
ΕΠΛ 602:Foundations of Internet

Technologies

Approaches to Web Application Development

1

HTTP

“Web Application Architecture” book, chapter 3

2

“Web Application Architecture” book, chapter 3

http://www.webappbuilders.com/

Uniform Resource Locator (URL)

scheme://host [:port]/path/…/[;url-params][?query-string][#anchor]

Underlying protocol
to be used (e.g., http,
ftp)

http://

IP address or DNS
of the web server Optional – the

port number to
which the
target web

The path through the
file system from the
“root” directory of the
server to the desired

3

http://

http://www.mywebsite.com

which the
target web
server listens
(default is 80)

“root” directory of the
server to the desired
document – in practice,
web servers use aliasing

http://www.mywebsite.com/sj/test

Uniform Resource Locator (URL)

scheme://host [:port]/path/…/[;url-params][?query-string][#anchor]

Optional – name, value pairs;
commonly used for session ids in

http://www.mywebsite.com/sj/test

Optional – name, value pairs;
for dynamic parameters
associated with the request

Optional –
reference to a
positional

4

commonly used for session ids in
application servers supporting
the Java Servlet API

http://www.mywebsite.com/sj/test;id=8079

associated with the request
(for tracking or context
setting, also in HTML forms)

http://www.mywebsite.com/sj/test;id=8079 ?name=bob&x=true#label

positional
marker within
the document

application-protocol://IP-address[:port]path-from-the-root[;par][?dyn-par][#anchor]

HTTP

�Application-level protocol in the TCP/IP protocol suite

� Uses TCP

� Client-Server model

� Follows the request-response communication paradigm

� Stateless (HTTP transaction: single request, followed by a single reply)
vs stateful: sequences of related commands are treated as a single

5

� vs stateful: sequences of related commands are treated as a single
interaction, often called a session
� session are within a persistent connection
(more later)

�Through Proxies
� Firewalls
� Support for caching
� Filtering

� Connection defined as a virtual circuit (browser, server, proxies)

HTTP message

[message header]

[message body]

Simple example request

Method /path-to-resource HTTP/version-number

Header-Name-1: value

blank line

6

Header-Name-1: value

Header-Name-2: value

[optional request body]

GET /sj/index.html HTTP/1.1

Host: www.mywebsite.com

HTTP message

“\r\n”Request Line Optional DataOptional HTTP Header

HTTP Request messages are sent from client to server.

7

Type of Request
(e.g. GET)

Additional information
such as brower being
used, media types accepted

Delimiter
Carriage return
Line feed

User data e.g.
contents of
completed form

– There are a number of valid HTTP Request messages

• Get – Used to request a web page from a web server

• Post – Used to send data (e.g. results of registration form) to a web server

• Head – Return the header of a web page, used by search engines to test the validity
of hyperlinks

• Put / Delete – Not typically implemented by browsers.

HTTP message

[message header]

[message body]

Simple example response

HTTP/version-number status-code explanation

Header-Name-1: value

blank line

8

Header-Name-1: value

Header-Name-2: value

[response body]

HTTP message

“\r\n”Status Line Optional DataOptional HTTP Header

Success/Failure
Indication

Type of content returned
e.g. text/html or image/gif Requested

HTTP Request messages are sent from server to client.

9

Indication
Number between
200 and 599

e.g. text/html or image/gif
Delimiter

Requested
Data e.g. web
page

– The Status Line gives information about the success of the previous HTTP Request

• 200 – 299 Success

• 300 – 399 Redirection – Document has been moved

• 400 – 499 Client Error – Bad Request, Unauthorised, Not found

• 500 – 599 Server Error – Internal Error, Service Overloaded

Request Methods

Method /path-to-resource HTTP/version-number

Header-Name-1: value

Header-Name-2: value

[optional request body]

GET HEAD POST

PUT DELETE TRACE OPTIONS CONNECT

GET
Most common (type a URL, click on a link, etc), if the URL: refers to data, the web server
replies by returning the data, if it refers to a program, then the web server runs the
program and returns its output

10

program and returns its output

POST
POST has a body where the URL parameters are placed, GET appends them to the path

Web application dependent: e.g., display a form when GET request and process it when
POST

Request Methods

Method /path-to-resource HTTP/version-number

Header-Name-1: value

Header-Name-2: value

[optional request body]

GET /q?s=YHOO HTTP/1.1

Host: filename.yahoo.com

11

Host: filename.yahoo.com

User-Agent: Mozilla/5.0 (Windows; U; Windows XP; en-US; rv:1.8.0.1)

POST /q HTTP/1.1

Host: filename.yahoo.com

User-Agent: Mozilla/5.0 [en] (WinNT; U)

Content-Type: application/x-www-form-urlencoded

Content-Length: 6

s = YHOO

Request Methods

POST VS GET

� Requests using GET should only retrieve data and should

have no other effect.

12

have no other effect.

POST may result in the creation of a new resource, the

updates of existing resources or both

� POST submits data to be processed. The data is included in

the body of the request.

Request Methods

HEAD
Requests that use the HEAD method are processed similarly to requests that use
the GET method but the server sends back only headers (not the body) in the
response

13

Used to support caching
Still useful for implementing change-tracking systems, testing and debugging new
applications and discovering server capabilities

Request Methods
Safe methods

(for example, HEAD, GET, OPTIONS and TRACE) intended only for information retrieval and

should not change the state of the server.

No side effects, except e.g., as logging, caching, the serving of banner advertisements or

incrementing a web counter.

Idempotent operations

multiple identical requests should have the same effect as a single request.

14

POST not necessarily idempotent: sending an identical POST request multiple times may

further affect state or cause further side effects

Some cases e.g., a user does not realize that their action will result in sending another

request, or they did not receive adequate feedback that their first request was successful.

Web browsers alert dialog boxes to warn users when reloading a page may re-submit a

POST request, but up to the web application to handle cases where a POST request should

not be submitted more than once.

whether a method is idempotent is not enforced by the protocol or web server.

Request Methods

Multiple References Generated by One Page

HTML pages may contain references to other accessible resources
� Graphical images
� Java applets
Web browsers must parse the retrieved HTML page to see what additional

15

Web browsers must parse the retrieved HTML page to see what additional
resources are needed
Browser must send HTTP requests to retrieve additional resources

Status Codes

1 Informational
100 (notify clients that they may continue) in reply to Expect:100-continue

header

2 Successful responses
200 201 (message was satisfied and a new resource was created)

3 Tell the client to perform additional actions (redirection)

16

3 Tell the client to perform additional actions (redirection)
4 Client requests errors or special conditions

400 Bad Request 401 Not Authorized 403 Forbidden 404 Not found

5 Server errors
500 Internal Server Error 501 Not Implemented

Status Codes: Redirection (3xx)

� Redirection: the browser is instructed to resubmit the request to the URL specified in
the Location header

� 301 moved permanently
� 302 temporarily

� Browsers respond “silently” to redirection status codes
� (not supported or disabled) Web servers include a message body that explicitly
references a link to the new location -> follow the link manually

17

references a link to the new location -> follow the link manually

�Web servers treat a URL ending in a slash as a request for a directory (depending on
server configuration return either a file with a default name (e.g., index.html) or the
contents of the directory)
� If the user forgets the trailing “/”, the server a redirection response

� Proxies react to 301 status by updating internal relocation tables (cache 301
redirections) e.g., redirecting users to the login page when trying to access a protected
URL

Headers

General Headers
Apply to both request and response messages
Do not describe the body of the message
Example:

Date (time and date of the message creation),
Connection (indicates whether the client or server intends to keep the
connection alive - keep-alive default setting for HTTP/1.1)

18

Request Headers
Allows clients to pass additional information
Example

User-Agent (type of software)
Host (virtual hosting)
Referee (context information about the request, e.g., if because of a click on a
link in a page, the header is set to the URL of that page)
Authorization Browsers include this header in all follow-up requests [after
being notified of an authorization challenge (401) and prompting the user for
credentials, once credential accepted included (expiration is browser-specific)

Headers

Response Headers
Help the server to pass additional information about the response that cannot be
inferred from the status code
Examples

Location for redirecting (used with 301, 302)
WWW-Authenticate (used with 401) Basic realm = “KremlinFiles”, if
browser, users are prompted for credentials
Realm: which resources require what type of authorization – web masters can

19

Realm: which resources require what type of authorization – web masters can
administrate web servers to define realms, associate them with files and directories
and establish userid and passwords that limit access to these resources
Server server software

Entity Headers
Either message bodies or (in the case of no body) target resources
Examples

Content-Type the MIME type of the message body
Content-Length to help the browser in rendering
Last-modified critical for caching

Support for content types

HTTP borrows its content typing system from Multipurpose Internet Mail Extensions
(MIME)

A two layer ordered encoding model
Content-Encoding (gzip, compress, deflate)

Content type

type */* subtype [“;” parameter-string]

20

type */* subtype [“;” parameter-string]

Examples
Content type: text/html

Content type: textplain; charset=‘us-ascii’

Content type: application/pdf

Content type: video/quicktime

Browsers use types and sub-types either to select a proper content-rendering module or
to invoke a third-party tool
Server-side applications use type information to process requests

Support for content types
Multipart message
A MIME multipart message contains a boundary in the "Content-Type: " header; this boundary, is
placed between the parts, and at the beginning and end of the body of the message

Content-Type: multipart/mixed; boundary="frontier"

This is a message with multiple parts in MIME format.

--frontier

Content-Type: text/plain

21

This is the body of the message.

--frontier

Content-Type: application/octet-stream

Content-Transfer-Encoding: base64

PGh0bWw+CiAgPGhlYWQ+CiAgPC9oZWFkPgogIDxib2R5PgogICAgPHA+VGhpcyBpcyB0aGUg

Ym9keSBvZiB0aGUgbWVzc2FnZS48L3A+CiAgPC9ib2R5Pgo8L2h0bWw+Cg=

--frontier–

o Each part consists of its own content header (zero or more Content- header fields) and a body.
oThe sending client must choose a boundary string that doesn't clash with the body text. Typically this is

done by inserting a long random string.

Support for content types

Multipart message

The content type multipart/x-mixed-replace developed as part of a technology to emulate server
push and streaming over HTTP.
All parts of a mixed-replace message have the same semantic meaning. However, each part invalidates
- "replaces" - the previous parts as soon as it is received completely.
Clients should process the individual parts as soon as they arrive and should not wait for the whole
message to finish.

22

Content-Type: multipart/x-mixed-replaced; boundary=ThisRandomString

Connection: close

--ThisRandomString

Content-Type: image/gif

…

--ThisRandomString

Content-Type: image/gif

…

Caching

A set of mechanisms allowing responses to HTTP requests to be held in temporary
storage as a means of improving server performance
Future requests are satisfied from the temporary store, eliminating the overhead of asking
the server for a fresh copy

� Browser-side
� Proxy-side
� Server-side

23

� Server-side

Caching decisions guided by information provided by the server

HTTP1.1 provides a mechanism for enforcing caching rules based on the Cache-Content header
� public setting authorizes both shared and user-localized caching
� private setting indicates that the response is directed to a single user and should not be stored in a
shared cache (e.g., a secure request about their private accounts)
� no-cache setting indicates that neither browser nor proxies are allowed to cache, but there are
options (cache but exclude specific headers)

HTTP1.0 browsers and proxies are not guarantee to obey such instructions

Caching

When to refresh?

HTTP/1.0
HEAD and then GET

24

HTTP/1.1
New Headers: If-Modified-Since: (If-Unmodied-Since)
304 Not Modified or the body

Security

� authentication (verify user identity) vs
� authorization (check whether access to a specific resource)

Built-in support for basic authentication:
where user credentials (userid and password) are transmitted via the Authorization
header as a single encoded (not encrypted) string
Safe only if performed over a secure connection (e.g., https)

25

Built-in (basic):
Server replies with 401 (+realm)
pop-up menu
Client resubmits with the Authorization header
If ok, server sends content, browser uses then in future requests
If not, after attempts, sends 403 Forbidden

Many web applications implement their own authentication and authorization schemes
Use body of POST/ don’t use 401 but may use 403

Session support

Server applications can use the Set-Cookie header

Set-Cookie: <name>=<value>

[; Comment=<value>] [; Max-Age=<value>]

Session ids
Server Set-Cookie
Client Cookie

26

An attribute-value pair <name> = <value> is sent back by the browser in qualifying
subsequent requests

Max-Age the lifetime of the cookie in secs (Expires)

[; Comment=<value>] [; Max-Age=<value>]

[; Expires=<date>] [; Path =<path>]

[; Domain=<domain name>] [; Secure]

[; Version=<version>]

Session support

The Path and Domain attributes delimit which request qualify, by specifying the server

Set-Cookie: <name>=<value>

[; Comment=<value>] [; Max-Age=<value>]

[; Expires=<date>] [; Path =<path>]

[; Domain=<domain name>] [; Secure]

[; Version=<version>]

27

The Path and Domain attributes delimit which request qualify, by specifying the server
domains and URL paths to which this cookie applies

Domains: suffixes of the originating server’s host name
Path attribute default to the path of the URL associated with the server application

For subsequent requests directed at URLs where the domain and path match, the browser
must include a Cookie header with the appropriate attribute-value pair
Secure tells the browser to submit corresponding Cookie headers over secure
connections -- Version

Session support

Set-Cookie2: <name>=<value>

…

[; Expires=<date>] [; Path =<path>]

[; Domain=<domain name>] [; Port=<portlist>]

…

28

Cookie-Jars in browsers (in memory (current browser session) or persistent
(for cookies with defined lifetimes)

Persistent connection

For performance allow connections to persist across multiple requests, but we
should not depend on persistent connections for application logic

HTTP/1.0 Connection: keep alive

HTTP/1.1 connections are persistent, except when explicitly closed by a

29

HTTP/1.1 connections are persistent, except when explicitly closed by a

participating program via the Connection: close header

Pipelining: browsers can queue requests messages without waiting for responses
Servers are responsible for submitting responses to browsers in the order of
their arrival

Virtual Hosting

Virtual hosting: map multiple host names to a single IP address

HTTP1.1 uses Host header

30

HTTP

� using TCP increase reliability and also cost

� HTTP uses TCP

� one connection per request-reply

� HTTP 1.1 uses "persistent connection"

� multiple request-reply

closed by the server or client at any time� closed by the server or client at any time

� closed by the server after timeout on idle time

� Marshal messages into ASCII text strings

� resources are tagged with MIME (Multipurpose Internet Mail
Extensions) types: test/plain, image/gif...

� content-encoding specifies compression alg

31

HTTP methods

� GET: return the file, results of a cgi program, …

� HEAD: same as GET, but no data returned, modification
time, size are returned

� POST: transmit data from client to the program at url

� PUT: store (replace) data at url� PUT: store (replace) data at url

� DELETE: delete resource at url

� OPTIONS: server provides a list of valid methods

� TRACE: server sends back the request

32

Web Application Development

“Web Application Architecture” book, chapter 9

33

“Web Application Architecture” book, chapter 9

Lecture Outline

�Taxonomy of web applications and frameworks
� Comparative survey of approaches and frameworks � Comparative survey of approaches and frameworks

34

From Web pages to Web applications

Dynamic web
From building a web site -> design a web application

Web application: a client/server application that uses a web browser
as its client program

Delivers interactive services through web servers distributed over
the Internet or an intranet

A web application can present dynamically tailored content based
on request parameters, traced user behaviors and security
consideration

Example: online shopping cart

35

Introduction

Motivation
Neither practical nor desirable to develop every new web application
from scratch

Common Application Functionality
� Accept user requests

36

� Accept user requests
� Interpret user requests
� Authenticate requestors
� Authorize requestors
� Access data
� Transform data
� Construct responses
� Transmit responses

Web servers provide clear endpoints:
oAcceptance of requests
oTransmission of responses

Introduction

Approaches vs Frameworks

Approach
� Library of functional components

� Can be re-used across applications
� Usually, around a programming language + web-specific APIs and packages

37

Framework
� Consistent infrastructure with rich services

� Usually, integrated support for database access, authentication and state or
session management

Separate Content from Presentation
Developers (business logic and access to content)
Designers (page format)

Taxonomy

38

Categories

Categories of Web Application Approaches

o Scripting or programmatic approaches
o Template approaches

39

o Template approaches
o Hybrid approaches
o Frameworks

Categories: Programming

Scripting or programmatic approaches

Code-centric
The source associate with a page object consists basically from code in a
scripting (e.g., Perl, Pyhton,Tcl) or programming language (e.g., Java)

Embedded formatting instructions -> commonly produced using output

40

Embedded formatting instructions -> commonly produced using output
statements written in the associated language

Examples: CGI, Java Servlets

Programmer needs to translate designer intention into code and integrate it
into the script or program

Categories: Template

Template approaches

uses a source object (the template) with formatting structures and limited
embedded constructs for programming

Focus on formatting not programming logic

41

Page-centric
Around the page structure and formatting tags

Source objects: page templates (mostly HTML + embedded constructs for
conditional processing, iterative result presentation and parameter substitution)

Examples: SSI (Server Side Includes), Adobe’s Cold Fusion, Apache’s
WebMacro/Velocity)

Categories: Hybrid

Hybrid approaches

combine scripting elements with template structures

Allow embedded blocks containing “scripts”
Most translate hybrid source objects into code (+some form of pre-
compilation)

42

compilation)

Examples: PHP, Active Server Pages (ASP) => .NET, Java Server Pages (JSP)

Frameworks

Web Application Frameworks

� Provide a consistent architecture for building and accessing
request context elements that can be embedded within the web
� Support state and session management and authentication
� Support for data access and transformation

43

� Support for data access and transformation
� Separates content from presentation
� Patterns support frameworks

Frameworks

Separate CONTENT from PRESENTATION

�The Model: modules responsible for producing content
�The View: modules responsible for presenting content in a particular format
(organization and layout)

Map/territory analogy

44

Map/territory analogy

Data model should be usable by a variety of views (presentation formats)

Some controlling mechanism should be the glue that hooks up retrieved
content with the presentation format

The Model-View-Controller (MVC) pattern

(1)(2)

(4)

45

Controller receives a user request
(1) Controller constructs the Model that fulfills this request
(2) Controller selects a view to present the results
(3) TheView communicates with the model to determine its contents
TheView presents the contents to the user in the desired format
(4) The View acts as the interface for transmitting further requests from the user to
the Controller

(3)

The Model-View-Controller (MVC) pattern

� Facilitates separation of content from presentation
�Allows applications to dynamically tailor the view based on user preference,
device capabilities and business rules

Developers vs. Designers
� Different skill sets
� Some tools favor the developer; some favor the designer

46

� Some tools favor the developer; some favor the designer
Designers (presentation experts, CSS, XML, XSLT, Dreamweaver, FrontPage) usability

Developers (content access and manipulation) scalability, maintenance, performance

Hybrid
Who owns and is responsible for a hybrid page object

Controller – developer
View – designer

The Model-View-Controller (MVC) pattern

� Scalability
� Configurability
� Separation of Roles

Too complex

47

New generation of
Rapid Application Development (RAD)

Overview

Web development

Server (configuring, implementing the server or components of the server)
Server applications (interacts and passes information to the server)

Server-side languages and frameworks

48

Web server operation

Address Resolution
Preprocessing:
1. Virtual hosting: if the

web server is
providing service for
multiple domains,
determine the target
domain

49

domain
2. Address mapping:

whether the request is
for static or dynamic
content and resolve
the address to an
actual location within
the server file system

3. Authentication

Stateless: any information must be contained within the request

Web servers

Persistent connections:
Within a single open connection:

o A series of requests
o FIFO response delivery

Server maintains two queues:

50

Input:
Output: after processing, marked for release but remain, till all

predecessors

Web servers

Static vs Dynamic

To determine how to process filename suffixes (extensions) and URL
prefixes

Default: URL static content
Path beginning with /servlet or /cgi-bin/ and target .cgi -> Java servlet,

51

Path beginning with /servlet or /cgi-bin/ and target .cgi -> Java servlet,
CGI script

Target filename .php or cfm -> template processing

Web servers: static content

Static Content
� Static content page

� Server maps the URL to a file location relative to the server
document root (root_path/path_portion_of_URL)

Server
1. Retrieves the file
2. Constructs the response
3. Transmits it to the browser

52

3. Transmits it to the browser

Status code
Content-type: determines how the
browser should render the body of the
response (not the URL)

� As-is-page
Static files containing complete
HTTP responses (including headers)
.asis file extension

Web servers: dynamic content

Variety of sources, such as search engines, databases, news feeds, etc
Dynamic content – server must take explicit programmatic action to generate a
response
- execution of an application program
- inclusion of information from a secondary file
- interpretation of a template

53

- interpretation of a template

Methodologies for Accessing Dynamic Data
� Common Gateway Interface (CGI)
� Template or hybrid languages (PHP, Cold Fusion, ASP, JSP)

Web servers: Features

Advanced Server Features

�Virtual hosting – ability to map multiple server and domain names with
separate document trees and server-side applications to a single IP address

Physical configuration parameters (physical resources, such at listening ports, number of

54

Physical configuration parameters (physical resources, such at listening ports, number of
persistent connections, server processes, etc)
Logical configuration parameters (location and configuration of the document tree and
server-side applications, etc)

� Chunked transfers – enables processing of partially transmitted messages
Transfer-Encoding: chunked header (recommended for slow connections)

Web servers: Features

Caching support

Server-side caching -> cache static pages only, caching of dynamic pages responsibility
of the server applications

In terms of the protocol:

55

� Support If-Modified-Since and If-Unmodified-Since

� Include the Last-Modified header whenever possible

�The Data header must be included with every response

Web servers: Server Configuration

Directory structure
server root (HTTP server installation directory) – common
subdirectories (document root, log directory, CGI and servlet root
directories, configuration directory) but differs based on the
situations (different servers sharing the same files)

Threads – some processes are kept running at all times to improve
performance

56

performance
Virtual hosts must be configured separately (not the physical resources though)
Address resolution – translate URL to file system pathname, choose
processing module
MIME support – map MIME types and file extensions
Server extensions – add new MIME types and/or processing modules

Web servers: Security

� Minimize remote login to server
� at least: monitor and log all attempts to access the system
� Passwords should be crack-resistant
� Check file permissions on configuration and password files
� Disable SSI pages in user directories
� Separate FTP and HTTP directories

57

� Separate FTP and HTTP directories
� Use HTTPS/SSL (encrypted messages) for secure messages, including

passwords
� Use a firewall to isolate machines on a LAN – run an HTTP proxy on
the firewall machine configured to screen HTTP requests

Web Application Development Approaches

Programming Approach
CGI
FastCGI
Servlet API

58

Servlet API
Template Approach

SSI, ColdFusion
Hybrid Approach

PHP, JSP

Questions?

59

