κεφάλαιο 4

Γλώσσες Επερώτησης για Ανάκτηση Πληροφοριών

• Επερωτήσεις λέξεων (Keyword-based Queries)
 – Μονολεκτικές επερωτήσεις (Single-word Queries)
 – Επερωτήσεις φυσικής γλώσσας (Natural Language Queries)
 – Boolean Επερωτήσεις (Boolean Queries)
 – Επερωτήσεις Συμφραζομένων (Context Queries)
 • Φραστικές Επερωτήσεις (Phrasal Queries)
 • Επερωτήσεις Εγγύτητας (Proximity Queries)
• Ταίριασμα Προτύπου (Pattern Matching)
 – Απλό (Simple)
 – Ανεκτικές σε ορθογραφικά λάθη (Allowing errors)
 • Levenstein distance, LCS longest common subsequence
 – Κανονικές Εκφράσεις (Regular expressions)
• Δομικές Επερωτήσεις (Structural Queries)
 – (Θα καλυφθούν σε επόμενο μάθημα)
• Πρωτόκολλα επερώτησης (Query Protocols)
Γλώσσες Επερώτησης για Ανάκτηση Πληροφοριών

Εισαγωγή

- Ο τύπος των επερωτήσεων που επιτρέπονται σε ένα σύστημα εξαρτάται σε ένα βαθμό και από το Μοντέλο Ανάκτησης που χρησιμοποιεί το σύστημα
 - Boolean model => boolean queries
 - Extended Boolean model => boolean queries (…)
 - Vector Space model => natural language queries (free text)
 - Probabilistic model => natural language queries
 - ...

- Retrieval unit: basic unit that can be returned as the answer to a query

- Protocol: not for end users

Εδώ θα δούμε τύπους επερωτήσεων χρήσιμους για την ανάκτηση πληροφοριών.
 - Αργότερα θα δούμε τις δομές δεδομένων και αλγόριθμους για την αποτίμησή τους.

Επερωτήσεις φυσικής γλώσσας
("Natural Language" Queries)

- Keyword queries

 Popular:
 - Intuitive
 - Simple to express
 - Fast ranking
Boolean Queries

- **Keywords combined with Boolean operators:**
 - Atoms combined with Boolean operators
 - **OR:** $(e_1 \text{ OR } e_2)$
 - **AND:** $(e_1 \text{ AND } e_2)$
 - **BUT:** $(e_1 \text{ BUT } e_2)$ Satisfy e_1 but **not** e_2

 Compositional -> query syntax tree

- Negation only allowed using **BUT** to allow efficient use of inverted index by filtering another efficiently retrievable set.
- Naïve users have trouble with Boolean logic.
- Also, sort by some criteria and highlight the occurrences of the query words.

Επερωτήσεις φυσικής γλώσσας (**“Natural Language” Queries**)

- Full text queries as arbitrary strings.
- Typically just treated as a **bag-of-words** for a vector-space model.
- Typically processed using standard vector-space retrieval methods.
- A whole document may be considered as a query.
Context-Queries

- Ability to search words in a given context, that is, near other words

Types of Context Queries
- Phrasal Queries
- Proximity Queries

Phrasal Queries
- Retrieve documents with a specific phrase (ordered list of contiguous words)
 - "information theory"
 - "to be or not to be"
- May allow intervening stop words and/or stemming.
 - For example, "buy camera" matches:
 - "buy a camera",
 - "buy a camera", (two spaces)
 - "buying the cameras" etc.
Proximity Queries (Επερωτήσεις Εγγύτητας)

- List of words with specific maximal distance constraints between words.
- For example:
 - “dogs” and “race” within 4 words
- will match
 - “…dogs will begin the race…”
- May also perform stemming and/or not count stop words.
- The order may or may not be important

Pattern Matching

- Allow queries that match strings rather than word tokens.
- Requires more sophisticated data structures and algorithms than inverted indices to retrieve efficiently.

Some types of simple patterns:
- Prefixes: Pattern that matches start of word.
 - “anti” matches “antiquity”, “antibody”, etc.
- Suffixes: Pattern that matches end of word:
 - “ix” matches “fix”, “matrix”, etc.
- Substrings: Pattern that matches arbitrary subsequence of characters.
 - “rapt” matches “enrapture”, “velociraptor” etc.
- Ranges: Pair of strings that matches any word lexicographically (alphabetically) between them.
 - “tin” to “tix” matches “tip”, “tire”, “title”, etc.
More Complex Patterns: Allowing Errors

- What if query or document contains typos or misspellings?
- Judge similarity of words (or arbitrary strings) using:
 - **Edit distance (Levenstein distance)**
 - **Longest Common Subsequence (LCS)**
- Allow proximity search with bound on string similarity.

Edit (Levenstein) Distance

- Minimum number of character *deletions, additions, or replacements* needed to make two strings equivalent.
 - “misspell” to “mispell” is distance 1
 - “misspell” to “mistell” is distance 2
 - “misspell” to “misspelling” is distance 3
- Can be computed efficiently using *dynamic programming*
 - \(O(mn)\) time where \(m\) and \(n\) are the lengths of the two strings being compared.
Longest Common Subsequence (LCS)

- Length of the longest subsequence of characters shared by two strings.
- A subsequence of a string is obtained by deleting zero or more characters.
- Examples:
 - “misspell” to “mispell” is 7
 - “misspelled” to “misinterpreted” is 7
 “mis…p…e…ed”

More complex patterns: Regular Expressions

- Language for composing complex patterns from simpler ones.
 - An individual character is a regex.
 - Union: If e_1 and e_2 are regexes, then $(e_1 \mid e_2)$ is a regex that matches whatever either e_1 or e_2 matches.
 - Concatenation: If e_1 and e_2 are regexes, then $e_1 e_2$ is a regex that matches a string that consists of a substring that matches e_1 immediately followed by a substring that matches e_2.
 - Repetition (Kleene closure): If e_1 is a regex, then e_1^* is a regex that matches a sequence of zero or more strings that match e_1.
Regular Expression Examples

- *(u|e)nabl(e|ing)* matches
 - unable
 - unabling
 - enable
 - enabling

- *(un|en)*able matches
 - able
 - unable
 - unenable
 - enununenable

Enhanced Regex's (Perl)

- Special terms for common sets of characters, such as alphabetic or numeric or general "wildcard".
- Special repetition operator (+) for 1 or more occurrences.
- Special optional operator (?) for 0 or 1 occurrences.
- Special repetition operator for specific range of number of occurrences: \{min,max\}.
 - A{1,5} One to five A's.
 - A{5,} Five or more A's
 - A{5} Exactly five A's
Perl Regex’s

- **Character classes:**
 - \w (word char) Any alpha-numeric (not: \W)
 - \d (digit char) Any digit (not: \D)
 - \s (space char) Any whitespace (not: \S)
 - . (wildcard) Anything

- **Anchor points:**
 - \b (boundary) Word boundary
 - ^ Beginning of string
 - $ End of string

- **Examples**
 - U.S. phone number with optional area code:
 - `/\b(\(\d{3}\)\s?)?\d{3}-\d{4}\b/`
 - Email address:
 - `/\b\S+@\S+(\.com|\.edu|\.gov|\.org|\.net)\b/`

 Note: Packages available to support Perl regex’s in Java

Δομικές Επερωτήσεις (Structural Queries)

- Εάν τα έγγραφα έχουν δομή που μπορεί να αξιοποιηθεί κατά την ανάκτηση
- Η δομή μπορεί να είναι:
 - Ένα προκαθορισμένο σύνολο πεδίων
 - `title, author, abstract, etc.`
 - Δομή Hypertext
 - Μια ιεραρχική δομή
 - `Book, Chapter, Section, etc.`

Θα τις μελετήσουμε αναλυτικά σε μια άλλη διάλεξη
Query Protocols

- They are not intended for final users.
- They are query languages that are used automatically by software applications to query text databases. Some of them are proposed as standard for querying CD-ROMs or as intermediate languages to query library systems.

- Query Protocols
 - Z39.50
 - 1995 standard ANSI, NISO
 - bibliographical information
 - SRW (Search and Retrieve Web Service): Extension of Z39.50 using Web Technologies. Queries in CQL
 - WAIS (Wide Area Information Service)
 - used before the Web
 - Dienst Protocol
 - For CD-ROMS
 - CCL (Common Command Language)
 - 19 commands. Based on Z39.50
 - CD-RDx (Compact Disk Read only Data Exchange)
 - SFQL (Structured Full-text Query Language)

SFQL

- **SFQL (Structured Full-text Query Language)**
 - Relational database query language SQL enhanced with "full text" search.
 - Παράδειγμα:
    ```sql
    select abstract
    from journal.papers
    where author contains "Teller" and
    title contains "nuclear fusion" and
    date < 1/1/1950
    ```

- Supports Boolean operators, thesaurus, proximity operations, wildcards, repetitions.
 - It is old, but just indicatively let's have a look
CQL (Common Query Language)

- A formal language for representing queries to information retrieval systems – Now: CQL-> Context Query Language
- Human-readable

http://www.loc.gov/standards/sru/specs/cql.html
CQL (Common Query Language)

Search clause
- Always includes a term
 - simple terms consist of one or more words
- May include index name (i.e. field name)
 - To limit search to a particular field/element
 - Index name includes base name and may include prefix
 - title, subject
 - dc.title, dc.subject
 - Several index sets have been defined (called Context Sets in SRW)
 - dc
 - bath
 - srw
 - Context set defines the available indexes for a particular application

CQL

- Relation
 - <, >, <=, >=, =, <>
 - exact used for string matching
 - all when term is list of words to indicate all words must be found
 - any when term is list of words to indicate any words must be found

- Boolean operators: and, or, not

- Proximity (prox operator)
 - relation (<, >, <=, >=, =, <>)
 - distance (integer)
 - unit (word, sentence, paragraph, element)
 - ordering (ordered or unordered)

- Masking rules and special characters
 - single asterisk (*) to mask zero or more characters
 - single question mark (?) to mask a single character
 - carat/hat (^) to indicate anchoring, left or right
CQL Examples

- **Simple queries:**
 - dinosaur
 - "the complete dinosaur"
- **Boolean**
 - dinosaur and bird or dinobird
 - "feathered dinosaur" and (yixian or jehol)
- **Proximity**
 - foo prox bar
 - foo prox/>/4/word/ordered bar
- **Indexes**
 - title = dinosaur
 - bath.title="the complete dinosaur"
 - srw.serverChoice=dinosaur
- **Relations**
 - year > 1998
 - title all "complete dinosaur"
 - title any "dinosaur bird reptile"
 - title exact "the complete dinosaur"