
1

Distributed Systems, Spring 2004
1

Processes

Distributed Systems, Spring 2004
2

Threads

Clients and Servers

Code Migration

Mobile Agents

Topics to be covered

Distributed Systems, Spring 2004
3

Threads

Distributed Systems, Spring 2004
4

Introduction: Processes

To execute a program, the OS creates a number of virtual processors

Process table
Process: program in execution

Concurrency transparency

Kernel: supervisor mode
Other processes in user mode

System calls

Each process an address space (a collection of ranges of virtual memory
locations)

Distributed Systems, Spring 2004
5

Process address space

Stack

Text

Heap

Auxiliary
regions

0

2
N

*

232 – 264 bytes
Divided in regions

Regions can be shared
– kernel code
– libraries
– shared data & communication
– copy-on-write

A stack per thread

Distributed Systems, Spring 2004
6

Introduction: Processes vs Threads

Execution environment:
an address space
higher level resources
CPU context

Process context: CPU context (register values, program counter, stack
pointer), registers of the memory management unit (MMU)

Expensive creation
Expensive context switch (may also require memory swap)

Split a process in threads

2

Distributed Systems, Spring 2004
7

Introduction: Processes vs Threads

threads: no attempt to provide concurrency transparency
executed in the same address space

threads of the same process share the same execution
environment

Thread context only the CPU context (+information for thread
management)

No performance overhead, but
Harder to use, require extra effort to protect against each other

Distributed Systems, Spring 2004
8

More on process creation

Two issues

Creation of an execution environment (and an initial thread within it)

Share

Copy

Copy-on-Write

Choice of target host (in distributed systems)

Transfer Policy (local or remote host)

Location Policy (to which node to transfer)

Load sharing (sender vs receiver initiated)

Distributed Systems, Spring 2004
9

Creating a new thread within an existing process is cheaper than creating a
process (~10-20 times)

Traditional Unix process
Child processes created from a parent process using the command fork.

Drawbacks:

• fork is expensive: Memory is copied from a parent to its children. Logically a child
process has a copy of the memory of the parent before the fork (with copy-on-
write semantics).
• Communication after the fork is expensive: Inter process communication is needed
to pass information from parent to children and vice versa after the fork has been
done.

Threads
Lightweight processes:
• Creation 10 to 100 times faster than process creation
• Shared memory: all threads within a given process share the same memory and
files.

Introduction: Processes vs Threads

Distributed Systems, Spring 2004
10

• Switching to a different thread within the same process is
cheaper than switching between threads belonging to different
processes (5-50 times)

• Threads within a process may share data and other resources
conveniently and efficiently compared with separate processes
(without copying or messages)

• Threads within a process are not protected from one another

Introduction: Processes vs Threads

Distributed Systems, Spring 2004
11

Execution environment Thread
Address space tables Saved processor registers
Communication interfaces (eg sockets),
open files

Priority and execution state (such as
BLOCKED)

Semaphores, other synchronization
objects

Software interrupt handling information

List of thread identifiers Execution environment identifier

Pages of address space resident in memory; hardware cache entries

State associated with execution environments and threads

Threads versus multiple processes

* Distributed Systems, Spring 2004
12

Process
Thread activations

Activation stacks
(parameters, local variables)

Threads concept and implementation

'text' (program code)Heap (dynamic storage,
objects, global variables)

system-provided resources
(sockets, windows, open files)

*

A process has many threads sharing an execution environments

3

Distributed Systems, Spring 2004
13

Thread Implementation

Main issue: Should an OS kernel provide
threads, or should they be implemented as
user-level packages?

Generally provided in the form of a thread package

Operations to create and destroy threads as well as operations
on synchronization variables (e.g., mutuxes and condition
variables)

Distributed Systems, Spring 2004
14

Thread implementation
Threads can be implemented:

in the OS kernel (Win NT, Solaris, Mach)
at user level (e.g. by a thread library: C threads, pthreads), or in
the language (Ada, Java)

+ lightweight - no system calls
+ modifiable scheduler
+ low cost enables more threads to be employed
- not pre-emptive, cannot schedule threads within different procedures
- Cannot exploit multiple processors
- Blocking system calls (page fault) blocks the process and thus all

threads

Java can be implemented either way
hybrid approaches can gain some advantages of both

user-level hints to kernel scheduler
hierarchic threads (Solaris)
event-based (SPIN, FastThreads)

*

Distributed Systems, Spring 2004
15

Thread Implementation

User-space solution:

have nothing to do with the kernel, so all operations can be
completely handled within a single process => implementations can be
extremely efficient.

All services provided by the kernel are done on behalf of the process
in which a thread resides

In practice we want to use threads when there are lots of external
events: threads block on a per-event basis if the kernel can’t
distinguish threads, how can it support signaling events to them.

Distributed Systems, Spring 2004
16

Kernel solution: The whole idea is to have the kernel contain the
implementation of a thread package. This does mean that all
operations return as system calls

Operations that block a thread are no longer a problem: the kernel
schedules another available thread within the same process.

Handling external events is simple: the kernel (which catches all
events) schedules the thread associated with the event.

The big problem is the loss of efficiency due to the fact that each
thread operation requires a trap to the kernel.

Conclusion: Try to mix user-level and kernel-level
threads into a single concept.

Thread Implementation

Distributed Systems, Spring 2004
17

User-level vs Kernel-level Threads (summary)

(-) threads within a process can take advantage of a multiprocessor

(-) A tread that takes a page fault blocks the entire process and all
threads within it

(-) Threads within different processes cannot be scheduled according to
a single scheme of relative prioritization

(+) Certain thread operations (eg switching) cost less; do not involve a
system call

(+) Thread scheduling can be customized

(+) Many more threads can be supported

Thread Implementation

Distributed Systems, Spring 2004
18

Basic idea: Introduce a two-level threading approach: lightweight
processes (LWP) that can execute user-level threads.

An LWP runs in the context of a single (heavy-weight) process + a user-
level thread package (create, destroy threads, thread synchronization)

Assign a thread to an LWP (hidden from the programmer)

When an LWP is created (through a system call) gets its own stack and
execute a scheduling routine (that searches for a thread to execute)

If many LWPs, each executes the scheduler, they share a thread table
(with the current set of threads), synchronization among them in user
space.

When an LWP finds a thread, it switches context to it

Thread Implementation (Solaris)

4

Distributed Systems, Spring 2004
19

When a thread calls a blocking user-level operation (e.g., blocks on a mutex
or a condition variable), it calls the scheduling routine, when another
runnable thread is found, a context switch is made to that thread which is
then bound to the same LWP (the LWP that is executing the thread need
not be informed)

When a user-level thread does a blocking system call, the LWP that is
executing that thread blocks. The thread remains bound to the LWP. The
kernel can simply schedule another LWP having a runnable thread bound to
it. Note that this thread can switch to any other runnable thread currently
in user space.

When there are no threads to schedule, an LWP may remain idle, and may
even be removed (destroyed) by the kernel.

Thread Implementation (LWP)

Distributed Systems, Spring 2004
20

Thread Implementation

Lightweight Process (LWP) can be thought of as a virtual CPU where the
number of LWPs is usually greater than the number of CPUs in the system.
Thread libraries communicate with LWPs to schedule threads. LWPs are
also referred to as kernel threads.

Distributed Systems, Spring 2004
21

Most modern OSs support threads, either with their own thread library or through
POSIX pthreads

Each OS uses a different technique to support threads.

X-to-Y model. The mapping between LWPs and Threads.

Solaris uses the many-to-many model. All CPUs are mapped to any number of LWPs
which are then mapped to any number of threads. The kernel schedules the LWPs for
slices of CPU time.

Linux uses the one-to-one model. Each thread is mapped to a single LWP.
Linux LWPs are really lightweight and thus LWP creation is not as expensive as in
Solaris. In Linux, the scheduler gives a 1 point boost to "processes" scheduled which
are in the same thread family as the currently running process.

Thread Implementation

Distributed Systems, Spring 2004
22

Why threads?

In a single-threaded system process whenever a blocking system
call is executed, the process as a whole is blocked

Exploit parallelism when executing a program on a multiprocessor
system (assign each thread to a different CPU)

Multithreaded Servers

Distributed Systems, Spring 2004
23

Example

Each request takes on average 2msecs of processing and 8 msecs of I/O
delay (no caching)

Maximum server throughput (measured as client requests handled per sec)

Single thread

Turnaround time for each request: 2 + 8 = 10 msecs
Throughput: 100 req/sec

Two threads

(if disk requests are serialized)

Turnaround time for each request: 8 msecs
Throughput: 125 req/sec

Multithreaded Servers

Distributed Systems, Spring 2004
24

Example (continued)

Assume disk block caching, 75% hit rate

Two threads

Mean I/O time per request: 0. 75 * 0 + 0.25 * 8 msecs = 2msecs

Throughput: 500 req/sec

But the processor time actually increases due to caching, say to 2.5

Throughput: 400 req/sec

Multithreaded Servers

5

Distributed Systems, Spring 2004
25

Example (continued)

Assume shared memory multiprocessor

Two processors, one thread at each

Two threads

Mean I/O for each request remains: 0. 75 * 0 + 0.25 * 8 msecs = 2msecs
Processing time per request: 2.5msec

But two process executed in parallel -> ?? (444 req/sec prove it!)

Throughput:

More than two threads

Bounded by the I/O time (2msecs per process) thus,

Max throughput: 500 req/sec

Multithreaded Servers

Distributed Systems, Spring 2004
26

Multithreaded Servers

A pool of “worker” threads to process the requests

One I/O (dispatcher) thread: receives requests from a collections of
ports and places them on a shared request queue for retrieval by the
workers

Distributed Systems, Spring 2004
27

Multithreaded Servers

Server

N threads

Input-output

Requests

Receipt &
queuing

*

The worker pool architecture
The server creates a fixed pool of “worker” threads to process the requests when it
starts up

One I/O thread: receives requests from a collections of ports and places them on a
shared request queue for retrieval by the workers

Priorities: multiple queues in the worker pool

Disadvantages: high level of switching between the I/O pool and the workers; limited
number of worker threads

workers

I/O
thread

client

Distributed Systems, Spring 2004
28

*

remote

workers

I/O

objects

server
process

Multithreaded Servers

One thread-per-request architecture

The I/O thread spawns a new
worker thread for each request

The worker destroys itself when it
has processed the request

Threads do not contend for a
shared queue and as many workers
as outstanding requests

Disadvantage: overhead of creating
and destroying threads

Distributed Systems, Spring 2004
29

*

remote

per- connection threads

objects

server
process

remoteI/O

per- object threads

objects

server
process

Multithreaded Servers

Thread-per-connection Thread-per-request

The server creates a new worker thread
when a client makes a connection and
destroys the thread when the client
closes the connection. In between the
client can make many request over the
connection.

One thread for each remote object.
There is an I/O thread that receives
requests and queues them for the
workers, but there is one queue per
object.

Lower thread management

Clients may delay while a worker has several requests but another
thread has no work to perform.

Distributed Systems, Spring 2004
30

(a) Thread-per-request (b) Thread-per-connection (c) Thread-per-object

*

remote

workers

I/O

objects

server
process

remote

per-connection threads

objects

server
process

remoteI/O

per-object threads

objects

server
process

Implemented by the server-side ORB in CORBA
(a) would be useful for UDP-based service, e.g. NTP
(b) most commonly used; matches the TCP connection model
(c) used where the service is encapsulated as an object. E.g. could have multiple

shared whiteboards with one thread each. Each object has only one thread,
avoiding the need for thread synchronization within objects.

Multithreaded Servers

Alternative multi-server architectures (summary)

6

Distributed Systems, Spring 2004
31

Multithreaded Servers

Three ways to construct a server.

Parallelism, nonblocking system callsFinite-state machine

No parallelism, blocking system callsSingle-threaded process

Parallelism, blocking system callsThreads

CharacteristicsModel

Distributed Systems, Spring 2004
32

Main issue is improved performance and better structure

Improve performance

Starting a thread to handle an incoming request is much cheaper than
starting a new process

Having a single-threaded server prohibits simply scaling the server to a
multiprocessor system

Hide network latency by reacting to next request while previous one is
being replied

Better structure

Most servers have high I/O demands. Using simple, well-understood
blocking calls simplifies the overall structure

Multithreaded programs tend to be smaller and easier to understand due
to simplified flow of control

Multithreaded Servers

Distributed Systems, Spring 2004
33

Multithreaded Clients
Main issue is hiding network latency

Multithreaded Web client

Web browser scans an incoming HTML page, and finds that more files
need to be fetched

Each file is fetched by a separate thread, each doing a (blocking) HTTP
request

As files come in, the browser displays them

Multiple RPCs

A client does several RPCs at the same time, each one by a different
thread

It then waits until all results have been returned.

Note: if RPCs are to different servers, we may have a linear speed-up
compared to doing RPCs one after the other

Distributed Systems, Spring 2004
34

Client and server with threads

Client

Thread 2 makes

Thread 1

requests to server

generates
results

Server

N threads

Input-output

Requests

Receipt &
queuing

*

The 'worker pool' architecture

Client
1st thread generates results to be passed to the server through a (blocking) RPC call

2nd thread performs the RPC call

Both threads share the queue

Distributed Systems, Spring 2004
35

Concurrent Programming

Concepts:

Race conditions
Critical section
Monitor
Condition variable
Semaphore

In conventional languages such as C augmented with a thread
library

pthreads (POSIX)

Java Thread class

Threads Programming

Distributed Systems, Spring 2004
36

Mutual Exclusion

Avoid a thread modifying a variable that is already in the process of being
modified by another thread or a dirty read (read an old value)

Attach locks to resources. Serialization of accesses

The code between the lock and unlock calls to the mutex, is referred to as the
critical section. Minimizing time spent in the critical section allows for
greater concurrency because it reduces the time other threads must wait to
gain the lock.

Deadlocks

Priority Inversion

Multiple reader lock, Writers starvation

Threads Programming

7

Distributed Systems, Spring 2004
37

Race conditions occur when multiple threads share data and at
least one of the threads accesses the data without going
through a defined synchronization mechanism.
Could result in erroneous results

Whether a library call is safe to use in reentrant code
(reentrant code means that a program can have more than one
thread executing concurrently)

Threads Programming

Distributed Systems, Spring 2004
38

Thread Synchronization Primitives besides mutexes

Condition Variables

Allow threads to synchronize to a value of a shared resource

Provide a kind of notification system among threads

wait on the condition variable
other threads signal this condition variable
or broadcast to signal all threads waiting on the condition variable

Threads Programming

Distributed Systems, Spring 2004
39

Spinlocks

frequently in the Linux kernel; less commonly used at the user-level

A spinlock basically spins on a mutex. If a thread cannot obtain the
mutex, it will keep polling the lock until it is free.

If a thread is about to give up a mutex, you don't have to context
switch to another thread. However, long spin times will result in poor
performance.

Should never be used on uniprocessor machines. Why?

Threads Programming

Distributed Systems, Spring 2004
40

Semaphores

Binary semaphores act much like mutexes, while counting semaphores
can behave as recursive mutexes.

Counting semaphores can be initialized to any arbitrary value (lock
depth): depending on the number of resources available for that
particular shared data.

Many threads can obtain the lock simultaneously until the limit is
reached.

Threads Programming

Distributed Systems, Spring 2004
41

Scheduling

Preemptive: a thread may be suspended at any point to allow another
thread to proceed even when the preempted thread would otherwise
continue running

Non-preemptive: a thread runs until it makes a call to a threading
system (eg, a system call), when the system may de-schedule it and
schedule another thread to run

Threads Programming

Distributed Systems, Spring 2004
42

The pthread library can be found on almost any modern OS.

1. Add #include <pthread.h> in your .c or .h header file(s)
2. Define the #define _REENTRANT macro somewhere in a common .h or .c

file

3. In your Makefile, check that gcc links against -lpthread

Optional: add -D_POSIX_PTHREAD_SEMANTICS to your Makefile (gcc flag)
for certain function calls like sigwait()

POSIX pthreads

8

Distributed Systems, Spring 2004
43

A thread is represented by the type pthread_t.

int pthread_create(pthread_t *thread, pthread_attr_t *attr, void *(*start_routine)(void *), void *arg);

int pthread_attr_init(pthread_attr_t *attr);

Example:

pthread_create(&pt_worker, &thread_attributes, thread_function, (void *)thread_args);

Create a pthread pt_worker with thread attributes defined in thread_attributes

The thread code is contained in the function thread_function and is passed in
arguments stored in thread_args; that is the thread_function prototype would look
like void *thread_function(void *args);

POSIX pthreads

Distributed Systems, Spring 2004
44

Pthread Mutexes

int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_trylock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);

pthread_mutex_lock() is a blocking call.
pthread_mutex_trylock() will return immediately if the mutex cannot be locked.

To unlock a mutex: pthread_mutex_unlock().

Pthread Condition Variables

int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);
int pthread_cond_signal(pthread_cond_t *cond);
int pthread_cond_broadcast(pthread_cond_t *cond);

pthread_cond_wait() puts the current thread to sleep.
pthread_cond_wait() pthread_cond_broadcast() signals one (all) threads waiting on

a condition

POSIX pthreads

Distributed Systems, Spring 2004
45

Java threads

*

Thread(ThreadGroup group, Runnable target, String name)
• Creates a new thread in the SUSPENDED state, which will belong to group and be

identified as name; the thread will execute the run() method of target.
setPriority(int newPriority), getPriority()

• Set and return the thread’s priority.
run()

• A thread executes the run() method of its target object, if it has one, and otherwise its
own run() method (Thread implements Runnable).

start()
• Change the state of the thread from SUSPENDED to RUNNABLE.

sleep(int millisecs)
• Cause the thread to enter the SUSPENDED state for the specified time.

yield()
• Enter the READY state and invoke the scheduler.

destroy()
• Destroy the thread.

Methods of objects that inherit from class Thread

Distributed Systems, Spring 2004
46

Java thread lifetimes

*

New thread created in the same JVM as its creator in the SUSPENDED
state

start() makes it runnable

It executes the run() method of an object designated in its
constructor

A thread ends its life when it returns from run() or when its destroy()
method is called

Threads in groups (e.g., for security)

Execute on top of the OS

Distributed Systems, Spring 2004
47

Java thread synchronization calls

*

synchronized methods (and code blocks) implement the monitor abstraction:
Guarantee that at most one thread can execute within it at any time

The operations within a synchronized method are performed atomically with respect to
other synchronized methods of the same object.
synchronized should be used for any methods that update the state of an object in a
threaded environment.

Each thread’s local variables in methods are private to it

However, threads are not given private copies of static (class)
variables or object instance variables

Distributed Systems, Spring 2004
48

Java thread synchronization calls

*

thread.join(int millisecs)
• Blocks the calling thread for up to the specified time until thread has terminated.

thread.interrupt()
• Interrupts thread: causes it to return from a blocking method call such as sleep().

object.wait(long millisecs, int nanosecs)
• Blocks the calling thread until a call made to notify() or notifyAll() on object wakes

the thread, or the thread is interrupted, or the specified time has elapsed.
object.notify(), object.notifyAll()

• Wakes, respectively, one or all of any threads that have called wait() on object.

object.wait() and object.notify() are very similar to the semaphore operations. E.g. a worker thread
would use queue.wait() to wait for incoming requests.

Allows threads to be blocked and woken up via arbitrary objects that act
as condition variables

A thread that needs to block awaiting a certain condition calls wait()

9

Distributed Systems, Spring 2004
49

Clients and Servers
Client

Servers
Object servers

Distributed Systems, Spring 2004
50

Clients

The X Window System

A major part of client-side software is focused on (graphical) user
interfaces.

X: controls bit-mapped terminals (monitor, keyboard,
mouse), part of the OS that controls the terminal,
contains the terminal-specific device drivers

X kernel: contains terminal-specific device drivers

Offers a low-level interface for controlling the screen and
for capturing events from the keyboard and mouse

Made available to applications through the Xlib library

Distributed Systems, Spring 2004
51

The X Window System

X distinguishes between normal applications and window managers

Normal applications request (through Xlib) the creation of a window on the
screen. When a window is active, all events are passed to the application

Window managers manipulate the entire screen. Set restrictions (e.g., windows
not overlap)

The X kernel and the X applications need not reside on the same machine

X protocol: network-oriented communication protocol between an instance of Xlib and
the X kernel

X terminals (run only the X kernel)

Distributed Systems, Spring 2004
52

Compound documents

Compound documents:

A collection of documents possibly of different kinds that are
seamlessly integrated at the user-interface level – the user interface
hides the fact that different applications operate at different parts
of the document

Make the user interface application-aware to allow inter-application
communication

drag-and-drop: move objects to other positions on the screen,
possibly invoking interaction with other applications

in-place editing: integrate several applications at user-interface level
(word processing + drawing facilities)

Distributed Systems, Spring 2004
53

Client-Side Software

More than just interfaces, often focused on providing distribution
transparency

access transparency: client-side stubs
for RPCs and RMIs

location/migration transparency: let
client-side software keep track of
actual location

replication transparency: multiple
invocations handled by client stub

failure transparency: can often be
placed only at client (we are trying to
mask server and communication
failures) (e.g., retry, return cached
values)

Distributed Systems, Spring 2004
54

Servers

Implement a service for a number of clients

Iterative server: the server itself handles the request

Concurrent server: does not handle the request itself, but
passes it to a separate thread or another process, and then
immediately waits for the next request

Basic model: A server is a process that waits for incoming
service requests at a specific transport address.

10

Distributed Systems, Spring 2004
55

Endpoints
Clients sends requests to an endpoint (port) at the machine where the
server is running. Each server listens to a specific endpoint.

How does a client know the endpoint for a service?

1. Globally assigned endpoints (examples: TCP port 21 for Internet FTP, TCP
port 80, for the HTTP server for the www) need to know just the machine

2. Have a special daemon on each machine that runs servers, a client
first contacts the daemon (a) how to find the daemon? What about passive
servers?

3. Superserver (b)
Servers that listen to several
ports, i.e., provide several
independent services.
One server per endpoint,
when a service request
comes in, they start a
subprocess to handle the
request (UNIX inetd
daemon)

Distributed Systems, Spring 2004
56

Interrupting a Service

Is it possible to interrupt a server once it has accepted (or is in the
process of accepting) a service request?

Say, you are downloading a large file

1. Use a separate port for urgent data (possibly per service request)

Server has a separate thread (or process) waiting for incoming urgent
messages

When urgent message comes in, associated request is put on hold

Requires OS supports high-priority scheduling of specific threads or
processes

2. Use out-of-band communication facilities of the transport layer

Example: TCP allows to send urgent messages in the same connection

Urgent messages can be caught using OS signaling techniques

Distributed Systems, Spring 2004
57

Stateless Servers
Stateless server: does not keep information of the state of its clients and
can change its own state without informing its clients (e.g., a web server)
Examples:

• Don’t record whether a file has been opened (simply close it again after access)

• Don’t promise to invalidate a client’s cache

• Don’t keep track of your clients

Clients and servers are completely independent
State inconsistencies due to client or server crashes are reduced
Possible loss of performance because, e.g., a server cannot anticipate client

behavior (think of prefetching file blocks)

Stateful server: maintain information about its clients
Examples:

• Record that a file has been opened, so that prefetching can be done
• Knows which data a client has cached, and allows clients to keep local copies of
shared data

The performance of stateful servers can be extremely high, provided clients are
allowed to keep local copies. As it turns out, reliability is not a major problem.

Cookies?
Distributed Systems, Spring 2004

58

Stateless Servers

Cookies?

The client stores in its browser information about its previous accesses
The client sends this information to the server

Distributed Systems, Spring 2004
59

Object Servers

Object server: a server for supporting distributed objects

Provides only the means to invoke the local objects, not specific services

A place where object lives

Provides the means to invoke local objects

Object: data (state) + code (implementation of its methods)

Issues:

Are these parts separated?

Are method implementations shared among multiple objects?

A separate thread per object or a separate thread per invocation?

Distributed Systems, Spring 2004
60

Invoking Objects

Activation policies: decisions on how to invoke an object

Object adapter of object wrapper: a mechanism to group objects per
policy

Skeleton: Server-side stub for handling
network I/O:

Unmarshalls incoming requests, and calls the
appropriate servant code

Marshalls results and sends reply messages
Generated from interface specifications

Object adapter:The “manager” of a set of
objects:

Inspects (at first) incoming requests
Ensures referenced object is activated

(requires identification of servant)
Passes request to appropriate skeleton,

following a specific activation policy
Responsible for generating object references

11

Distributed Systems, Spring 2004
61

Code Migration

Distributed Systems, Spring 2004
62

Reasons for Migrating Code

The principle of dynamically configuring a
client to communicate to a server. The
client first fetches the necessary
software, and then invokes the server.

Performance

Load balancing

Process data close to where they reside

Parallelism (e.g., web search)

Flexibility/dynamic configuration

Dynamically downloading client-side software

Distributed Systems, Spring 2004
63

Models for Code Migration
What is moved?

The three segments of a process:

Code segment: the part that contains the set of instructions that make up the
program that is being executed

Resource segment: references to external resources needed by the process
(e.g., files, devices, other processes)

Execution segment: the current execution state of the process (program
counter, stack, etc)

Weak mobility: move only the code segment (plus perhaps some initialization
data)

Always start from its initial state

Example: Java applets

code shipping (push) code fetching (pull)

Strong mobility: move also the execution segment

The process resumes execution from where it was left off

Harder to implement

Distributed Systems, Spring 2004
64

Models for Code Migration

Where/How is the code executed?

Weak mobility
The migrated code:

executed by the target process, or

a separate process is initiated

Java applets executed in the Web browsers address space

Strong mobility can be supported by remote cloning

Cloning yields an exact copy of the original process, executed in parallel

Distributed Systems, Spring 2004
65

Models for Code Migration

Who initiates the movement?
Sender-initiated: migration is initiated at the machine where the code
currently resides or is being executed

Example: uploading programs, sending programs across the Internet

simpler to implement

Receiver-initiated: the initiative for migration is taken by the target
machine

Example: Java Applets

client server
upload

download

Distributed Systems, Spring 2004
66

Models for Code Migration (summary)

12

Distributed Systems, Spring 2004
67

Migrating Resources

Three types of process-to-resource bindings:

binding by identifier: requires precisely the references resource. Examples:
URL address, Internet address of an FTP server, local communication endpoints

binding by value: only the value of a resource is needed. Example: standard C or
Java libraries

binding by type: needs a resource of a specific type. Examples: printer,
monitors

Three types of resource-to-machine bindings:

unattached resources: can be easily moved between machines. Examples: local
data files

fastened resources: is possible to be moved but with high costs. Examples: local
databases, complete web pages

fixed resources: infeasible to be moved. Examples: printer, monitors, locla
communication endpoints

Distributed Systems, Spring 2004
68

Migration and Local Resources

GR
GR

RB (or GR)

GR (or MV)
GR (or CP)

RB (or GR, CP)

MV (or GR, if shared)

CP (or MV, GR)
RB (or GR, CP)

By identifier
By value
By type

FixedFastenedUnattached

Resource-to machine binding

Process-to-
resource
binding

MV move the resource

GR establish a global systemwide reference

CP copy the value of the resource

RB rebind process to locally available resource

Distributed Systems, Spring 2004
69

Migration in Heterogeneous Systems

The principle of maintaining a
migration stack to support
migration of an execution
segment in a heterogeneous
environment

Main problem: (a) The target machine may not be suitable to execute the migrated
code. (b) The definition of process/thread/processor context is highly dependent on
local hardware, operating system and runtime system

Only solution: Make use of an abstract machine that is implemented on different
platforms

Existing languages: Code migration restricted to specific points in the execution of
a program: only when a subroutine is called (migration stack)

Interpreted languages: running on a virtual machine (Java, scripting languages)

Distributed Systems, Spring 2004
70

Software Agents

Distributed Systems, Spring 2004
71

Software Agents

Capable of learningNoAdaptive

Can migrate from one site to anotherNoMobile

Has a relatively long lifespanNoContinuous

Can exchange information with users and other
agentsYesCommunicative

Initiates actions that affects its environmentYesProactive

Responds timely to changes in its environmentYesReactive

Can act on its ownYesAutonomous

DescriptionCommon to
all agents?Property

An autonomous process capable of reacting to, and initiating changes on, its
environment, possibly in collaboration with users and other agents

Properties

Functionality

Interface agents: agents that assist an end user in the use one of more applications

Information agents: manage (filter, order, etc) information for many resources

Distributed Systems, Spring 2004
72

Agent Technology
FIPA (Foundation for Intelligent Physical Agents)

Agent Platform: provide the basic services needed by any multiagent
system (create, delete, locate agents, interagent communication)

Naming service: map a globally unique id to a local communication endpoint
(for each agent)

Local directory service (similar to yellow pages) based an (attribute, value)
pairs. Accessible by remote agents

13

Distributed Systems, Spring 2004
73

Agent Communication Languages

Reference to sourceSubscribe to an information sourceSUBSCRIBE

Action specificationRequest that an action be performedREQUEST

Proposal IDTell that a given proposal is rejectedREJECT-PROPOSAL

Proposal IDTell that a given proposal is acceptedACCEPT-PROPOSAL

ProposalProvide a proposalPROPOSE

Proposal specificsAsk for a proposalCFP

ExpressionQuery for a give objectQUERY-REF

PropositionQuery whether a given proposition is trueQUERY-IF

PropositionInform that a given proposition is trueINFORM

Message ContentDescriptionMessage purpose

Agents communicate by exchanging messages

ACC (Agent Communication Channel): provide reliable, order, point-to-point
communication with other platforms

ACL (Agent Communication Language): application level communication protocol

Distinction between Purpose – Content
The purpose determines the receiver’s reaction

Distributed Systems, Spring 2004
74

Agent Communication Languages

female(beatrix),parent(beatrix,juliana,bernhard)Content

genealogyOntology
PrologLanguage
elke@iiop://royalty-watcher.uk:5623Receiver
max@http://fanclub-beatrix.royalty-spotters.nl:7239Sender

INFORMPurpose

ValueField

Header | Actual Content

Actual Content specific to the communicating agents (no
prescribed format)

Header: purpose id, server, receiver, language or encoding scheme,
ontology (maps symbols to meaning)

