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Pervasive computing refers to an emerging trend towards numerous casually accessible devices
connected to an increasingly ubiquitous network infrastructure. An important challenge in this
context is discovering the appropriate data and services. In this paper, we assume that services
and data are described using hierarchically structured metadata. There is no centralized index for
the services; instead, appropriately distributed filters are used to route queries to the appropriate
nodes. We propose two new types of filter that extend Bloom filters for hierarchical documents.
Two alternative ways are considered for building overlay networks of nodes: one based on network
proximity and one based on content similarity. Content similarity is derived from the similarity
among filters. Our experimental results show that networks based on content similarity outperform

those formed based on network proximity for finding all matching documents.

Received 16 June 2003; revised 4 November 2003

1. INTRODUCTION

Pervasive computing refers to a strongly emerging trend
towards numerous casually accessible, frequently mobile
devices connected to a ubiquitous network infrastructure.
In our research [1, 2], we are interested in all aspects
of data management for pervasive computing, with the
ultimate goal of building a dynamic, highly distributed,
adaptive data management system for modeling, storing,
indexing and querying data and services hosted by numerous,
heterogeneous computing nodes. A central issue is dis-
covering the appropriate data and services among the
available huge, massively distributed data collections.

Since XML has evolved as the new standard for data
representation and exchange on the Internet, we consider
the case in which each node stores uniform XML-based
descriptions of its provided services and data to facilitate
information exchange and sharing. Such XML documents
must be efficiently indexed, queried and retrieved. A single
query on a node may need results from a large number of
others, and thus we need a mechanism that finds nodes that
contain relevant data efficiently.

In this paper, we consider a purely distributed approach,
in which each node stores filters for routing the query in the
system. Each node maintains two types of filters, a local
filter summarizing the documents stored locally in the node
and one or more merged filters summarizing the documents of
neighboring nodes. Each node uses its filters to route a query
only to those nodes that may contain relevant data. Such
filters should be small and scalable to a large number of nodes
and data. Furthermore, since nodes will join and leave the
system arbitrarily, these filters must support frequent updates.

Bloom filters have been used as summaries in such a con-
text [3]. They are hash-based indexing structures designed

to support membership queries [4]. However, Bloom filters
are not appropriate for summarizing hierarchical data since
they support only membership queries and fail to exploit the
structure of data. To this end, we introduce two novel data
structures, Breadth Bloom filters (BBFs) and Depth Bloom
filters (DBFs), which are multilevel structures that support
efficient processing of path expressions that exploit the struc-
ture of XML documents. Our experimental results show that
both multilevel Bloom filters outperform a same-size tradi-
tional Bloom filter in evaluating path queries. Depth Blooms
require much more space than Breadth Blooms in the general
case but are suitable for handling particular kinds of queries
for which Breadth Blooms perform poorly.

Two alternative ways are considered for building overlay
networks of nodes: one based on network proximity and one
based on content similarity. The similarity of the content
(i.e. the local documents) of two nodes is defined based on
the similarity of their filters. This is more cost effective
since a filter for a set of documents is much smaller than the
documents themselves. Furthermore, the filter comparison
operation is more efficient than a direct comparison between
sets of documents. As our experimental results show, the
content-based organization is much more efficient in finding
all the results for a given query than the one based on network
proximity. Although the two approaches perform similarly
in discovering the first result, the content-based organization
benefits from the content clusters that are created during the
structuring of the network.

The remainder of this paper is organized as follows. In
Section 2, we present the architecture of the system and
the service discovery process. Section 3 introduces the two
new Bloom-based summaries, namely Breadth and Depth
Bloom, and their use in a pervasive computing context.
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Section 4 provides a description of the implementation and
our experimental results. In Section 5, we compare our
work with related research. Finally, in Section 6 we offer
conclusions and directions for future work.

2. DISCOVERING SERVICES

We consider a pervasive computing scenario in which each
participating node either stores XML documents or XML-
based descriptions of the services that it offers. In this set-
ting, a key challenge is how to locate an appropriate service or
document. We allow users to specify queries for services and
documents using path expressions. Such queries may origi-
nate at any node. Since it is not reasonable to expect that users
know which node hosts the requested service or document,
we propose using appropriately distributed data structures,
called filters, to direct the query to the appropriate nodes.

2.1. XML-based service description and querying

In a pervasive computing environment, a huge number
of datasets and services are hosted by numerous devices.
Discovering the appropriate resources in this context is
complicated by the fact that resources are stored in diverse
formats. To alleviate the issue of heterogeneity and allow
for a declarative specification of the requested resources,
we assume that data are published and exchanged as XML
[1, 2]. In particular, we assume that datasets are exported
as XML documents and that XML-based descriptions of
services are available. Such collections of documents are
dynamic since new documents appear and disappear and
nodes join and leave the system.

In particular, each node stores a collection of XML
documents. An XML document comprises a hierarchically
nested structure of elements that can contain other elements,
character data and attributes. Thus, XML allows the encoding
of arbitrary structures of hierarchical named values. This
flexibility allows each node to create descriptions that are
tailored to its services.

In our data model, an XML document is represented by a
tree. Figure 1 depicts an XML service description for a printer
and a camera provided by a node and the corresponding
XML tree.

Definition 1. (XML tree) An XML tree is an unordered–
labeled tree that represents an XML document. Tree nodes
correspond to document elements while edges represent
direct element–subelement relationships.

We distinguish between two main types of queries:
membership and path queries. Membership queries consist of
logical expressions, conjunctions, disjunctions and negations
of attribute-value pairs and test whether a pair exists in a
description. Path queries refer to the structure of the XML
document. These queries are represented by simple path
expressions expressed in an XPath-like query language.

Definition 2. (path query) A simple path expression
query of lengthk has the form ‘s1l1s2l2 · · · sklk ’, where eachli
is an element name and eachsi is either / or // denoting res-
pectively parent–child and ancestor–descendant traversal.

color     postscript     digital

    camera   printer 

device
<xml> 
 <device>
  <printer> 
   <color></color> 
   <postscript></postscript>
  </printer>
  <camera>
   <digital></digital>
  </camera>
 </device>

(a) (b)

FIGURE 1. Example of (a) an XML document and (b) its tree.

Although most work on service discovery is limited in
supporting membership queries, our work aims at extending
these mechanisms to support the evaluation of path queries
as well. Path queries are able to address the structure as
well as the content of the documents without requiring the
user to have knowledge about the schema that an XML
document follows. In a pervasive system, there is no
global schema, and documents at various nodes follow
different schemas that a user is not able to know but at
the same time should be able to query. Thus, choosing
paths as index keys seems the appropriate choice in such
an environment. Although Document Type Definitions
(DTDs) could be used as index keys as well, they are too
coarse and their use would make the queries very general,
thus overwhelming the user with numerous irrelevant
results.

We address the processing of queries that represent a path
starting from the root element of the XML document (root
paths), and queries that represent paths which can start from
any element in the document (partial paths).

For a query q and a document D, we say that q is satisfied
by D, or match(q, D) is true, if the path expression forming
the query exists in the document; otherwise we have a miss.
For example, the queries /device/printer and /device//digital
are satisfied by the document of Figure 1, while for the query
/device/digital, we have a miss.

2.2. Filters for service discovery

We propose maintaining specialized data structures that
will summarize large collections of documents, to facilitate
propagating the query only to those nodes that may contain
relevant information. Such data structures should be much
smaller than the data itself and should be lossless, i.e. if the
data match the query, then the filter should match the query
as well. In particular, each filter should support a filter-match
operation that is fast and that if a document matches a query
q then filter-match should also be true. If the filter-match
returns false, then we have a miss.

Definition 3. (filter) A filter F for a set of documents
D has the following property: for any queryq, if
filter-match(q,F ) = false, then match(q,d) = false for every
documentd in D.
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FIGURE 2. Hierarchical organization.

Note that the reverse does not necessarily hold. That is,
if filter-match(q, F ) is true, then there may or may not exist
documents d in D such that match(q, d) is true. We call false
positive the case in which, for a filter F for a set of documents
D, filter-match(q, F ) is true but there is no document d in
D that satisfies q, that is for all d in D, match(q, d) is false.
We are interested in filters for which the probability of false
positive is small.

Each node maintains one filter that summarizes all
documents that exist locally in the node. This is called a
local filter. Besides its local filter, each node also maintains
one or more filters, called merged filters, for the documents of
a set of its neighboring nodes. These merged filters facilitate
the routing of a query only to nodes that may contain relevant
data. In particular, when a query reaches a node, the node
first checks its local filter and uses the merged filters to direct
the query only to those nodes whose filters match the query.
Note that we are interested in providing all the results for a
query. Our mechanisms are easily extensible to locating the
best k results.

When a node joins the system, it attaches to another node of
the system, say node n, and sends its local filter to this node.
Node n is responsible for propagating the filter of the new
node to all other nodes that need to store information about
the new node in their merged filters. The necessary filters of
the neighboring nodes are also propagated back to the new
node so that the new node can build its own merged filter.

When an update occurs, the node responsible for the update
first updates its local filter. Then it updates its merged
filter and propagates the changes to all nodes that hold
information about it. This is done either by a multicast by
the updating node or by a propagation procedure followed by
the neighboring nodes, where each one informs the next.

Based on how the set of neighboring nodes for which we
maintain summarized data is defined, we can consider many
different node organizations. In the next section, we describe
an organization based on hierarchies.

2.2.1. Hierarchical organization
There are various topologies that we can use to organize the
nodes in a pervasive system. In the hierarchical organization
(Figure 2), a set of nodes designated as root nodes is
connected to a main channel that provides communication
among them.

Each node maintains two filters: one for the local
documents, called local filter, and if it is a non-leaf node,

one with summarized data for all nodes in its subtree, called
merged filter. In addition, root nodes maintain merged filters
for the other root nodes in the system. The propagation of
filters follows this bottom-up procedure:

(i) The leaf nodes send their local filters to their parent.
(ii) Every non-leaf node, after receiving the filters of all its

children, merges them and produces its merged filter.
(iii) Every non-leaf node, after computing its own merged

filter, merges it with its local filter and sends the
resulting filter to its parent.

(iv) When a root node has computed its merged filter, it
propagates it to all other roots on the main channel.

With the hierarchical organization, nodes belonging to the
top levels have greater responsibilities, while nodes at lower
levels are burdened with fewer tasks to perform. Thus, a
hierarchical organization is best suited when the participating
nodes have different processing and storage capabilities as
well as different stability properties. Stability refers to how
long a node stays in the system, e.g. in pervasive computing,
some nodes such as workstations may stay longer online,
while others such as laptops only stay online for a limited
time. In a hierarchical organization, more stable and powerful
nodes can be located at the top levels of the hierarchies, while
less powerful and unstable nodes can be accommodated in
the lower levels of the hierarchies.

When a query is issued at a node n, the search algorithm
proceeds with the following steps:

(i) First, the local filter of node n is checked and if we
have a match the local documents are checked.

(ii) Next, the merged filter is checked and if there is a
match, the query is propagated to the node’s children.

(iii) Also, the query is propagated to the node’s parent.
(iv) The propagation of a query towards the bottom of a

hierarchy ends when it reaches a leaf node or when
the merged filter of an internal node does not indicate
a match.

(v) When a query reaches a root node, the root apart
from checking the filter of its subtree, also checks the
merged filters of the other root nodes and forwards the
query only to the subtrees for which there is a match.

(vi) When a root node receives a query from another root
node, it only propagates the query to its own subtree
and not to other root nodes since the sender root has
already seen to that.

The propagation of updates follows a similar procedure. In
particular,

(i) Updates of local documents are propagated firstly to
the associated local filter of the node.

(ii) Next, the updates are forwarded to its parent.
(iii) The parent updates its merged filter and propagates

the update to its own parent.
(iv) The update procedure continues until the root node is

reached.
(v) The root node sends the update to all other root nodes,

which in turn update the corresponding merged filter.
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In a pervasive system, we expect that nodes will move
frequently from one point to another. In our work, we do not
consider mobility issues; instead, we assume that mobility is
handled by lower-level solutions, such as Mobile IP, and thus
the address used by the resource discovery layer to contact a
node is considered stable [5]. The issue of reorganizing the
hierarchy based on the mobility of nodes is beyond the scope
of this paper.

Although we describe a hierarchical organization, filters
could be easily applied to other organizations as well. For
instance, filters could be used in a super-peer architecture
in which our root nodes are the super-peers and the other
(non-root) nodes in each of the subtrees are interconnected
so that they form some other topology, for instance a mesh as
opposed to a tree. The filter distribution can be easily adopted
to accommodate any other such organization. Preliminary
results of the filter deployment in a non-hierarchical peer-to-
peer system are reported in [6].

2.3. Proximity and content-based similarity

We propose two approaches for organizing the nodes in the
hierarchy. The first approach is based on network proximity
and the second one on filter similarity. The approaches refer
to the way a node chooses its position in the overlay network
when it joins the system.

The network proximity based approach organizes the
nodes based on their proximity in the graph that represents
the structure of the physical network. The motivation behind
this organization is an effort to satisfy queries locally and
minimize response time. In the hierarchical organization we
presented above, when a new node joins the system,

(i) it broadcasts a join request to all nodes of the system;
(ii) the new node attaches as a child to the node that

answers the fastest, i.e. the node closer to it based
on network latency. We define this node as the
winner node.

The approach based on content similarity organizes the
nodes based on the similarity of their content, i.e. it attempts
to group relevant nodes together. The motivation for this
organization is to minimize the number of irrelevant nodes
that process a query. Instead of checking the similarity
of the documents themselves, we rely on the similarity of
their filters. This is more cost-effective since a filter for
a set of documents is much smaller than the documents.
Furthermore, the filter comparison operation is more efficient
than a direct comparison between two sets of documents.
Documents with similar filters are expected to match similar
queries.

The strategy we follow to organize the nodes based on
content similarity is the following:

(i) A new node broadcasts a join request that contains
also its local filter to all nodes in the system.

(ii) Every node that receives a join request compares the
received local filter with its own and responds to the
initial node with the measure of their filter similarity.

(iii) The node with the largest similarity measure is the
winner node. The new node saves the response of
the winner node.

(iv) Then the node compares the similarity measure of the
winner node with a system-defined threshold. If the
measure is larger than the threshold, the node joins as
the child of the winner node; else the node becomes a
root node.

3. BLOOM-BASED FILTERS FOR
HIERARCHICAL DATA

Our filters for XML documents are based on Bloom filters.
Bloom filters are compact data structures for probabilistic
representation of a set that support membership queries (‘Is
element X in set Y?’). Since their introduction [4], Bloom
filters have seen many uses such as web cache sharing [7],
query filtering and routing [3, 8] and free-text searching [9].

We extend traditional Bloom filters so that they can
be used on hierarchical documents. Then, we explain
their distribution. To distinguish traditional Bloom filters
from the extended ones, we call the former simple Bloom
filters.

3.1. Simple Bloom filters

Consider a set A = {a1, a2, . . . , an} of n elements. The
idea (Figure 3) is to allocate a vector v of m bits, initially all
set to 0, and then choose k independent hash functions, h1,
h2, . . . , hk , each with range 1–m. For each element a ∈ A,
the bits at positions h1(a), h2(a), . . . , hk(a) in v are set to 1.
A particular bit may be set to 1 many times. Given a query for
b, we check the bits at positions h1(b), h2(b), . . . , hk(b). If
any of them is 0, then certainly b is not in the set A. Otherwise
we conjecture that b is in the set although there is a certain
probability that we are wrong. This is called a ‘false positive’
and it is the payoff for Bloom filters’ compactness. The
parameters k and m should be chosen such that the probability
of a false positive is acceptable.

To support updates of the set A, we maintain for each
location l in the bit array a count c(l) of the number of
times that the bit is set to 1 (the number of elements that
hashed to l under any of the hash functions). All counts
are initially set to 0. When a key a is inserted or deleted, the
counts c(h1(a)), c(h2(a)), . . . , c(hk(a)) are incremented or
decremented accordingly. When a count changes from 0 to 1,
the corresponding bit is turned on. When a count changes
from 1 to 0 the corresponding bit is turned off.

Bloom filters are appropriate as filters for resource dis-
covery in terms of scalability, extensibility and distribution.
They are compact, requiring a small space overhead and easy
to update with the use of counters. In addition, since they are
bit vectors, it is very easy to merge them so as to construct
the merged filters by just applying the bitwise OR between
them. However, they do not support path queries as they
have no means for preserving the structure of documents.
To this end, we introduce multilevel Bloom filters. Other
hash-based structures, such as signatures [10], have similar
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FIGURE 3. A Bloom filter with k = 4 hash functions.
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FIGURE 4. The BBF for the XML tree of Figure 1.

properties with Bloom filters, and our mechanisms can also
be applied to extend signatures in a similar fashion.

3.2. Multilevel Bloom filters

We introduce two new data structures based on Bloom filters
that aim at supporting path expressions. They are based on
two alternative ways of hashing XML trees.

Let T be an XML tree with j levels, and let the level of the
root be level 1. The BBF for an XML tree T with j levels
is a set of Bloom filters {BBF0, BBF1, BBF2, . . . , BBFi},
i ≤ j . There is one Bloom filter, denoted BBFi , for each
level i of the tree. In each BBFi , we insert the elements of all
nodes at level i. To improve performance, we construct an
additional Bloom filter denoted BBF0. In this Bloom filter,
we insert all elements that appear in any node of the tree. For
example, the BBF for the XML tree in Figure 1 is a set of
four Bloom filters (Figure 4).

Note that the BBFis are not necessarily of the same size.
In particular, since the number of nodes and thus keys that
are inserted in each BBFi (i > 0) increases at each level of
the tree, we analogously increase the size of each BBFi . Let
size(BBFi) denote the size of BBFi . As a heuristic, when
we have no knowledge for the distribution of the elements at
the levels of the tree, we set size(BBFi+1) = d size(BBFi),
(i < j ), where d is the average degree of the nodes. For equal
size BBFis, BBF0 is the logical OR of all BBFis, 1 ≤ i ≤ j .

DBFs provide an alternative way to summarize XML trees.
We use different Bloom filters to hash paths of different
lengths. The DBF for an XML tree T with j levels is a set
of Bloom filters {DBF0, DBF1, DBF2, . . . , DBFi−1}, i ≤ j .
There is one Bloom filter, denoted DBFi , for each path of the
tree with length i (i.e. a path of i + 1 nodes), where we insert
all paths of length i. For example, the DBF for the XML tree
in Figure 1 is a set of three Bloom filters (Figure 5). Note that
we insert paths as a whole and we do not hash each element
of the path separately; instead, we hash their concatenation.

DBF0 Paths of length 0

DBF1

DBF2

Paths of length 1

Paths of length 2

1 1 1 1 0 1 1 1 0 1 1 1 

1 1 0 0 0 1 1 0 0 0 0 1 

1 0 0 1 0 0 1 1 1 0 0 1 

(device∪ printer∪ camera∪
color∪ postscript∪ digital)

(device/printer∪ device/camera
∪ camera/digital∪ printer/color
∪ printer/postscript)

(device/camera/digital
∪ device/printer/color
∪ device/printer/postscript)

FIGURE 5. The DBF for the XML tree of Figure 1.

We use a different notation for paths starting from the root.
This is not shown in Figure 5 for ease of presentation.

Regarding the size of the filters, as opposed to BBFs,
all DBFis have the same size since the number of paths of
different lengths is of the same order. The maximum number
of keys inserted in the filter is of order dj for a tree with
maximum degree d and j levels.

3.3. Multilevel Bloom match

We now describe the filter-match operation for multilevel
Bloom filters and provide an estimation of the probability of
false positives.

3.3.1. Breadth Bloom filter-match
The procedure that checks if a BBF matches a query
distinguishes between path queries starting from the root and
partial path queries. In both cases, first we check whether
all elements in the query appear in BBF0. Only if we have
a match for all elements, we proceed with examining the
structure of the path. For a root query /a1/a2/· · · /ap, every
level i from 1 to p of the filter is checked for the correspond-
ing ai . The algorithm succeeds if we have a match for all
elements. For a partial path query, for every level i of the
filter, the first element of the path is checked. If there is a
match, the next level is checked for the next element and the
procedure continues until either the whole path is matched or
there is a miss. If there is a miss, the procedure repeats for
level i + 1. For paths with the ancestor-descendant axis //,
the path is split at the //, and the subpaths are processed. All
matches are stored and compared to determine whether there
is a match for the whole path.

Let p be the length of the path and d be the number of levels
of the filter. (We exclude BBF0.) In the worst case, we check
d − p + 1 levels for each path since the path can start only
until that level. The check at each level consists of at most
p checks, one for each element. So the total complexity is
p(d−p+1) = O(dp). When the path contains the // axis, it is
split into two subpaths that are processed independently with
complexity O(dp1)+O(dp2) < O(dp). The complexity for
the comparison is O(p2) since we have at most (p + 1)/2 //.
For a path that starts from the root, the complexity is O(p).
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3.3.2. Depth Bloom filter-match
The procedure that checks whether a DBF matches a path
query first checks whether all elements in the path expression
appear in DBF0. If this is the case, we continue treating both
root and partial paths queries the same. For a query of length
p, every subpath of the query from length 2 to p is checked
at the corresponding level. If any of the subpaths does not
exist, the algorithm returns a miss. For paths that include the
ancestor-descendant axis //, the path is split at the // and the
resulting subpaths are checked. If we have a match for all
subpaths, the algorithm succeeds, else we have a miss.

Consider a query of length p. Let p be smaller than the
number of the filter’s levels. First p subpaths of length 1 are
checked, then p − 1 subpaths of length 2 are checked and
so on until we reach length p where we have 1 path. Thus,
the complexity of the look-up procedure is p + p − 1 + p −
2 + · · · + 1 = p(p + 1)/2 = O(p2). This is the worst
case complexity as the algorithm exits if we have a miss at
any step. The complexity remains the same with // axis in
the query. Consider a query with one //, the query is split
into two sub-paths of length p1 and p2 that are processed
independently, so we have O(p2

1) + O(p2
2) < O(p2).

3.3.3. False positives
The probability of false positives depends on the number
k of hash functions we use, the number n of elements we
index and the size m of the Bloom filter. The formula
that gives this probability for Simple Bloom filters is [4]:
P = (1 − e−kn/m)k .

Using BBFs, a new kind of false positive appears. Consider
the tree of Figure 1 and the path query /device/camera/color.
We have a match for camera at BBF2 and for color at BBF3;
thus we falsely deduce that the path exists. The probability
for such a false positive is strongly dependent on the degree
of the tree. For DBFs, we have a type of false positive that
refers to queries that contain the // axis. Consider the paths
a/b/c/d/ and m/n. For the query a/b//m/n, we split it to a/b and
m/n. Both these paths belong to the filter, and so the filter
would indicate a false match. Due to space limitations, we
omit the analysis of the false positives probability, which can
be found in [11].

3.4. Merged Bloom filters and content similarity

Each node maintains a multilevel Bloom filter for the
documents it stores locally. It also maintains a multilevel
Bloom merged filter for a set of its neighboring nodes. This
merged filter facilitates the routing of a query only to nodes
that may contain relevant data. When a query reaches a
node, the node checks its local Bloom filter and uses the
merged filter to direct the query to other nodes. To calculate
the merged multilevel Bloom filter of a set of multilevel
Bloom filters, we take the bitwise OR for each of their levels.
In particular, the merged filter, Sum_BBF, of two Breadth
Bloom filters BBFk and BBFm with i levels is a Breadth
Bloom filter Sum_BBF = {Sum_BBF0, Sum_BBF1, . . . ,
Sum_BBFi} with i levels, where Sum_BBFj = BBFk

j BOR
BBFm

j , 0 ≤ j ≤ i, and BOR stands for bitwise OR. Similarly,

1 0 1 0 0 0 1 1 

1 1 0 0 1 0 0 1 

B 

C 

similarity(B, C) = 8 – (1 + 0 + 0 + 1 + 0 + 1+ 0 + 1) = 4

FIGURE 6. Bloom filter similarity.
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the merged filter of two DBFs is computed by applying the
bitwise OR per level of the two filters.

Let B be a simple Bloom filter of size m. We shall use
the notation B[i], 1 ≤ i ≤ m to denote the ith bit of the
filter. Our similarity measure is based on the well known
Manhattan distance metric. Let B and C be two filters of
size m; their Manhattan distance (or Hamming distance) d(B,
C) is defined as d(B, C) = |B[1]− C[1]| + |B[2] − C[2]| +
· · · +| B[m] − C[m]|. We define the similarity, similarity(B,
C), of two simple Bloom filters B and C of size m as follows:
similarity(B, C) = m−d(B, C). The larger their similarity, the
more similar the filters are. Figure 6 shows an example for
two filters of size 8. In the case of multilevel Bloom filters, we
take the sum of the similarities of every pair of corresponding
levels. To compute the similarity of two filters, we simply
take the equivalence (exclusive NOR) of the bit vectors that
correspond to each level of the filter.

Figure 7 illustrates an experiment that confirms the
validity of the measure. We used different percentage of
element repetition between documents and measured their
similarity. Similarity increased linearly with the increase in
the repetition between the documents. The same holds for
the similarity between multilevel Blooms, although in this
case the measure depends on the structure of the documents
as well.

3.5. Compression

Bloom filters have a great deal of potential for distributed
protocols where systems need to share information about
their available data. In this situation, Bloom filters play a
dual role. They are both a data structure being used at the
nodes, and a message being passed between them. When
we use Bloom filters as a data structure, we may tune their
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FIGURE 8. Update propagation using (a) the straightforward way and (b) the improvement.

parameters for optimal performance as a data structure; i.e.
we minimize the probability of a false positive for a given
memory size and number of items. If it is also being passed
around as a message, however, then it is useful to introduce
another performance measure: transmission size. Transmis-
sion size may be of greater importance when the amount of
network traffic is a concern but there is memory available at
the endpoint machines. This is especially true in distributed
systems where information must be transmitted repeatedly
from one node to many others. Transmission size can be
affected by using compression. Compressing a Bloom filter
can lead to improved performance. By using compressed
Bloom filters, protocols reduce the number of bits broadcast,
the false positive rate and/or the amount of computation
per lookup. The tradeoff costs are the increased processing
requirement for compression and decompression and larger
memory requirements at the endpoint machines, which may
use a larger original uncompressed form of the Bloom filter
in order to achieve improved transmission size.

Large sparse Bloom filters can be greatly compressed.
Theoretically, an m-bit filter can be compressed to mH(p)
bits, where p is the probability that a bit in the filter is 0 and
H(p) = −p log2 p − (1 − p) log2(1 − p) is the entropy
function. For sufficiently large filters, arithmetic coding
guarantees close to optimal compression, and so if p is small
enough, H(p) is much smaller than 1, and significant savings
in the transmission size can be achieved [12].

3.6. Updates

When a document is updated or a document is inserted or
deleted at a node, the local filter of that node must be updated.
An update consists of a delete and an insert operation. When
an update occurs at a node apart from the update of its local
filter, all the merged filters that use this local filter should also
be updated. We present two different approaches to update
propagation based on the way the counters of the merged
filters are used. Recall that with each bit of a local Bloom
filter we associate a counter that counts how many times the
corresponding bit was set to 1.

The straightforward way to use the counters at the merged
filters is that every leaf node sends to its parent, along with its
local filter, the associated counters. Then the counters of the
merged filter of each internal node are computed as the sum
of the respective counters of its children filters. An update
in a local filter will result in an increase or decrease of some

of the counters. We only need the differences to perform an
update and the only time the filter itself is modified is when
a counter turns from 0 to 1 and vice versa. Thus, whenever
a node updates its local filter and its own merged filter to
represent the changes, it also has to send the differences from
its old and new counter values to its parent. After updating its
own summary, the parent will propagate the filter further until
all concerned nodes are informed. In the worst case, in which
an update occurs at a leaf node, the number of messages that
need to be sent is equal to the number of levels in the hierarchy
plus the number of roots in the main channel. We only have
to send the levels of the counters that have changed and not
the whole multilevel filter.

We can improve the complexity of the messages required
if we make the following observation: an update will only
result in a change in the filter if the counter turns from 0 to 1 or
vice versa. Taking this into consideration, we slightly change
the algorithm for computation of the counter for the merged
filters. Each node just sends its merged filter to its parent
(local filter for the leaf nodes) and not the associated counters.
A node that has received all the filters from its children creates
its merged filter as before but uses the following procedure
to compute the counters: it increases each counter bit by one
every time a filter of its children has a 1 in the corresponding
position. Thus, each bit of the counter of a merged filter
represents the number of children filters that have set this bit
to 1 and not how many times the original filter had set the bit
to 1. When an update occurs, it has to be propagated only if
it changes a bit from 1 to 0 or vice versa; thus the required
messages are limited, as well as the size of the message that
needs to be sent.

Let us consider the hierarchy in Figure 8. The merged
summary counters are created in Figure 8a by the simple
way of just taking the sum of the children counters, while in
Figure 8b they are created by incrementing by 1 for every
child that has the corresponding bit set. Let us assume
that node D performs an update, its new filter becomes
(1, 0, 0, 1) and the corresponding counters (1, 0, 0, 2). In
Figure 8a, it will send the differences between the old and
new counters (−1, 0, −1, −1) to node B, whose summary
will now become (1, 0, 1, 1) and the counters (2, 0, 1, 4). In
contrast in Figure 8b, it will send only those bits that changed
from 1 to 0 and vice versa, (−, −, −1, −). The new summary
of B will be (1, 0, 1, 1) and the counters (2, 0, 1, 2). While
in the first case node B would have to propagate the update
although no change was reflected to the actual filter, in the
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second case this is not necessary. Thus, the second approach
sends both smaller and fewer messages.

4. IMPLEMENTATION AND EXPERIMENTAL
RESULTS

In this section, we evaluate the performance of the proposed
approach. We implemented both the BBF and DBF data
structures, as well as a SBF (that just hashes all elements of a
document) for comparison. For the hash functions, we used
MD5 [13] which is a cryptographic message digest algorithm
that hashes arbitrarily long strings to 128 bits. The k hash
functions are built by first calculating the MD5 signature of
the input string, which yields 128 bits, and then taking k

groups of 128/k bits from it. We select MD5 because of
its well known properties and relatively fast implementation.
For generation of the XML documents, we used the Niagara
generator [14] that generates tree-structured XML documents
of arbitrary complexity. It allows the user to specify a wide
range of characteristics for the generated data by varying
a number of simple and intuitive input parameters, which
control the structure of the documents and the repetition
between the element names.

Two types of experiments were performed. The goal
of the first set of experiments was to demonstrate the
appropriateness of multilevel Blooms as filters of hierarchical
documents. To this end, we evaluated the false positive
probabilities for both DBFs and BBFs and compared
them with the false positive probabilities for a same-
size SBF for a variety of query workloads and document
structures. The goal of the second set of experiments is to
evaluate the performance of Bloom filters in a distributed
setting using both the content-based and the proximity
approaches.

4.1. Efficiency of multilevel Blooms as filters for
path queries

In this set of experiments, we evaluate the performance
of multilevel Blooms. As our performance metric, we
use the percentage of false positives since the number of
nodes that will process an irrelevant query depends on it
directly. In all cases, the filters compared have the same
total size.

Our input parameters are summarized in Table 1. We
limited the inserted paths in the Depth Bloom to be at most
of length 3, i.e. the Depth Bloom has only three levels. Also,
in the case of Breadth Bloom, we excluded the Bloom filter
on top (BBF0) that is only used for performance reasons,
since it requires more space and would deteriorate Breadth’s
performance for a given space overhead. The repetition of
the names of the elements was set to 0 between the elements
of a single document as well as between all documents.
Queries were generated by producing arbitrary path queries,
with 90% elements from the documents and 10% random
ones. All queries were partial paths and the probability of
the // axis at each query was set to 0.05.

TABLE 1. Input parameters.

Parameter Default value Range

No. of XML documents 200 –
Total size of filter 78,000 bits 30,000–1,50,000 bits
No. of hash functions 4 –
No. of queries 100 –
No. of elements
per document

50 10–150

No. of levels
per document

4/6 2–6

Length of query 3 2–6
Distribution of
queries’ elements

90% exist in
documents–10%

random ones
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FIGURE 9. Experiment 1: size of the filters.

Experiment 1: Influence of filter size (Figure 9)
We examine the influence of the size of the filter with respect
to false positives. Each document has 50 elements and four
levels. The queries are of length 3. The size of the filters
varies from 30,000 bits to 150,000 bits. The lower limit
was chosen from the formula k = (m/n) ln 2 that gives the
number of hash functions k that minimize the false positives
probability for a given size m and n inserted elements for
a SBF. We solved the equation for m keeping the other
parameters fixed. The goal of this experiment is to show
that even if we increase the size of the filter significantly,
Simple Blooms cannot recognize path expressions correctly.

The results show that both Breadth and Depth Blooms
outperform Simple Blooms even for only 30,000 bits. In
addition, in contrast with Simple Blooms, where the increase
in the size results in no improvement in their performance,
the multilevel structures exploit the extra space. Simple
Blooms are only able to recognize as misses paths that
contain elements that do not exist in the documents. Breadth
Blooms perform very well even for 30,000 bits with an
almost constant 6% of false positives, while Depth Blooms
require more space since the number of the elements inserted
is much larger than that of Breadth and Simple Blooms.
However, when the size increases sufficiently, Depth Blooms
outperform even Breadth Blooms and produce no false
positives.

Using the result of the first experiment, we choose as the
default size of the filters for the rest of the experiments a
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size of 78,000 bits, for which both our structures showed
reasonable results. For 200 documents of 50 elements, this
represents 2% of the space that the documents themselves
require. This makes Bloom filters a very attractive summary
to be used in a pervasive computing context.

Experiment 2: Influence of the number of elements
per document (Figure 10)
We compare the filters with respect to the number of elements
per document. The size of the filter is fixed at 78,000 bits,
and the documents have four levels. Queries have length 3
and the number of elements per document varies from 10 to
150. Again, Simple Bloom is only able to recognize path
expressions with elements that do not exist in the document.
Even for 10 elements where the filter is very sparse, Simple
Blooms have no means of recognizing hierarchies. When the
filter becomes denser as the elements inserted are increased
to 150, Simple Blooms fail to recognize even some of
these expressions. Breadth Blooms show the best overall
performance, with an almost constant percentage of 1–2%
of false positives. Depth Blooms require more space and
their performance rapidly decreases as the number of inserted
elements increases, and for 150 elements they become worse
than Simple Blooms because the filters become overloaded
(most bits are set to 1).

Experiment 3: Influence of the number of document
levels (Figure 11)
In this experiment, we compare the three approaches with
respect to the number of levels of the documents. The size
of the filter is fixed at 78,000 bits, and the documents have
50 elements. The levels vary from two to six. The queries
are of length 3, except for the documents with two levels
where we conduct the experiment with queries of length 2.
The behavior of Simple Blooms is independent of the number
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FIGURE 12. Experiment 4: varying query sizes.

of levels of the documents since they just hash all their
elements irrespective of the level that they belong to. So
they only recognize path expressions with elements not in
the documents that account for about 30% of the given query
workload. Both Breadth and Depth Blooms outperform
Simple Blooms, with a false positive percentage below 7%.
Breadth Blooms perform better for four to five levels. This is
because the elements are more evenly allocated to the levels
of the filter, while for fewer levels the filter has also fewer
levels and it becomes overloaded.

Also false positives of a new kind appear for Breadth
Blooms. If we had a tree that had the following paths, /a/b/c
and /a/f/l, then a Breadth Bloom would falsely recognize
as correct the following path: /a/b/l. Depth Blooms do
not have this problem as they would check for all possible
subpaths /a/b/l, /a/b, /b/l, and would find a miss for the last
one. That is why they perform very well for documents with
few levels. Their performance decreases for more levels but
remains almost constant since we insert only subpaths up to
length 3, while Breadth Blooms deteriorate further for six
levels.

Experiment 4: Influence of the length of the queries
(Figure 12)
The parameter examined in this experiment is the length of
the queries. The structure of the document is fixed, with
four levels and 50 elements, for queries of length 2–4 and six
levels for queries with length 5 and 6. The size of the filter is
also fixed at 78,000 bits. Once again, both multilevel Blooms
outperform Simple ones. The Simple Blooms performance
slightly improves as the query length increases but this is only
because the probability for an element that does not exist in
the documents increases. Both structures perform better for
large path expressions since if one level is sparse enough it
is sufficient to filter out irrelevant queries. Depth Blooms
show a slight decrease in performance for lengths of 5 and
6 since for documents with six levels the number of inserted
elements increases and the filter becomes denser.

The last two experiments also show that although we
limited the number of filters to three for the Depth Bloom, it
is still able to show a very good performance although all the
elements (all possible subpaths with length greater than 3)
are not inserted. The checks of all possible subpaths up to
length 3 are able to recognize most of the misses, and so we
conclude that we can limit the number of levels of the filter
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FIGURE 13. Experiment 5: varying the query workload.

without a significant loss in performance if we have limited
space.

Experiment 5: Query workload (Figure 13)
In most of our experiments, Breadth Blooms seem to
outperform Depth Blooms for just a fraction of the space
the latter require. However, as Experiment 3 indicates, there
are special forms of queries for which Depth Blooms work
better. To clarify this, in this last experiment, we created a
workload with queries consisting of such path expressions,
i.e. a workload that favors DBFs. The percentage of these
queries varied from 0% to 100% of the total workload. The
size of the filter is fixed at 78,000 bits; the documents have
four levels and 50 elements. We included the Simple Bloom
in the experiment only for completeness.

Breadth Blooms fail to recognize these misses and their
percentage of false positives increases linearly with the
percentage of these queries in the workload. However, Depth
Blooms have no problem in recognizing this kind of false
positives and show much better results. The slight increase in
the percentage of false positives in Simple and Depth Blooms
is because as the number of these special queries increases,
the number of queries with elements that do not exist in the
document decreases. When all queries are of this special
form (thus, there are no queries with elements that do not
exist in the documents), the Simple Bloom has a percentage
of 100% false positives and Depth of about 10%. Thus, we
can conclude that one may consider spending more space in
order to use Depth Blooms so as to avoid these false positives,
while when space is the key issue, Breadth Blooms are a more
reasonable choice.

Summary of results
Our experiments show that multilevel Bloom filters
outperform SBFs, in evaluating path queries. In particular,
for only 2% of the total size of the documents, multilevel
Bloom filters can provide efficient evaluation of path queries
for a false positive ratio below 3%, whereas Simple Blooms
fail to recognize the correct paths, no matter how much the
filter’s size increases. In general, Breadth Blooms work better
than Depth Blooms even for a very limited space. In contrast,
Depth Blooms require much more space but are suitable for
handling a special kind of queries for which Breadth Blooms
present a high ratio of false positives, as we have explained
in Experiment 5.

TABLE 2. Distribution parameters.

Parameter Default value Range

No. of XML documents per node 1 –
Total size of filter 200–800 –
No. of hash functions 4
No. of queries 100
No. of elements per document 10
No. of levels per document 4
Length of query 1–2
Number of nodes 100 20–200
Out-degree of a node 2–3
Percentage of repetition
between documents

Every 10% of all
docs 70% similar

Levels of hierarchy 3–4
Number of results 10% of no. of nodes 1–50%

4.2. Hierarchically distributed filters

In this set of experiments, we focus on filter distribution. Our
performance metric is the number of hops for answering a
query. We simulated a network of nodes forming hierarchies
and examined its performance with and without the use
of filters. We also compared the performance of both the
proximity and the content-based organizations. In the first
three experiments, we used SBFs as our filters and queries
of length 1, for simplicity. We have already shown that
multilevel Blooms outperform SBFs. Thus, they can be used
instead of Simple Blooms for path queries with greater length.
In the last experiments, we used multilevel Blooms to confirm
this belief. For the experiments, we used small documents
but we also decreased the size of the filter. To scale to large
documents, we just have to scale-up the filter as well. There
is one document at each node (for simplicity). Every 10% of
the documents are 70% similar to each other. So we expect
that about 10% of the documents satisfy each query. The
origin of the query is selected randomly among the nodes of
the network. For the content-based organization of the nodes,
the threshold was preset so that we can determine the number
of hierarchies created. Future work will include the tuning
of the threshold according to the workload of the network so
that the network can be self-organized. Table 2 summarizes
our parameters.

Experiment 1: Finding the first result with varying
number of nodes
At the first two experiments, we vary the size of the network,
i.e. the number of participating nodes from 20 to 200. At this
first experiment, we measured the number of hops a query
makes to find its first result. We expect that about 10% of the
nodes have this result.

Figure 14 illustrates our results. It is obvious that the
use of summaries greatly improves the search performance.
Without the use of filters, the hierarchical distribution
performs worse than organizing the nodes in a linear chain,
where the worst case would only be as much as the number
of nodes. In this case the performance deteriorates because
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FIGURE 15. Experiment 2: finding all the results.

of backtracking. Both the content-based and the network
proximity organizations show very good results, with almost
identical behavior. The number of hops remains constant
while the number of nodes increases because the number of
results in the network increases analogously.

Experiment 2: Finding all the results with varying
number of nodes (Figure 15)
At this second experiment the setup and the performance
metric are exactly the same. Only, now we are interested in
finding all the results and not just the first one. For finding
all results, the content-based organization outperforms the
one based on network proximity. This is because if we find
the first answer (i.e. the first node with documents matching
the query), we expect that the other answers (i.e. the other
nodes with matching documents) will be located very close,
due to the use of the similarity measure that clusters together
nodes with similar documents. In contrast, this does not hold
for the proximity organization since the topology is created
randomly and not based on the document’s content.

Experiment 3: Finding the first result with varying
number of answers (Figure 16)
For this experiment, we varied the number of answers (nodes
with matching documents) that exist in the network from
1% to 50% of the total number of nodes and measured the
necessary hops for finding the first result. The network size
was fixed at 100 nodes. Our results show that for a small
number of matching nodes, the content-based organization
outperforms the other ones. The reason is that it is able to
locate easier the cluster with the correct answers. As the
number of results increases, both the network proximity and
the filterless approaches work well as it is more probable that
they will find an answer closer to the query’s origin since the
documents are disseminated randomly.
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Experiment 4: Using multilevel filters as summaries
In this experiment, we repeated the first two experiments
using multilevel filters. The nodes vary from 20 to 200.
We measure the number of necessary hops. We compared
Breadth and Depth summaries with the simple ones, both for
a network-proximity and a content-based organization of the
network. The queries were of length 2.

Figure 17 illustrates the results when we are interested
in finding the first result, while Figure 18 illustrates them
when we are interested in all the results. Around 20% of the
documents do not contain the elements of the queries, while
in 70% of the documents, the elements exist but do not form
the correct path. Only in 10% of the documents does the path
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exist. We used 800 bits as the size for the filters to eliminate
false positives that could lead to unnecessary hops.

Simple Blooms with the network proximity organization
behave identically to the filter-less approach because in every
node we have a false hit that forces the query to follow
most of the paths. In the content-based organization, Simple
Blooms behave slightly better because of the organization
of the documents in clusters. Breadth and Depth Blooms
are very efficient, with both proximity and content-based
organizations of the network. Depth Blooms are not able to
scale as well as Breadth Blooms as discussed by us in the first
section of the experiments. The content-based organization
outperforms the one based on proximity in finding all the
results as we have seen for Simple Blooms in Experiment 2
as well.

Our results show that multilevel Blooms can be used as a
distributed index and the similarity metric is suitable for them
as well. Simple Blooms cannot be used for path queries be-
cause of the false positives that deteriorate their performance.

Summary of results
As our experimental results show, the content-based
organization is much more efficient in finding all the results
for a given query than the network proximity organization.
Although the two approaches perform similarly in discov-
ering the first result, the content-based organization benefits
from the content clusters that were created during the struc-
turing of the network. Furthermore, the content-based
organization outperforms the network proximity one when
the nodes that satisfy a given query are limited. The
content-based organization is able to route the query to the
right cluster faster, while the network proximity organization
just has to traverse the hierarchies until it finds a result.

Our experiments showed that both Simple and multilevel
Blooms can be efficiently used as distributed filters. Once
again, in the case of path queries, multilevel Blooms
outperform Simple ones, with both a proximity and a content-
based organization. The Simple Bloom filters’ performance
deteriorates because of the false positives.

However, we have to note that using the number of hops
as a performance metric factors out the fact that nodes
that are neighbors in a content-based organization may be
many nodes away in the actual physical network, whereas
neighbors in a network proximity organization are expected
to be neighbors in the physical network as well. Thus, the
relative performance of the network proximity and content-
based organizations in terms of other metrics such as response
time should also take into account the physical network
characteristics.

5. RELATED WORK

In this paper, we have proposed an approach for routing
path queries over a large-scale network of nodes storing
hierarchical documents. We consider two lines of research
related to our work: research on indexing XML documents
and research on resource discovery in large distributed
systems.

5.1. Indexing XML documents

Many researchers have developed various indexing methods
for XML documents. These methods provide efficient ways
of summarizing XML documents, support complex path
queries and offer selectivity estimations for a given query.
However, these structures are centralized and emphasis is
given on space efficiency and I/O costs for the various
operations. On the other hand, in a pervasive computing
context, we are interested in small-size summaries of a large
collection of XML documents that can be used to provide a
fast answer on whether at least one of the documents in the
collection satisfies the query with the additional requirement
that such summaries can be distributed efficiently. Below,
we survey some centralized XML indexing methods.

DataGuides [15] are one of the most popular XML indexes,
consisting of a tree constructed by a graph model of the
XML data. They are also able to store statistical information
and sample values which they use for query optimization.
The method presented in [16] encodes paths in the data as
strings and inserts these strings into an indexing structure
based on Patricia tries. Evaluating queries involves encoding
the desired path as a search key string and performing a
lookup in the index. The XSKETCH synopsis [17] relies
on a generic graph-summary where each node only captures
summary data that record the number of elements that map
to it. Emphasis is given on the processing of complex path
queries and there is no mention on how updates are handled.
APEX [18] is an adaptive path index that utilizes frequently
used paths to improve query performance. It can be updated
incrementally based on the query workload. The path tree
[19] has a path for every distinct sequence of tags in the
document. Statistical information about the elements is also
stored at each node. If it exceeds main memory space,
the nodes with the lowest frequency are deleted. In [20],
a signature is attached to each node of the XML tree, in
order to prune unnecessary subtrees as early as possible while
traversing the tree for a query. This technique is used for
evaluating regular path expressions, and it requires a small
overhead in space and computation.

5.2. Resource discovery

In pervasive computing and more recently in the context of
peer-to-peer computing, many methods have been developed
in order to find the nodes that contain data relevant to a
query. These methods construct indexes that store summaries
of other nodes and additionally provide routing protocols
to propagate the query to the relevant nodes. In this line
of research, emphasis is given to the distribution of the
summaries across the nodes of the network. However, these
structures answer simple queries that consist of combinations
of attribute–value pairs and do not address the evaluation
of path expressions. Furthermore, they are based only on
network proximity.

Perhaps the resource discovery protocol most related to
our approach is the one in [3]. The protocol uses SBFs as
summaries. Servers are organized into a hierarchy modified
according to the query workload for load balance. Each
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server stores summaries, a single filter with all the subset
hashes of the XML service descriptions up to a certain
threshold, which are used for query routing. To evaluate
a query, it is split to all possible subsets and each one is
checked in the index. Another method based on Bloom filters
for routing queries in peer-to-peer networks is presented in
[21]. It is based on a new structure, called attenuated Bloom
filter, residing in every node of the system. The filter stores
information about nodes within a range of the local node
and uses a probabilistic algorithm in order to direct a query.
The algorithm either finds results quickly or fails quickly and
exhaustive searching is then deployed.

In [22], the idea is to make use of data items that change
infrequently and often appear in queries, such as metadata and
words characteristic of a specific node. Indexes maintained
at each node that map this data to the corresponding nodes
are used to direct queries. When nodes join the system, they
exchange data that allow for the construction of the indexes,
which are inverted indexes that map keywords to nodes. A
similar approach [23] uses routing indexes placed at each
node for efficient routing of queries. By keeping an index for
each outgoing edge, a node can choose the best neighbor for
forwarding a query. The choice is based on summarized data
about the documents along that path, which are stored in the
index.

INS/Twine [24] is an approach to scalable intentional
resource discovery where resolvers collaborate as peers to
distribute resource information and to resolve queries. The
approach relies on a distributed hash table process (such as
Chord [25]), which it uses to distribute the resource descrip-
tions among the resolvers. Each description is represented
in an XML-based language that represents hierarchies of
attribute–value pairs. The description is mapped to a tree
and each distinct prefix of the tree is considered as an index
key that is distributed among the resolvers. The queries
are routed with the use of the distributed hash table. The
approach is able to handle small resource descriptions, while
for large XML documents because of the large number of
extracted index keys, the method would not be able to scale,
unlike multilevel Blooms that are compact and can easily
scale to large documents. Furthermore, since the method
uses a distributed hash table, it imposes on the nodes which
data items to store, thus limiting their autonomy.

VIA [26] is an application-level protocol for service
discovery. Services are described through metadata tags,
an ordered list of attributes with a finite set of values.
Gateways are responsible for query routing and all services
are advertised to them. They are hierarchically structured and
the ‘root’ gateways are listening to a main channel similarly to
our approach. All queries are sent to the main channel. VIA
provides a mechanism for self-organization of the gateways.
A gateway that processes too many irrelevant queries can
attach to another gateway as a child, thus forming hierarchies
that filter out irrelevant queries level by level. As in our
approach, the top-level gateways are burdened with most of
the work. A gateway chooses the hierarchy that it attaches to
by recording information about the query workload through
the ordering of the metadata tags. By generalizing its tags, it

transforms its filter to a less restrictive one and chooses to join
to the hierarchy that best fits this filter. The main restriction
of VIA is that all the attributes describing the services should
be known and ordered, and thus it is difficult to add new
services in the system. In addition, since all queries are
issued to the main channel this produces a large overhead
in communications, while in our system the queries are first
attempted to be satisfied locally.

Furthermore, all the above approaches organize their
indexes without taking into account the content of the
nodes, in contrast with our approach that uses the filter
similarity to provide a content-based clustering of the
nodes. Content-based distribution was recently proposed in
[27], which introduced semantic overlay networks (SONs).
With SONs, nodes with semantically similar content are
‘clustered’ together, based on a classification hierarchy of
their documents. Queries are processed by identifying which
SONs are better suited to answer it. However, SONs provide
no description of how queries are routed or how the clusters
are created and there is no use of filters or indexes.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we introduce two new hash-based indexing
structures, based on Bloom filters, which in contrast to tradi-
tional hash-based indexes have the ability to represent path
expressions and fully exploit the structure of XML docu-
ments. These indexing structures, called BBFs and DBFs, are
multilevel structures that consist of SBFs and share their abil-
ity to store a large volume of data within limited space. We
have described the corresponding algorithms for insertion,
update and query evaluation in these structures. The algo-
rithms were implemented and the structure performance was
compared with that of the SBFs. Both structures outperform
SBFs, with the Breadth Bloom having the best performance
even with small memory requirements in most cases.

We also presented how these structures can be distributed
and used for resource discovery in pervasive computing.
Two alternative ways were presented for building overlay
networks of nodes: one based on network proximity and
one on content similarity. Content similarity was related
to similarity among filters. We simulated this distributed
environment using both the content-based and network
proximity organizations. The use of Bloom filters improves
significantly the performance of the discovery process.
Furthermore, the content-based organization that performs
a type of content clustering is much more efficient when
we are interested in finding not just one but k results of a
query.

Future work will include the extension of the structures to
incorporate values in the path expressions and an extension
of the data model that includes XML documents that can be
represented as graphs. Another issue is studying alternative
ways for distributing the filters besides the hierarchical
organization and using other types of summaries besides
Bloom filters. Finally, we wish to develop a method for self-
organization of the nodes for the content-based organization,
by adjusting the threshold for the hierarchies.
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