
Dynamic Programming

Dynamic Programming

● A misleading name

○ Not a way of programming
○ A strategy for solving certain algorithmic problems

Approaches

● Top-down

○ Solve subproblems and remember those solved

● Bottom-up

○ From the smallest subproblems build solutions to
larger problems

Problem Properties

● Optimal Substructure

○ Seek the optimal subproblem
■ i.e maximise a value with minimal cost

● Overlaping subproblems

○ Problem can be divided to subproblems
■ i.e to calculate Fib(5) we must calculate Fib(4)

Bribe the Prisoners

Bribe the Prisoners
I am FREEEE

ARRRR
*(!%!&%

GRRRRR

^$!@^!#
WTF!?

Bribe the Prisoners

One gold for every prisoner!!

● For an array with many prisoners to be freed

what is the best order to free them to
minimize expenses?

Bribe the Prisoners

● Dynamic Programming saves the day!
○ (and money...)

● For each pair of cells a ≤ b, we want to
compute dp[a][b], the best answer if we only
have prisoners in cells from a to b, inclusive.
Once we decide the location of c, the first
prisoner between a and b to be released, we
face the smaller sub-problems dp[a][c-1] and
dp[c+1][b]. The final answer we want is dp
[1][P].

Bribe the Prisoners

Bribe the Prisoners
int p[200]; // prisoners to be released.
map<pair<int, int>, int> dp;

// Finds the minimum amount of gold needed,
// if we only consider the cells from a to b, inclusive.
int Solve(int a, int b) {
 // First, look up the cache to see if the
 // result is computed before.
 pair<int, int> pr(a, b);
 if(mp.find(pr) != mp.end()) return mp[pr];

 // Start the computation.
 int r = 0;
 for(int i=0; i<Q; i++) {
 if(p[i] >= a && p[i] <= b) {
 int tmp = (b-a) + Solve(a, p[i]-1) + Solve(p[i]+1, b);
 if (!r || tmp<r) r=tmp;
 }
 }
 mp[pr]=r;
 return r;
}

