
A Comparison of Peer-to-Peer Search Methods

Dimitrios Tsoumakos
Computer Science Department

University of Maryland

dtsouma@cs.umd.edu

Nick Roussopoulos
Computer Science Department

University of Maryland

nick@cs.umd.edu

ABSTRACT
Peer-to-Peer networks have become a major research topic
over the last few years. Object location is a major part in
the operation of these distributed systems. In this work, we
present an overview of several search methods for unstruc-
tured peer-to-peer networks. Popular file-sharing applica-
tions, through which enormous amounts of data are daily
exchanged, operate on such networks. We analyze the per-
formance of the algorithms relative to their success rates,
bandwidth consumption and adaptation to changing topolo-
gies. Simulation results are used to empirically evaluate
their behavior in direct comparison.

1. INTRODUCTION
Peer-to-Peer (hence P2P) computing represents the notion
of sharing resources available at the edges of the Internet.
After its initial success, which resulted in the subsequent
appearance of numerous P2P systems, it now emerges as
the dominant model for the networks of the future. The
P2P paradigm dictates a fully-distributed, cooperative net-
work design, where nodes collectively form a system with-
out any supervision. Its advantages (although application-
dependent in many cases) include robustness in failures, ex-
tensive resource-sharing, self-organization, load balancing,
data persistence, anonymity, etc.

Today, the most popular P2P applications operate on un-
structured networks. In these networks, peers connect in an
ad-hoc fashion, the location of the documents is not con-
trolled by the system and no guarantees for the success of
a search are offered to the users. Bandwidth consumption
attributed to such applications amounts to a considerable
fraction (up to 60%) of the total Internet traffic [1]. It be-
comes obvious that the nature of data discovery and retrieval
is of great importance to the user and the broad Internet
community.

In this work, we examine the problem of object discovery
in unstructured P2P networks. Nodes make requests for ob-

Copyright is held by the author/owner.
International Workshop on the Web and Databases (WebDB).
June 12-13, 2003, San Diego, California.

jects they want to retrieve and cannot be found in their
local repositories. The search process includes aspects such
as the query-forwarding method, the set of nodes that re-
ceive query-related messages, the form of these messages, lo-
cal processing, locally stored indices and their maintenance,
etc.

Current search algorithms aim for bandwidth-efficient and
adaptive object discovery for these networks. Search meth-
ods can be categorized as either blind or informed. In a blind
search, nodes hold no information that relates to document
locations, while in informed methods, there exists a central-
ized or distributed directory service that assists in the search
for the requested objects.

In this paper, we describe current approaches from both cat-
egories and analyze their performance. We focus on the be-
havior of these algorithms for each of the following metrics:
Efficiency in object discovery, bandwidth consumption and
adaptation to rapidly changing topologies. The first met-
ric measures search accuracy and the number of discovered
objects per request. The latter is important for many ap-
plications, as it gives users a much broader choice for object
retrieval. Minimizing message production always represents
a high-priority goal for all distributed systems. Finally, it
is important that any search algorithm adapts to dynamic
environments, since in most P2P networks users frequently
enter and leave the system, as well as update their collec-
tions.

To evaluate our analysis, we simulate many of the described
methods and present a quantitative comparison of their per-
formance. We also identify the conditions under which each
method would be most or least effective.

In Section 2 we present related work. Section 3 categorizes
and describes current search techniques, while in Section 4
we present the simulation results.

2. RELATED WORK
Peer-to-Peer networks have been studied a lot in the last
few years. A large amount of information for P2P com-
puting with taxonomies, definitions, current trends, appli-
cations and related companies can be obtained at [2, 3],
as well as individual sources (e.g., [4, 5]). P2P computing
is also described in [6], with basic terminology, taxonomies
and description of some systems. A brief summarization
of Gnutella [7] and Napster [8] search, together with ap-



proaches for structured networks are also included.

Gnutella and Napster are the focus of two measurement
studies; [9] attempts a detailed characterization of the par-
ticipating end-hosts, while [10] measures the locality of stored
and transferred documents. In [11], a traffic measurement
for three popular P2P networks is being conducted at the
border routers of a large ISP. Extensive results for traffic
attributed to HTTP, Akamai and P2P systems are also pre-
sented in [12].

Quantitative comparisons between the search methods in
[13, 14] and the original Gnutella algorithm are presented
in these two papers. Their main comparison metric is band-
width consumption. The work in [15] presents a thorough
comparison between the proposed algorithm and two blind
search schemes ([14, 16]) on a variety of metrics.

Our work focuses exclusively on search in unstructured P2P
networks, together with an experimental comparison of the
methods under certain criteria.

3. P2P SEARCH ALGORITHMS
3.1 Our Framework
In our general framework, peers communicate either when
they search for an object or when they share one. In this
work, we examine proposed algorithms for the first part only.

Each peer retains a local collection of documents, while it
makes requests for those it wishes to obtain. The documents
are stored at various nodes across the network. Peers and
documents (or objects) are assumed to have unique iden-
tifiers, with object IDs used to specify the query target.
Search algorithms cannot in any way dictate object place-
ment and replication in the system. They are also not al-
lowed to alter the topology of the P2P overlay. Nodes that
are directly linked in the overlay are neighbors. A node
is always aware of the existence and identity of its neigh-
bors. Nodes can also keep soft state (i.e., information that is
erased after a short amount of time) for each query they pro-
cess. Each search is assigned an identifier, which, together
with the soft state, enables peers to make the distinction
between new queries and duplicate ones received due to a
cycle.

A search is successful if it discovers at least one replica of the
requested object. The ratio of successful to total searches
made is called the success rate (or accuracy). A search can
result to multiple discoveries (or hits), which are replicas
of the same object stored at distinct nodes. A global TTL
parameter represents the maximum hop-distance a query
can reach before it gets discarded.

3.2 Search Taxonomy
There are two possible strategies for search in an unstruc-
tured P2P network: Search in a blind fashion, trying to
propagate the query to a sufficient number of nodes in order
to satisfy the request; or utilize information about document
locations and thus perform an informed search. The seman-
tics of the used information range from simple forwarding
hints to exact object locations. The placement of this infor-
mation can also vary: In centralized approaches (e.g., [8]),

a central directory known to all peers exists. In distributed
approaches ([17, 13], etc.), each individual peer holds a piece
of the information.

One can also categorize search algorithms according to the
model of P2P network they are designed to operate on. In
pure P2P systems, all participating peers play both the roles
of the client and the server. Other algorithms operate on
hybrid P2P architectures, where certain nodes assume the
role of a super-peer and the rest become leaf-nodes. Each
super-peer acts as a proxy for all its neighboring leaves by
indexing all their documents and servicing their requests.

3.3 Blind Search Methods
GNUTELLA [7] : The original Gnutella algorithm uses flood-
ing (BFS traversal of the underlying graph) for object dis-
covery and contacts all accessible nodes within the TTL
value. Although it is simple and manages to discover the
maximum number of objects in that region, the approach
does not scale, producing huge overhead to large numbers
of peers.

Modified-BFS [13] : This is a variation of the flooding scheme,
with peers randomly choosing only a ratio of their neighbors
to forward the query to. This algorithm certainly reduces
the average message production compared to the previous
method, but it still contacts a large number of peers.

Iterative Deepening : Two similar approaches that use con-
secutive BFS searches at increasing depths are described in
[18, 14]. These algorithms achieve best results when the
search termination condition relates to a user-defined num-
ber of hits and it is possible that a “small” flood will satisfy
the query. In a different case, they produce even bigger loads
than the standard flooding mechanism.

Random Walks [14] : In Random Walks, the requesting node
sends out k query messages to an equal number of randomly
chosen neighbors. Each of these messages follows its own
path, having intermediate nodes forward it to a randomly
chosen neighbor at each step. These queries are also known
as walkers. A walker terminates either with a success or a
failure. Failure can be determined by two different methods:
The TTL-based method and the checking method, where
walkers periodically contact the query source asking whether
the termination conditions have been satisfied.
The algorithm’s most important advantage is the significant
message reduction it achieves. It produces k × TTL mes-
sages in the worst case, a number which seldom depends on
the underlying network. Simulation results in [14, 15] show
that messages are reduced by more than an order of mag-
nitude compared to the standard flooding scheme. It also
achieves some kind of local “load balancing”, since no nodes
are favored in the forwarding process over others.
The most serious disadvantage of this algorithm is its highly
variable performance. Success rates and number of hits
vary greatly depending on network topology and the ran-
dom choices made. Finding an object depends slightly on
its hop-distance. Another drawback of this method is its
inability to adapt to different query loads. Queries for pop-
ular and unpopular objects are treated in the exact same
manner. Random Walkers cannot learn anything from its
previous successes or failures, displaying high variability in



all ranges of requests.

Recently, two new search protocols which operate on hybrid
P2P networks made their appearance:
GUESS [16] : This algorithm builds upon the notion of Ul-
trapeers [19]. Each ultrapeer is connected to other ultrapeers
and to a set of leaf-nodes (peers shielded from other nodes),
acting as their proxy. A search is conducted by iteratively
contacting different ultrapeers (not necessarily neighboring
ones) and having them ask all their leaf-nodes, until a num-
ber of objects are found. The order with which ultrapeers
are chosen is not specified.
Gnutella2 [20] : In Gnutella2, when a super-peer (or hub)
receives a query from a leaf, it forwards it to its relevant
leaves and also to its neighboring hubs. These hubs process
the query locally and forward it to their relevant leaves. No
other nodes are visited with this algorithm. Neighboring
hubs regularly exchange local repository tables to filter out
unnecessary traffic between them.
Although the details of these protocols are still formulating,
we observe they rely on a dynamic hierarchical structure
of the network. They present similar solutions for reducing
the effects of flooding by utilizing the structure of hybrid
networks. The number of leaf-nodes per super-peer must
be kept high, even after node arrivals/departures. This is
the most important condition in order to reduce message
forwarding and increase the number of discovered objects.

3.4 Informed Search Methods
Intelligent-BFS [13] : This is an informed version of the
modified-BFS algorithm. Nodes store query-neighborID tu-
ples for recently answered requests from (or through) their
neighbors in order to rank them. First, a peer identifies all
queries similar to the current one, according to a query sim-
ilarity metric; it then choses to forward to a set number of
its neighbors that have returned the most results for these
queries. If a hit occurs, the query takes the reverse path to
the requester and updates local indices.
This approach focuses more on object discovery than mes-
sage reduction. At the cost of an increased message produc-
tion compared to modified-BFS (because of the update pro-
cess), the algorithm increases the number of hits. It achieves
very high accuracy, enables knowledge sharing and induces
no overhead during node arrivals/departures. On the other
hand, its message production is very large and only increases
with time as knowledge is spread over the nodes. It shows
no easy adaptation to object deletions or peer departures.
This happens because the algorithm does not utilize negative
feedback from searches and forwarding is based on ranking.
Finally, its accuracy depends highly on the assumption that
nodes specialize in certain documents.

APS [15] : In APS, each node keeps a local index consisting
of one entry for each object it has requested per neighbor.
The value of this entry reflects the relative probability of
this node’s neighbor to be chosen as the next hop in a fu-
ture request for the specific object. Searching is based on the
deployment of k independent walkers and probabilistic for-
warding. Each intermediate node forwards the query to one
of its neighbors with probability given by its local index. In-
dex values are updated using feedback from the walkers. If a
walker succeeds (fails), the relative probabilities of the nodes
on the walker’s path are increased (decreased). The update

procedure takes the reverse path back to the requester and
can take place either after a walker miss (optimistic update
approach), or after a hit (pessimistic update approach).
APS exhibits many plausible characteristics as a result of its
learning feature. Every node on the deployed walkers up-
dates its indices according to search results, so peers even-
tually share, refine and adjust their search knowledge with
time. Walkers are directed towards objects or redirected
if a miss or an object deletion occurs. APS is also very
bandwidth-efficient, achieving very similar levels with Ran-
dom Walks. It induces zero overhead over the network at
join/leave/update operations and displays a high degree of
robustness in topology changes. The s-APS modification
adaptively switches between the optimistic and pessimistic
approaches and further reduces the amount of messages.
Finally, [15] showed that the algorithm’s majority of dis-
covered objects are located close to the requesters. These
advantages are mainly seen when many different peers con-
tribute with big workloads. This is because APS gains from
knowledge build-up and increased peer cooperation.

Local Indices [18] : Each node indexes the files stored at all
nodes within a certain radius r and can answer queries on
behalf of all of them. A search is performed in a BFS-like
manner, but only nodes accessible from the requester at cer-
tain depths process the query. To minimize the overhead,
the hop-distance between two consecutive depths must be
2r + 1.
This approach resembles the two search schemes for hybrid
networks. The method’s accuracy and hits are very high,
since each contacted node indexes many peers. On the other
hand, message production is comparable to the flooding
scheme, although the processing time is much smaller be-
cause not every node processes the query. The scheme also
requires a flood with TTL = r whenever a node joins/leaves
the network or updates its local repository, so the overhead
becomes even larger for dynamic environments.

Routing Indices (RI) [17] : Documents are assumed to fall
into a number of thematic categories. Each node knows an
approximate number of documents from every category that
can be retrieved through each outgoing link (i.e., not only
from that neighbor but from all nodes accessible from it).
The query termination condition always relates to a min-
imum number of hits. The forwarding process is similar
to DFS: A node that cannot satisfy the query stop condi-
tion with its local repository will forward it to the neighbor
with the highest “goodness” value. Three different functions
which rank the out-links according to the expected number
of documents discovered through them are also defined. The
algorithm backtracks if more results are needed.
This is another keyword-search approach which trades in-
dex maintenance overhead for increased accuracy. While a
search is very bandwidth-efficient, RIs require flooding in or-
der to be created and updated, so the method is not suitable
for highly dynamic networks. Moreover, stored indices can
be inaccurate due to thematic correlations, over-counts or
under-counts in document partitioning and network cycles.

In [21], each node holds d bloom filters for each neighbor. A
filter at depth i summarizes documents that can be found i
hops away through that specific link. Nodes forward queries
to the neighbor whose smaller depth bloom filter matches a



hashed representation of the object ID. After a certain num-
ber of steps, if the search is unsuccessful, it is handled by a
deterministic algorithm instead of backtracking.
This method exhibits the same characteristics as the two
previous ones. The scheme’s expectation is to find only one
replica of the object with high probability. Index mainte-
nance requires flooding messages initiated from nodes that
arrive or update their collections.

Distributed Resource Location Protocol (DRLP) [22] : Nodes
with no information about the location of a file forward the
query to each of their neighbors with a certain probability.
If an object is found, the query takes the reverse path to the
requester, storing the document location at those nodes. In
subsequent requests, nodes with indexed location informa-
tion directly contact the specific node. If that node does not
currently obtain the document, it just initiates a new search
as described before.
This algorithm initially spends many messages to find the
locations of an object. In subsequent requests, it might take
only one message to discover it. Obviously, a small message
production is achieved only with a large workload that en-
ables the initial cost to be amortized over many searches.
In rapidly changing networks, this approach fails and more
nodes have to perform blind search. This also affects the
number of hits: If many blind searches are made, then many
results are found; if many direct queries take place, then only
one replica is retrieved. So, this scheme is very dependent
on network/application parameters.

4. SIMULATION RESULTS
In this section we present results for six of the described
methods (GUESS, Random Walks, Modified-BFS, Intelligent-
BFS, s-APS, DRLP). Three of the simulated methods are
representative blind search schemes. The rest are informed
methods that do not require user-initiated index updates.

Due to space limitations, we will briefly summarize our sim-
ulation model here. More details can be found in [15]. We
use a random graph of 10000 nodes and an average degree
of 10 generated by GT-ITM [23] to simulate our P2P over-
lay structure. We assume a pure P2P model, where all peers
equally make and forward requests. Results comparing APS
and GUESS in hybrid topologies can be found in [15].

Queries are made for 100 objects, with object 1 being the
most popular and object 100 the least. Qualitatively similar
results are produced when using a larger number of objects
in the simulations. Objects are stored over the network ac-
cording to the replication distribution, while nodes make re-
quests according to the query distribution (e.g., popular ob-
jects get many more requests than unpopular ones). A zip-
fian distribution with parameter a = 0.82 is used to model
both and achieve workloads similar to the observations in
[10]: The highest-ranked 10% of objects amount to about
30% of the total number of stored objects and receive about
30% of all requests. Requester nodes are randomly chosen
and represent about 20% of the total number of nodes. Each
requester makes about 1500 queries. The TTL parameter
was set to 5 for all algorithms, since larger values produced
very similar results.

To simulate dynamic network behavior, we insert “on-line”

nodes and remove active ones with varying frequency. We
always keep approximately 80% of the network nodes ac-
tive, while arriving nodes start functioning without any prior
knowledge. The objects are also re-distributed (less fre-
quently though) to model file insertions and deletions. Ob-
ject re-location always follows the initial distribution param-
eters.

The Intelligent-BFS method was modified to allow for object-
ID requests. Index values at peers now represent the num-
ber of replies for an object through each neighbor. Nodes
simply choose the 5 highest ranked neighbors in query for-
warding. For Modified-BFS and DRLP ’s blind search, nodes
randomly choose half of their neighbors (5 on average) to
forward a query to. In our GUESS implementation, peers
deploy k random walkers with TTL = 4. The last nodes
on the paths of these walkers forward the query to all their
neighbors. In our simulations, k = 12 for Random Walks,
APS and GUESS.

We simulate the algorithms at three different environments:
In the static case there are no dynamic operations. In the
less dynamic setting, the topology changes on average 240
times and objects are relocated 120 times at each run. In
the highly dynamic setting, the topology changes about 1200
times and objects are relocated about 500 times during each
run.

Figures 1, 2 and 3 present the results for the six methods.
As expected, both Modified and Intelligent-BFS show ex-
tremely high accuracy and return many hits. Although their
message production is an order of magnitude less than that
of the original Gnutella scheme, they still produce almost 2
orders of magnitude more than the other four schemes. The
informed method produces 3 times more messages, but also
manages to find 3 times more objects. Both algorithms are
not affected by the changing environment and achieve sim-
ilar results in all settings. For environments similar to our
setup, the modified method will be preferred to the intelli-
gent one, since its performance is equally high and it is much
simpler. We expect that the informed method will perform
better in specialized environments (like the one described
in [13]), mainly in the number of hits, which is one of the
algorithm’s goals.

Random Walks displays low accuracy and finds less than
one object per query on average. Its bandwidth consump-
tion is quite low (between 33 and 40 messages) and its over-
all performance is hardly affected by the dynamic opera-
tions. GUESS behaves similarly, with the exception of being
steadily over 60% accurate and discovering about 2 objects
per query. On the other hand, it produces twice the number
of messages of Random Walks. In general, these algorithms
appear very robust to increased network variability. This is
reasonable, as walkers are randomly directed with no regard
to topology or previous results.

s-APS achieves a success rate of over 90% in the static run,
a number that drops by 6% and 15% in the following set-
tings. The metric that is reasonably affected is the num-
ber of discovered objects, which are almost cut to a third
(from 6 to 2.2). This happens because it takes some time
for the learning feature to adapt to the new topology and



Int-BFS
GUESS RWalks

s-APS DRLP
Mod-BFS

0

20

40

60

80

100
Su

cc
es

s 
R

at
e(

%
)

Static
Less Dynamic
Highly Dynamic

Figure 1: Success rate

Int-BFS
GUESS RWalks

s-APS DRLP
Mod-BFS

1

10

100

1000

M
es

sa
ge

s 
pe

r R
eq

ue
st

Static
Less Dynamic
Highly Dynamic

Figure 2: Messages per query

Int-BFS
GUESS RWalks

s-APS DRLP
Mod-BFS

0.1

1

10

100

H
its

 p
er

 R
eq

ue
st

Static
Less Dynamic
Highly Dynamic

Figure 3: Hits per query

paths to discovered objects frequently “disappear”. On the
other hand, it manages to keep its messages at the same lev-
els, producing about 42 per search. s-APS exhibits a very
good overall performance compared to the four non-BFS re-
lated schemes, being much more bandwidth-efficient than
the BFS-related techniques.

The DRLP algorithm exhibits some interesting character-
istics. First, its message production is very low (from 9 to
about 12 messages per request), with only a small increase
as the network becomes more dynamic. Our simulations
count the direct contact of a node in DRLP as one mes-
sage, although a link between them might not exist in the
overlay. Dynamic behavior causes the stored addresses to
become more frequently “stale”, thus the initial flooding is
performed more often. This is the reason for the decrease in
its accuracy from 100% in the static case to 80% and 60%
respectively. DRLP produces the same amount of messages
for its initial search with Modified-BFS, so it needs many
successful requests to amortize this initial cost. The num-
ber of objects it discovers is small, ranging from 1.5 to 1.2. If
DRLP is forced to use flooding many times, then the num-
ber of hits increases. If it is successful and produces few
messages, then it only finds one replica per request. Despite
this fact, we notice that it proves very bandwidth-efficient,
while one would expect an increase to justify more flood-
ing requests. This is due to the fact that, with many nodes
making requests, most of them obtain a pointer for every

object after a while. So, even if some node initiates a flood,
most of its neighbors will only forward to one node. This
scheme seems ideal for relatively static environments and
large workloads, with the exception that the number of hits
will be very close to one. Another observation we made is
that DRLP is affected more by object relocation than by
node departures.

Figure 4 shows how object popularity affects the accuracy of
the six schemes in the highly dynamic environment. The re-
sults are similar for the other two settings. Popular objects
are stored in more nodes and receive more requests. Pop-
ularity decreases as we move to the right along the x-axis.
The first data point represents the accuracy of the meth-
ods for objects 1-10, the second for objects 11-20, etc. The
two BFS methods exhibit high accuracy with Intelligent-
BFS performing marginally (2-5%) better than Modified-
BFS. Random Walks, GUESS and s-APS show decreasing
accuracy as popularity drops, with s-APS clearly outper-
forming the other two. This difference becomes large for
medium-popular objects. DRLP exhibits increasing accu-
racy as the popularity drops. This can be explained by
the fact that less popular objects receive considerably fewer
queries. Therefore, object relocations and node departures
which affect the algorithm happen less frequently during re-
quests for such objects.

Figure 5 shows how the number of hits is affected by the
number of requests per object. Each object is uniformly
stored in about 2% of the network nodes. The two BFS
schemes show a stable performance as in the previous sim-
ulations, with the exception that Modified-BFS now pro-
duces more messages and discovers a few more objects than
Intelligent-BFS (3900 to 3500 messages, 70 to 65 hits respec-
tively). We notice that GUESS and Random Walks do not
gain from the increased workload and exhibit results similar
to the previous simulations. s-APS takes advantage of the
increased requests to discover almost 7 times more objects.
On the other hand, DRLP discovers a decreasing number of
documents (nearly 7 times fewer hits at the final run), as
the requests for each object increase. This happens because
with more requests, fewer nodes perform flooding and only
one object is discovered in almost every search. At the same
time, the message production of DRLP also drops for the
same reason.



Object Popularity

0

20

40

60

80

100
Su

cc
es

s 
R

at
e(

%
)

Int-BFS
Mod-BFS
s-APS
GUESS
Rwalks
DRLP

Figure 4: Success rate vs object popularity.
Popularity decreases from left to right

20 40 60 80 100 120
Requests per Object

0

1

2

3

4

5

6

7

8

9

H
its

 p
er

 R
eq

ue
st

GUESS
RWalks
DRLP
s-APS

Figure 5: Number of hits as the number of re-
quests per object increases in a static network

5. CONCLUSIONS
This paper presents an overview of current search techniques
for unstructured P2P networks. Our analysis and simula-
tions focus on three metrics: accuracy, bandwidth produc-
tion and discovered objects. Flood-based schemes (e.g. Int-
BFS, Mod-BFS) exhibit high performance at a very high
cost. Other blind methods (e.g. Random Walks, GUESS)
are simple and can greatly reduce bandwidth production but
generally fail to adapt to different workloads and environ-
ments. Conversely, most informed methods achieve great re-
sults but incur large overheads due to index updates. DRLP
and s-APS require no costly updates. The former performs
best in relatively static environments, while the latter uses
its adaptive nature to achieve good performance at low cost.
s-APS particularly favors nodes with a prolonged stay in the
network and the discovery of popular objects.

For future work, we plan on giving emphasis to the index
update process and the imposed overhead over the network.
This will allow for a more thorough comparison of the in-
formed search methods.

6. REFERENCES
[1] The impact of file sharing on service provider

networks. An Industry White Paper, Sandvine Inc.

[2] openP2P website: http://www.openp2p.com.

[3] Peer-to-peer working group:
http://www.peer-to-peerwg.org/.

[4] Project JXTA: http://www.jxta.org.

[5] Microsoft .NET: http://www.microsoft.com/net.

[6] D. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja,
J. Pruyne, B. Richard, S. Rollins, and Z. Xu.
Peer-to-Peer Computing. Technical Report
HPL-2002-57, HP, 2002.

[7] Gnutella website: http://gnutella.wego.com.

[8] Napster website: http://www.napster.com.

[9] S. Saroiu, P. Gummadi, and S. Gribble. A
measurement study of peer-to-peer file sharing

systems. Technical Report UW-CSE-01-06-02, Un. of
Washington, 2001.

[10] J. Chu, K. Labonte, and B. Levine. Availability and
Locality Measurements of Peer-to-Peer File Systems.
In SPIE, 2002.

[11] S. Sen and J. Wang. Analyzing peer-to-peer traffic
across large networks. In SIGCOMM Internet
Measurement Workshop, 2002.

[12] S. Saroiu, K. Gummadi, R. Dunn, S. Gribble, and
H. Levy. An Analysis of Internet Content Delivery
Systems. In OSDI, 2002.

[13] V. Kalogeraki, D. Gunopulos, and
D. Zeinalipour-Yazti. A Local Search Mechanism for
Peer-to-Peer Networks. In CIKM, 2002.

[14] C. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker.
Search and Replication in Unstructured Peer-to-Peer
Networks. In ICS, 2002.

[15] D. Tsoumakos and N. Roussopoulos. Adaptive
Probabilistic Search (APS) for Peer-to-Peer Networks.
Technical Report CS-TR-4451, Un. of Maryland, 2003.

[16] S. Daswani and A. Fisk. Gnutella UDP Extension for
Scalable Searches (GUESS) v0.1.

[17] A. Crespo and H. Garcia-Molina. Routing Indices for
Peer-to-Peer Systems. In ICDCS, July 2002.

[18] B. Yang and H. Garcia-Molina. Improving Search in
Peer-to-Peer Networks. In ICDCS, 2002.

[19] A. Singla and C. Rohrs. Ultrapeers: Another Step
Towards Gnutella Scalability.

[20] M. Stokes. Gnutella2 Specifications Part One:
http://www.gnutella2.com/gnutella2 search.htm.

[21] S. Rhea and J. Kubiatowicz. Probabilistic Location
and Routing. In INFOCOM, 2002.

[22] D. Menascé and L. Kanchanapalli. Probabilistic
Scalable P2P Resource Location Services.
SIGMETRICS Perf. Eval. Review, 2002.

[23] E. Zegura, K. Calvert, and S. Bhattacharjee. How to
model an internetwork. In Infocom, 1996.


