[DNSK test] We compute the bitslice E as d = BS1m1
OR BS2m2

OR . . . OR BSdmd
. The nth bit in E is

0 if only if the nth point in S has at all dimensions
values smaller than the corresponding values of p. We
exclude all such points from the extended skyline.

The efficacy of the above tests depends on which point
p is used for computing the DSK and DNSK points. In
general, we want a point that has a large value in at least
one dimension. One way to select such a point is by first
selecting a dimension, say di. Then, for this dimension we
select the point that has value 1 at the largest vij and use
this as point p.

A combination of the above may also be used for comput-
ing fast a few extended skyline points as follows:

1. Select the columns that correspond to the largest value
for each dimension.

2. Check which points have value 1 at this column. These
points belong to the extended skyline and can be re-
turned to the issuer of the query.

3. From those points, select the one that has the most 1s
among them. Use this point as point p for computing
the DSK and DNSK points.

2.3 Bucket Bitmap Representation
The original bitmap algorithm works well for categori-

cal attributes but it is not directly applicable to dimensions
whose domains have continuous values. A simple solution is
to divide the domain in ranges, that we call buckets. The
larger the number of buckets, the more precise the represen-
tation of the domain. However, a large number of buckets
increases the size of the bitmap representation of the points
in the dataset.

The main problem with the bucket representation ap-
proach is that it may introduce false negatives, that is, there
may be points that belong to the skyline that the bitmap
algorithm fails to characterize as such. To see this, assume
2-dimensional points whose values in each dimension are real
numbers in [0, 10). Assume also that we use 10 buckets and
equal partitions, so that values in [i, i + 1) are mapped to
bucket i, 0 ≤ i ≤ 9. Now, take the two points (7.56, 5.30)
and (7.23, 6.71). None of them dominates the other, thus

overlay superpeer
overlay

superpeer−ordinary peer

ordinary peer

superpeer

Figure 2: Our generic superpeer architecture

both belong to the skyline. However, using buckets, the two
points are represented as (7, 5) and (7, 6) and the second
point dominates the first. Thus, the first point would not
belong to the skyline.

Note that the points that are not included in the skyline
are points whose value in some dimension is only slightly bet-
ter than the value of some other point, so that they both fall
into the same bucket. Clearly, the difference in values that
is necessary so that a skyline point is not missed depends on
the number of buckets.

We can avoid false negatives, if we maintain extended sky-
line points, that is, if we maintain all points that are either
better or equal in at least one dimension. This method in-
troduces false positives, since there are points that belong
to the extended skyline but do not belong to the sklyline.

For improving the accuracy of the representation, we could
also use non-equal partitions of the domain. In particular,
we could assign more buckets to large values in the domain
and less buckets to small values. For example, assume that
we use 16 buckets to represent the domain (0, 10). We could
allocate 8 buckets to the range [8, 10) and the remaining 8
buckets to the range (0, 8). We call this strategy adaptive
bucket allocation.

3. BITPEER
In this section, we describe the deployment of our bitmap

approach in a distributed setting.

3.1 System Model
We assume a peer-to-peer (p2p) system with N nodes or

peers. Each peer Pi maintains a set of data points Si in
space D. Let S = ∪i Si. We are interested in computing
skyline queries on S in any subspace U , U ⊆ D. Such queries
may be posed by any of the N peers.

In a p2p system, each peer connects to (knows about)
a small number of other peers. Thus, an overlay network
among peers is formed on top of the physical one. In this
paper, we assume a superpeer overlay architecture. In such
architectures, a small number of peers, called superpeers,
are assigned special roles. In general, the peers that are
selected to act as superpeers are nodes with good stability
properties and sufficient computational and communication
resources. We call the peers that do not act as superpeers
ordinary peers. Each ordinary peers is assigned to one or
more superpeer.

In a superpeer architecture, the overlay network can be
though of as consisting of two sub-overlay networks: the
superpeer overlay and the superpeer-ordinary peers overlay
(Fig. 2). The superpeer overlay connects the superpeers
with each other. The superpeer-ordinary peers overlay refers
to the connections between a superpeer and the ordinary

peers assigned to it.
There has been a lot of research work both on building ap-

propriate overlays and on selecting superpeers (for example,
[14, 7]). In this paper, we make no specific assumptions with
regards to these overlays. We just assume that the super-
peer overlay network is connected and that, for simplicity,
each ordinary peer is assigned to a single superpeer.

3.2 Subspace Skyline Computation

3.2.1 Bitmap Maintenance
Each superpeer computes and maintains the extended sky-

line of all ordinary peers that are assigned to it. A bitmap
representation is used for representing the extended skyline
points.

Upon joining the network, each ordinary peer computes
the extended skyline of its local dataset and sends it to
its superpeer using the bitmap representation. The super-
peer integrates these points to its extended skyline using
the bitmap algorithm. The addition of a data point in the
local set of an ordinary peer needs to be communicated to
its superpeer only if this point belongs to the local extended
skyline of the peer. In this case, just this point is transferred
to the superpeer.

Deletion of data points is more expensive. Again, dele-
tion of points that do not affect the extended skyline are
not communicated to the superpeer. However, deleting a
data point that belongs to the local extended skyline of an
ordinary peer requires the recomputation of the extended
skyline, since this point may have dominated and thus ex-
cluded from the skyline other points. To avoid overwhelming
the network with updates, updates are performed in batches.
An ordinary peer communicates its updates to its superpeer
only when u% of its dataset has been updated.

3.2.2 Skyline Processing
Assume that a peer Pi poses a subspace skyline query.

The query is forwarded to the superpeer assigned to Pi.
The computation of the query is then the responsibility of
the superpeers. The exact routing of the query among the
superpeers depends on the type of the superpeer overlay.
The minimum requirement is that the routing mechanism
visits all superpeers. For improving performance, ideally,
each superpeer should be contacted only once. When the
underlying superpeer overlay is not acyclic, a practical way
of reducing duplicate messages is by assigning a unique id to
each query. Superpeers that receive a query with the same
id do not process the query any further.

In general, each superpeer P2 that receives a subspace
skyline query q from a superpeer P1 forwards the query to
its overlay neighbors. Thus, a routing tree is formed rooted
at the superpeer that initiated the query. In turn, each
superpeer forwards the query to its own neighbors which
forward it to their own neighbors and so on. Leaf super-
peers compute the extended subspace skyline query using
the extended skyline locally stored at them. Then, they
forward the resulting data points in bitmap format to the
superpeer from which they received the query and so on.
A superpeer that receives the results of a query from its
children integrates these results to compute the extended
subspace skyline query. In particular, given two sets ext-
SKY (S1) and ext-SKY (S2) of extended subspace skyline
points on datasets S1 and S2, the superpeer computes the

extended skyline of their union, ext-SKY (S1 ∪ S2). It also
integrates these results with its own extended skyline points.
To this end, the optimizations previously described are ap-
plied. For example, an appropriate point p is selected from
ext-SKY (S1 ∪ S2) and used to eliminate as many points as
possible by computing the DNSK points in the local ex-
tended skyline.

4. CACHING
Superpeers cache intermediate results of the skyline com-

putation. The main reason for caching is reducing the com-
munication and computational cost by re-using results of
previous queries.

The cache at each superpeer includes results of previously
computed skyline queries. Each cache entry includes:

• the id of the query that includes its dimensions,

• the query result in Bitmap representation, and

• the list of superpeers that participated in the compu-
tation of the cache entry.

Note that for the computation of a subspace query, at
all intermediate steps, we compute the extended skyline to
avoid false negatives. Consequently, cached results refer to
extended skyline queries.

Each superpeer that receives the (intermediate) results of
a subspace skyline query caches them in its local cache before
forwarding them any further. When a superpeer receives a
query, first, it checks whether the same query (i.e., a skyline
in the same subspace) has been previously cached. If so, the
query is not forwarded to any of the superpeers in the list
associated with the entry. Else, query processing proceeds as
usual. When the query result is fully computed, the cache
content is refreshed to indicate the new list of superpeers
that participated in its computation.

When the cache of a superpeer becomes full, an LRU pol-
icy is used to replace the least recently used skyline. We also
associate an expiration time with each cache entry. When
this time expires, the associated entry is considered obsolete.
Entries whose expiration times have expired are replaced
first.

Besides using the cached results to answer skyline queries
in exactly the same subspace, we use Properties 1 and 2
that relate the skylines of different subspaces to also answer
similar queries. We also use the following property:

Property 3. Assume a set S of data points in space D.
Let U , V ⊆ D and V ⊆ U , it holds ext-SKYV (S) ⊆ ext-
SKYU (S).

It is easy to show that the above property holds. Let p
∈ ext-SKYV (S) and p /∈ ext-SKYU (S). This means that
there is a point q which ext-dominates p in subspace U .
That is, at all dimensions in U , q has values larger than the
corresponding values of p. But, since V ⊆ U , q has values
larger than the corresponding values of p in V as well, that
is q ext-dominates p in V which contradicts our assumption.

Based on Properties 1, 2 and 3, we make the following
observations: (a) To compute the skyline of a subspace U ,
it suffices to use the extended-skyline of any subspace V such
that V ⊇ U . (b) The extended skyline of a subspace V is a
subset of the extended skyline of any subspace V such that
V ⊇ U .

We use observation (a) to compute a subspace skyline
on U using any available cached extended skyline query on
any V , such that V ⊇ U . In particular, when a superpeer
receives a query at subspace U , it checks its cache for any
query at any subspace V ⊇ U . If there exists more than one
such query, then the one with the smallest set of dimensions
is used for computing the skyline in U .

We use observation (b) to compute fast some of the points
in a subspace U using any cached extended skyline query on
any V , such that V ⊆ U . In particular, it holds than any
point that belongs to the extended skyline of V also belongs
to the extended skyline of U . Thus, we can just output
the points in ext-SKYV without any additional computa-
tion. However, such results are incomplete. In general, ext-
SKYV (S) is not equal to ext-SKYV1 (S) ∪ ext-SKYV2 (S),
even for V1 ∪ V2 = V and V1 ∩ V2 = ∅. For instance, take
the points p1 = (1, 1, 2), p2 = (2, 2, 1), p3 = (4, 1, 1) and
p4 = (2, 3, 2) of the example in Fig. 1. ext-SKY{d1 ,d2} =
{p2, p3, p4}, ext-SKY{d1} = {p3} and ext-SKY{d2} = {p4}.

If there are cached results of more than one subset of U ,
using all of them would provide us with as much results as
possible. However, this could lead to duplicates in the an-
swer. Take again the four points of our example. Note that
ext-SKY{d3} = {p1, p4} and recall that ext-SKY{d1,d2} =
{p2, p3, p4}. Thus, if we use these two sets to compute the
ext-SKY{d1 ,d2,d3}, point p4 would be output twice. To de-
crease the number of duplicates, we use the following simple
heuristic. We choose subsets such that: (a) each one has a
large number of dimensions and (b) their overlap with each
other is also large.

5. CONTINUOUS SUBSPACE SKYLINE
QUERIES

An important type of skyline queries are monitoring queries,
where users are interested in being notified of any new points
in the skyline. In such cases, users pose continuous skyline
queries.

5.1 Overall Architecture
As opposed to simple queries that are executed only once,

a continuous query is executed repeatedly [6, 4]. Based on
the condition that determines their re-evaluation, we dis-
tinguish continuous queries as (a) periodic and (b) update-
based ones. In periodic continuous queries, the user specifies
the frequency of execution of the query. In update-based con-
tinuous queries, a query is re-evaluated when a specific num-
ber of updates has occurred on the datasets. We consider
both types of queries. Periodic queries include a time pe-
riod that specifies the frequency of their re-evaluation, while
update-based ones include a value that specifies the number
of updates that triggers their re-evaluation.

We assume that each continuous query is assigned to one
superpeer that becomes responsible for its execution. Each
superpeer maintains the extended skylines of all continuous
queries assigned to it using a bitmap representation. The
superpeer responsible for a continuous query cooperates for
its execution with the other superpeers. All superpeers are
aware of the continuous queries that are currently in the
system and the superpeers that are responsible for each of
them. They communicate any updates in the dataset of their
ordinary peers to the superpeer responsible for the query
affected by these updates.

Next, we discuss how to assign continuous queries to su-
perpeers for sharing computation among them by creating
groups of queries. Grouping also makes it possible that su-
perpeers need not be aware of all continuous queries but just
one query per group.

5.2 Grouping of Continuous Skyline Queries
Assume a set C of continuous subspace skyline queries

and a set SP of superpeers. One could assign queries to su-
perpeers randomly. However, this could lead to repetition of
computation, since queries assigned to different superpeers
may have results in common.

5.2.1 Similarity-based Grouping
Our goal is to group subspace queries so that, by tak-

ing advantage of the containment properties of their result
sets, we avoid re-computing the same results many times.
In particular, we want to create groups of queries so that
the queries in each group are similar to each other and we
can compute all queries in a group by just computing an
appropriate subset of them.

Let Ci ⊆ C be such a group and let q1, q2, . . . , qk in
subspaces with dimensions c1, c2, . . . , ck respectively, be
the queries in Ci. Our first objective is for the queries in the
group to satisfy the following condition:

Condition 1: c1 ⊂ c2 ⊂ . . . ⊂ ck.

If it is not possible to create such groups, we seek for
groups whose queries satisfy the following:

Condition 2: ∃ ci, 1 ≤ i ≤ k, such that cj ⊂ ci, for all
j, 1 ≤ j ≤ k, j
= i.

For each group Ci, we choose one query as its represen-
tative. The query chosen is the one whose dimensions are a
superset of the dimensions of a all queries in the group. Note
that for the groups that satisfy Condition 1 or Condition 2,
the representative query belongs to the group. It is query ck

in the first case and query ci in the second one. If groups do
not satisfy any of these properties, the representative query
may not belong to Ci.

From the properties of the extended skyline, it holds that
each query in a group can be computed by just using the
extended skyline of the representative of the group. Thus,
the responsible superpeer maintains just the extended sky-
line of the representative query for the group. It also gets
notified only for updates concerning this representative. All
other queries are computed using the extended skyline of
the representative.

In particular for groups satisfying Condition 1, the compu-
tation of their queries can be performed very efficiently. The
computation starts with the query with the largest number
of dimensions among the queries in the group and proceeds
with the query with the second largest number and so on.
Each query in this sequence is not computed using the ex-
tended skyline of the representative, but, instead using the
results of the query previously computed.

For creating groups that satisfy Conditions 1 or 2, we use
the following heuristics:

1. We partition the set C of queries based on the number
of their dimensions. Let Cm be the set of all queries
with m dimensions, 1 ≤ m ≤ d. Note that none of the
Cms satisfies any of the two conditions.

2. Among the Cms, we choose the set Ck that has the
largest number of elements (i.e., queries). We create
|Ck| groups, one for each query.

3. We assign each query in C to one of the |Ck| groups,
so that either Condition 1 or Condition 2 holds. If this
is not possible, we create a new group.

Let M be the number of groups thus created. Each group
is assigned to one superpeer. If the number of groups is
larger than the number of superpeers (M > SP), we may
assign more than one group to some superpeers. If we want
to create less than M groups, we merge some of the created
groups. In particular, we choose to merge two groups Ci and
Cj if the queries in Ci have a large number of overlapping
dimensions with the queries in Cj .

5.2.2 Grouping for Periodic Queries
We focus now on periodic continuous queries. In this case,

each query qi is re-evaluated every ti time units. The group-
ing described in the previous section is applicable to this case
as well. It suffices to assign to the representative query of
each group a time period equal to the smallest time period
of all queries in its group. However, this may lead to unnec-
essary computations, especially when the time frequencies
of the queries in the group vary widely.

In this case, it is possible to group queries based on their
ti values. Let Ci ⊆ C be such a group and let q1, q2, . . . , qk

with time periods t1, t2, . . . , tk respectively, be the queries
in Ci. Our first objective is for the time intervals of all
queries in the group to satisfy the following condition:

Condition 3: t1 = t2 = . . . = tk.

If this is not possible, then we look for groups such that:

Condition 4: There are positive integers βi, 1 ≤ i ≤ k,
such that β1 t1 = β2 t2 = . . . = βk tk.

Again, we consider as representative for each group a
query in the subspace having as dimensions the union of
the dimensions of all queries in the group. The period ti of
this query is the smallest period of the queries in the group.

It is also possible to combine the two types of grouping,
that is Condition 1 and 2 with Conditions 3 and 4. One way
is by seeking for groups that satisfy both types of conditions.
Alternatively, we could look for groups that satisfy one of
the two types and then partition the resulting groups so that
they also satisfy the other type.

6. EXPERIMENTAL EVALUATION

6.1 Data Distribution
We study datasets following the benchmark databases used

in [2]. In particular, points are generated using one of the
following distributions:

• Correlated: In a correlated dataset, points which are
good in one dimension tend to be good in other di-
mensions as well. As a result, a fairly small number
of data points dominates many other points, thus the
size of the skyline is rather small.

• Anti-correlated: In an anti-correlated dataset, points
which are good in one dimension are bad in the other
dimensions. As a result, the skyline is typically large.

Table 1: Number of skyline and extended skyline points using a bitmap representation with and without
buckets

Number of Skyline Points

Independent Correlated Anti−Correlated

21

5

3

3

5

1195

935

279

219

59

3

715

899

808

174

89

90

Independent Correlated Anti−Correlated

Number of Extended Skyline PointsNumber of
Buckets

201

2326

1843

925

576

277

175

25

1388

1129

651

428

20

9326

9115

6527

2314

767

399

145

8

10

16

32

64

100

1000 (no buckets)

164

58

101

 22 132

 0

 20

 40

 60

 80

 100

 120

 0 2 4 6 8 10 12 14

N
um

be
r

of
 s

ky
lin

e
po

in
ts

Number of data points (in thousands)

Independent
Correlated

Anti-Correlated

 0

 50

 100

 150

 200

 0 2 4 6 8 10 12 14

N
um

be
r

of
 e

xt
en

de
d

sk
yl

in
e

po
in

ts

Number of data points (in thousands)

Independent
Correlated

Anti-Correlated

Figure 3: Number of (left) skyline and (right) ex-
tended skyline points

• Independent: In an independent dataset, points are
generated using a uniform distribution. The size of
the skyline is between that of the correlated and the
anti-correlated datasets.

The points in the dataset are distributed among the peers.
We performed three sets of experiments. In the first set, we
study the size of the extended skyline and thus the overhead
of pre-computing extended skylines versus pre-computing
simple skylines. In the second set, we focus on the bene-
fits of caching, while in the third set we consider grouping
for continuous queries.

6.2 Extended and Bucket Skyline
In this set of experiments, we consider the increase of the

size of the skyline and the extended skyline with the number
of points in the dataset. The results for two-dimensional
points are depicted in Fig 3. As expected, the number of
both the skyline points and the extended skyline points for
the anti-correlated data set is much larger than that for the
other two distributions. The relative increase in the size of
the extended skyline over the simple skyline is the smallest
(around 35%) for the anti-correlated case.

In Table 1, we show how using buckets for the Bitmap
representation of data points affects the skyline and the ex-
tended skyline computation. The domain of each dimension
has 1000 distinct values. We have a total of 10000 points. In
this experiment, we used 8, 10, 16, 32, 64 and 100 buckets.
We also show the corresponding sizes of the skylines, when
no buckets are used. Observe that when we use buckets
to compute the skyline points, the points may be less than
when we do not use buckets. This is because in this case, we
may have false negatives. That is, the algorithm may fail to
identify some skyline points. Using extended skyline points

 0

 10

 20

 30

 40

 50

 60

 5 10 15 20 25 30 35

P
er

ce
nt

ag
e

(%
)

Cache size in rows (in thousands)

Hit Ratio
Message Gain

 0

 10

 20

 30

 40

 50

 60

 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

P
er

ce
nt

ag
e

(%
)

Zipf Parameter

Hit Ratio
Message Gain

Figure 4: Hit ratio and communication savings with
(left) cache size, (right) query locality (zipf param-
eter α)

alleviates this problem. It also allows us to compute any
subspace skyline query. However, the size of the extended
skyline (both with and without buckets) is much larger. In
the results reported in Table 1, we used buckets having equal
sizes.

Using the adaptive bucket approach works well for the in-
dependent and the correlated approach reducing the number
of points. It does not work well for the anti-correlated dis-
tribution, since points that are good at one dimension are
less good at the other, thus, there are no important values
to which to assign more buckets.

6.3 Caching
In this set of experiments, we study caching in terms of (a)

cache hit ratio: the number of times a query uses the results
in the cache and (b) message gain: the reduction of mes-
sages due to caching. We report results for 6-dimensional
data points generated using the independent distribution;
the results for the other two distributions are analogous.
We start with an empty (cold) cache. We have 1000 peers
of which 100 act as superpeers. We generate the sub-space
skyline queries using a zipf distribution with α = 1.2. As
shown in Fig. 4(left), even a relatively small cache results in
important savings. The cache benefits increase with locality,
as shown in Fig. 4(right) for a cache with 20000 points.

6.4 Continuous Queries
In this experiment, we consider continuous processing of

subspace skyline queries. The performance of similarity-
based grouping depends on the overlap among the dimen-
sions of the sub-space queries. We consider 20 continuous
subspace queries. We consider creating 4, 8, 12, 16 and 20
groups using the conditions in Section 5.2. Note that 20

 0

 10

 20

 30

 40

 50

 60

 4 8 12 16 20

S
av

in
g

in
 C

om
pu

ta
tio

ns
(%

)

Number of Groups

Figure 5: Benefits of similarity-grouping with over-
lap

groups means that each group consists of a single query,
that is, we have no grouping. As shown in Fig. 5, grouping
results in large savings in computation.

7. RELATED WORK
There is a variety of methods for efficient skyline compu-

tation including block-nested loop, sorting and indexing [2,
10]. In this paper, we adapt a bitmap approach that pro-
vides a compact representation of the data set that is very
important in terms of communication efficiency.

Subspace skyline queries have also attracted attention re-
cently mainly for centralized environments. The authors in
[9] introduce skyline groups which are groups of objects that
are coincidental in the skylines of some subspaces. They also
identify the decisive subspaces that qualify skyline groups in
the subspace skylines. They develop Skyey algorithm for
computing the skyline groups and the subspace skylines.
The authors in [15] consider the efficient computation of
the skylines of all possible subspaces, called the SKYCUBE.
Their focus is on sharing strategies by identifying the compu-
tation dependencies among multiple related subspace skyline
queries.

In [1], the authors consider distributed skyline computa-
tion over a dataset that is vertically distributed, that is,
partitioned based on dimensions. In this paper, we focus on
a horizontal distribution, which is very common in p2p sys-
tems, where each peer maintains its own dataset. The work
in [5] considers skyline computation in unstructured p2p sys-
tems. In contradistinction to our superpeer approach where
superpeers coordinate with each other to cover the whole
dataset, in unstructured p2p systems, each peer knows only
its neighboring peers. Thus, the focus is on providing prob-
abilistic guarantees for the computation of the skyline. The
authors of [13] consider skyline queries in a structured p2p
overlay, where items are mapped to peers based on their val-
ues. The assignment is based on recursive region partition-
ing and encoding. Thus, efficient skyline query processing
can be achieved, however, data needs to be moved. Similarly,
in [12], the authors adapt a structured approach and use BA-
TON, a distributed index structure, to compute skylines.
The most similar approach to ours is perhaps SKYPEER
[11]. The authors consider subspace skyline processing in
a superpeer based system using extended skylines. Here,
we propose a method based on a bitmap representation for
realizing such computations. We also consider caching and
continuous queries.

Finally, there has been a lot of work on publish/subscribe
systems, recently also in the context of content-based over-
lays (e.g., [8, 3]), where users subscribe their interests on

specific pieces of data and get notified when related items
are published. A nice extension of our approach would be
to integrate our continuous skyline queries as a special type
of subscription queries.

8. SUMMARY
In this paper, we have presented an approach for com-

puting skyline queries in a distributed setting that is based
on a bitmap representation. Bitmap-based representations
are appropriate for distributed computing, because they sup-
port compact representations of the datasets that can be effi-
ciently transmitted over the network. They are also amenable
to encodings and compression. We have presented algo-
rithms and heuristics for efficient bitmap-based computation
of extended skyline queries. We have also proposed a caching
scheme and a grouping method for continuous queries.

9. REFERENCES
[1] W.-T. Balke, U. Güntzer, and J. X. Zheng. Efficient

distributed skylining for web information systems. In
EDBT, 2004.

[2] S. Börzsönyi, D. Kossmann, and K. Stocker. The
skyline operator. In ICDE, 2001.

[3] A. Carzaniga, M. J. Rutherford, and A. L. Wolf. A
routing scheme for content-based networking. In
INFOCOM, 2004.

[4] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang.
Niagaracq: A scalable continuous query system for
internet databases. In SIGMOD Conference, 2000.

[5] K. Hose, C. Lemke, and K.-U. Sattler. Processing
relaxed skylines in pdms using distributed data
summaries. In CIKM, 2006.

[6] L. Liu, C. Pu, R. S. Barga, and T. Zhou. Differential
evaluation of continual queries. In ICDCS, 1996.

[7] W. Nejdl, M. Wolpers, W. Siberski, C. Schmitz, M. T.
Schlosser, I. Brunkhorst, and A. Löser.
Super-peer-based routing and clustering strategies for
rdf-based peer-to-peer networks. In WWW, 2003.

[8] A. M. Ouksel, O. Jurca, I. Podnar, and K. Aberer.
Efficient probabilistic subsumption checking for
content-based publish/subscribe systems. In
Middleware, 2006.

[9] J. Pei, W. Jin, M. Ester, and Y. Tao. Catching the
best views of skyline: A semantic approach based on
decisive subspaces. In VLDB, 2005.

[10] K.-L. Tan, P.-K. Eng, and B. C. Ooi. Efficient
progressive skyline computation. In VLDB, 2001.

[11] A. Vlachou, C. Doulkeridis, Y. Kotidis, and
M. Vazirgiannis. Skypeer: Efficient subspace skyline
computation over distributed data. In ICDE, 2007.

[12] S. Wang, B. C. Ooi, A. K. H. Tung, and L. Xu.
Efficient skyline query processing on peer-to-peer
networks. In ICDE, 2007.

[13] P. Wu, C. Zhang, Y. Feng, B. Y. Zhao, D. Agrawal,
and A. E. Abbadi. Parallelizing skyline queries for
scalable distribution. In EDBT, 2006.

[14] B. Yang and H. Garcia-Molina. Designing a super-peer
network. In ICDE, 2003.

[15] Y. Yuan, X. Lin, Q. Liu, W. Wang, J. X. Yu, and
Q. Zhang. Efficient computation of the skyline cube.
In VLDB, 2005.

