
1

Distributed Systems, Spring 2004 1

Communication

Distributed Systems, Spring 2004 2

Topics to be covered

PART 1 (last week)
Layered Protocols
Remote Procedure Call (RPC)
Remote Method Invocation (RMI)

PART 2
Overview of last week and more details
Message-Oriented Middleware (MOM)
Streams

Distributed Systems, Spring 2004 3

UDP and TCP

Request-Reply Protocols

Marshalling and External Data
Representation

RMI and RPC

Applications and Services

Middleware
Layers

Overview
Internet protocols provide two alternatives building blocks: UDP (simple message-passing
with omission failures) and TCP (guarantees message delivery but higher overhead)

Java and Unix Interface (sockets) API to UDP and TCP

Remote Method Invocation (RMI): allows an object to invoke a method in an object in
a remote process

Examples are CORBA and Java RMI

Remote Procedure Calls (RPC): allows a client to invoke a procedure in a remote server

Distributed Systems, Spring 2004 4

More on Part 1

Distributed Systems, Spring 2004 5

Outline

OSI and Internet Protocol Stack

API to Internet Protocols

RPC and RMI (overview)

Java RMI

Distributed Systems, Spring 2004 6

Layered Protocols
Processes define and adhere to rules (protocols) to communicate

Protocols are structured into layers – each layer deals with a
specific aspect of communication

Each layer uses the services of the layer below it – an interface
specifies the services provided by the lower layer to the upper
layers

Two general type of protocols:

Connection-oriented: before exchanging data, the sender and the
receiver must establish a connection (e.g., telephone), possibly negotiate
the protocols to be used, release the connection when done

Connectionless: no setup in advance (e.g., sending an email)

2

Distributed Systems, Spring 2004 7

The OSI Model

Each layer provides an interface to the one above

Message send (downwards) Message received (upwards) example
Each layer adds a header

The ISO OSI or the OSI model
Designed to allow open systems to communicate

Distributed Systems, Spring 2004 8

The OSI Model

• The information in the layer n header is used for the layer n protocol

• Independence among layers

• Reference model (not an actual implementation)

OSI protocols not so popular, instead Internet protocols (e.g., TCP and IP)

Distributed Systems, Spring 2004 9

Low-level Layers

Physical Layer: specification and implementation of bits, transmission
between sender and receiver

Data Link Layer: groups bits into frames, error and flow control

Network Layer: routes packets

For many distributed systems, the lowest level interface is
that of the network layer.

Distributed Systems, Spring 2004 10

Transport Layer

Standard (transport-layer) Internet protocols:

• Transmission Control Protocol (TCP): connection-oriented, reliable, stream-
oriented communication (TCP/IP)
acknowledgement

• Universal Datagram Protocol (UDP): connectionless, unreliable (best-effort)
datagram communication (just IP with minor additions)
omission failures, no ordering, non-blocking send, blocking receives

TCP vs UDP

Works reliably over any network
Considerable overhead

use UDP + additional error and flow control for a specific application

Distributed Systems, Spring 2004 11

OSI vs TCP/IP Model

Internet

Host-to-network

Transport

Not Present

Application

OSI reference model

TCP/IP not an official reference model (many details regarding the
interfaces left open to implementation) – but the de facto Internet
communication protocol

Distributed Systems, Spring 2004 12

Middleware Protocols

An adapted reference model for networked communication.

3

Distributed Systems, Spring 2004 13

The API for Internet Protocols

Message passing supported by two message communication
operations

send and receive

One process (sending process) sends a message (a sequence
of bytes) to a destination and another process (receiving
process) at the destination receives the message

Synchronization of the two processes

A queue (buffer) is associated with each message destination

Distributed Systems, Spring 2004 14

Synchronous and Asynchronous Communication

Synchronous

Both send and receive are blocking operations
Whenever a send is issued, the sending process is blocked until the
corresponding receive is issued

Whenever a receive is issued, the process is blocked, until a message
arrives

Asynchronous

Send is non-blocking

Receive either blocking or non-blocking
Non blocking-variant of receive: the receiving process proceeds after
issuing a receive which provides a buffer to be filled in the background –
must receive notifications when its buffer has been filled by polling or
interrupt

not generally provided (why?)

Distributed Systems, Spring 2004 15

Message Destinations

In the Internet protocols, messages are sent to:

(Internet Address, Local Port)

pairs.

A local port is a message destination within a computer specified by an
integer (large number (216) possible port numbers)

A port has exactly one receiver but may have many senders

Processes may use multiple ports form which to receive messages

Any process that knows the number of a port can send a message

Servers publish their ports for use by clients

Why not sending messages directly to processes?

Ports allows for several point of entries to a receiving process

Distributed Systems, Spring 2004 16

Message Destinations
Location transparency

If we use a fixed Internet address, services must run on the same
computer.

Client programs refer to a service by name and use a name server or binder to
translate their names into several locations at run time (no migration transparency
however)

The operating system (Mach does this) provides location-independent identifiers
for message destinations

Reliability
(validity) a point-to-point message service is reliable if messages are guaranteed to
be delivered despite a “reasonable” number of packets being dropped or lost – in
contrast a point-to-point message service is unreliable if messages are not
guaranteed to be delivered in the face of even a single packet dropped or lost

(integrity) messages must arrive uncorrupted and without duplication

Ordering

Distributed Systems, Spring 2004 17

The API for Internet Protocols

Both forms of communication (UDP and TCP) use the socket
abstraction which provides an endpoint for communication between
processes

Communication by transmitting a message between a socket in one
process and a socket in another

More on Unix sockets (later)

Distributed Systems, Spring 2004 18

Outline

OSI and Internet Protocol Stack

API to Internet Protocols

RPC and RMI (overview)

Java RMI

4

Distributed Systems, Spring 2004 19

RMI and RPC

RMI and RPC are programming models for distributed applications

The client that calls a procedure cannot tell whether it runs in the same
or in a different process; nor does it need to know the location of the
server

The object making the invocation cannot tell whether the object it
invokes is local or not; nor does it need to know its location

The protocols are independent of the underlying transport
protocols

Use marshalling and unmarshalling to hide differences due to
hardware architectures

Independent of the operating system

Distributed Systems, Spring 2004 20

External Data Representation and Marshalling

Data structures must be flattened

Same representation for primitive values

Use the same code to represent characters (e.g., ASCII or Unicode)

Either:
The values are converted to an agreed external format

The values are transmitted in the sender’s format together with an indication of
the format used

External data representation: an agreed standard for the representation
of data structures and primitive values

Marshalling: the process of taking a collection of data items and
assembling them into a form suitable for transmission in a message

Unmarshalling is the process of disassembling them on arrival to produce
an equivalent collection of data items as the destination

Distributed Systems, Spring 2004 21

Remote Procedure Call (RPC)

Some issues:

Calling and called procedures in different address
spaces
Parameter passing
Crash of each machine

Basic idea:

Allow programs to call procedures located on other
machines

Distributed Systems, Spring 2004 22

Client and Server Stubs
RPC supports location transparency (the calling procedure does not know that
the called procedure is remote)

Client stub:

local version of the called procedure

called using the “stack” sequence

it packs the parameters into a message and requests this message to be
sent to the server (calls send)

it calls receive and blocks till the reply comes back

When the message arrives, the server OS passes it to the server stub

Server Stub:

typically waits on receive

it transforms the request into a local procedure call

after the call is completed, it packs the results, calls send

it calls receive again and blocks

Distributed Systems, Spring 2004 23

Steps of a Remote Procedure Call

1. Client procedure calls client stub in normal way
2. Client stub builds message, calls local OS
3. Client's OS sends message to remote OS

4. Remote OS gives message to server stub

5. Server stub unpacks parameters, calls server
6. Server does work, returns result to the stub
7. Server stub packs it in message, calls local OS
8. Server's OS sends message to client's OS

9. Client's OS gives message to client stub
10. Stub unpacks result, returns to client

Distributed Systems, Spring 2004 24

Parameter Passing
Remote procedure add(i, j)

A server stub may handle more than one remote procedure

Two issues with parameter passing:
Marshalling

Reference Parameters

5

Distributed Systems, Spring 2004 25

Distributed Objects

Expand the idea of RPCs to invocations on remote objects

Data (state) and operations on those data encapsulated into an object

Objects can be accessed by object references

Operations are implemented as methods

Interfaces provide a definition of the signatures of a set of methods
(that is, the types of their arguments, return values and exceptions)

An object provides an interface if its class contains code that implements
the methods of that interface

An object offers only its interface to clients.
An object may implement many interfaces;
Given an interface definition, there may be several objects that offer
an implementation for it

Distributed Systems, Spring 2004 26

Distributed Objects

To invoke the methods of a remote object must
have acess to its remote object reference

Every remote object has a remote interface that
specifies which of its methods can be invoked
remotely

Distributed Systems, Spring 2004 27

Remote Object References

A remote object reference is an identifier for a remote object that is
valid throughout a distributed system

It is passed in the invocation to specify which object is to be
invoked

May also be passed as arguments or returned as results of RMIs

Each remote object has a single remote object reference

Must be unique

Internet address port number time object number interface of
remote object

32 bits 32 bits 32 bits 32 bits

But the above is not location transparent

Distributed Systems, Spring 2004 28

Distributed Objects

A client binds to a distributed object: an implementation of the object’s interface,
called a proxy, is loaded into the client’s address space

Proxy (analog to a client stub): provides an implementation of the interface which:
Marshals method invocations into messages, sends it to the target, waits & un-
marshals reply messages

Actual object at a server machine: offers the same interface Skeleton (analog
to server stub)

Un-marshals
requests to
proper method
invocations at the
object’s interface
at the server

Note: the object itself is
not distributed, aka
remote object

May have both a dispatcher and a skeleton, the dispatcher selects the appropriate
method in the skeleton

Distributed Systems, Spring 2004 29

Basic RMI
Assume client stub and server skeleton are in place

Client invokes method at stub

Stub marshals request and send it to server

Server ensures referenced object is active

Create separate process to hold object

Load the object into server process

Request is unmarshalled by object’s skeleton, and referenced object
is invoked

If request contained an object reference, invocation is applied
recursively

Result is marshalled and passed back to client

Client stub unmarshals reply and passes result to client application

Distributed Systems, Spring 2004 30

External Data Representation and Marshalling

CORBA’s common data representation (CDR)

• an external representation for structured and primitive types
that can be passed as arguments and results of remote method
invocations in CORBA)

• can be used by a variety of programming languages

Java’s object serialization

• flattening and external data representation of any single
object or tree of objects to be transmitted in a message or
stored on a disk

• can be used only by Java

No involvement of the application programmer is needed

6

Distributed Systems, Spring 2004 31

Java RMI

Serialization: flattening an object or a connected set of objects into a serial
form for storing on disk or transmitting

Deserialization

Java objects can contain references to other objects

When an object is serialized, all the objects that it references are
serialized together with it

References are serialized as handles (in this case, a reference in the
object within the serialized form)

To serialize: its class information (version numbers are used), types and names
of instance variables (and their classes recursively); the content of instance
variables

Public class Person implement Serializable {

Private String name;

// followed by methods for accessing the instance
variables

}

Distributed Systems, Spring 2004 32

Java RMI

Server program

Classes for the dispatcher and skeleton + implementation of all
the remote objects that it supports (aka servant classes)

An initialization section (e.g., main method) that creates and
initializes at least one remote object

Register some of its remote objects with a binder

Binder: maps textual names to remote object references (in Java,
RMIregistry)

Client program contains the classes of the proxies, can use a
binder to look up remote object references

Distributed Systems, Spring 2004 33

Java RMI

import java.rmi.*;
import java.util.Vector;
public interface Shape extends Remote {

int getVersion() throws RemoteException;
GraphicalObject getAllState() throws RemoteException; 1

}
public interface ShapeList extends Remote {

Shape newShape(GraphicalObject g) throws RemoteException; 2
Vector allShapes() throws RemoteException;
int getVersion() throws RemoteException;

}

Remote interfaces are defined by extending an interface called Remote in
the java.rmi package

Methods must throw RemoteException

Must
implement the
serializable
interface

Distributed Systems, Spring 2004 34

Java RMI

The parameters of a method are assumed to be input parameters

The result of a method is a single output parameter

When the type of a parameter or result values is defined as remote
interface, the corresponding argument or result is passed as a remote
object reference

All serializable non-remote objects are copied and passed by value

If the recipient does not possess the class of an object passed by value,
its code is downloaded automatically

Similarly, if the recipient of a remote object reference does not possess
the class of a proxy, its code is downloaded automatically

Distributed Systems, Spring 2004 35

Java RMI: RMIregistry

void rebind (String name, Remote obj)
This method is used by a server to register the identifier of a remote object by
name

void bind (String name, Remote obj)
This method can alternatively be used by a server to register a remote object by
name, but if the name is already bound to a remote object reference an exception is
thrown.

void unbind (String name, Remote obj)
This method removes a binding.

Remote lookup(String name)
This method is used by clients to look up a remote object by name. A remote object
reference is returned.

String [] list()
This method returns an array of Strings containing the names bound in the registry.

RMIregistry is the binder for Java RMI

An instance must run on every server computer that hosts remote objects

Table mapping textual, URL-style names to references to remote objects

//computerName:port/objectName

Distributed Systems, Spring 2004 36

Java RMI: Server

import java.rmi.*;
public class ShapeListServer{

public static void main(String args[]){
System.setSecurityManager(new RMISecurityManager());
try{

ShapeList aShapeList = new ShapeListServant(); 1
Naming.rebind("Shape List", aShapeList); 2

System.out.println("ShapeList server ready");
}catch(Exception e) {
System.out.println("ShapeList server main " + e.getMessage());}

}
}

7

Distributed Systems, Spring 2004 37

Java RMI: Servant Classes

import java.rmi.*;
import java.rmi.server.UnicastRemoteObject;
import java.util.Vector;
public class ShapeListServant extends UnicastRemoteObject implements ShapeList {

private Vector theList; // contains the list of Shapes 1
private int version;

public ShapeListServant()throws RemoteException{...}
public Shape newShape(GraphicalObject g) throws RemoteException { 2

version++;
Shape s = new ShapeServant(g, version); 3

theList.addElement(s);
return s;

}
public Vector allShapes()throws RemoteException{...}
public int getVersion() throws RemoteException { ... }

}

UnicastRemoteObject provides remote objects that live only as long as the
process in which they are created

Distributed Systems, Spring 2004 38

Java RMI: Client

import java.rmi.*;
import java.rmi.server.*;
import java.util.Vector;
public class ShapeListClient{

public static void main(String args[]){
System.setSecurityManager(new RMISecurityManager());
ShapeList aShapeList = null;
try{

aShapeList = (ShapeList) Naming.lookup("//bruno.ShapeList") ; 1
Vector sList = aShapeList.allShapes(); 2

} catch(RemoteException e) {System.out.println(e.getMessage());
}catch(Exception e) {System.out.println("Client: " + e.getMessage());}

}
}

Note: must know the host address, not a system-wide registry (but per host)

Distributed Systems, Spring 2004 39

RMI

Each object has a (global) remote object reference and a remote
interface that specifies which of its operations can be invoked
remotely

Local method invocations provide exactly-once semantics; the best
RMI can guarantee is at-most-once

Middleware components (proxies, skeletons and dispatchers) hide
details of marshalling, message passing and object location from
programmers.

Distributed Systems, Spring 2004 40

Retry request message: whether to retransmit the request message
until either a reply is received or the server is assumed to have failed

Duplicate filtering: when retransmission is used, whether to filter out
duplicate messages

Retransmission of results: whether to keep a history of result
messages to enable lost results to be retransmitted without re-
executing the operation at the server

Invocation semantics

Distributed Systems, Spring 2004 41

Fault tolerance measures Invocation
semantics

Retransmit request
message

Duplicate
filtering

Re-execute procedure
or retransmit reply

No

Yes

Yes

Not applicable

No

Yes

Not applicable

Re-execute procedure

Retransmit reply At-most-once

At-least-once

Maybe

Local method invocation exactly-once (each method is executed exactly once)

May-be: the invokes cannot tell whether a remote method has been executed once or
not at all

At least-once: the invoker receives either a result (in which case it knows that he
method was executed at least once) or an exception informing it that no result was
received

At most-once: the invoker receives either a result (in which case it knows that he
method was executed exactly once) of an exception informing it that no result was
received, in which case the method will have been executed either once or not at all

Invocation semantics

Distributed Systems, Spring 2004 42

RMI and RPC

Few operating system kernels provide relative high-level
communication primitives

(+) efficiency (saving in system call overhead)

(-) sockets provide portability and interoperability

8

Distributed Systems, Spring 2004 43

Invocations between address spaces

Control transfer via
trap instruction

User Kernel

Thread

User 1 User 2

Control transfer via
privileged instructions

Thread 1 Thread 2

Protection domain
boundary

(a) System call

(b) RPC/RMI (within one computer)

Kernel
(c) RPC/RMI (between computers)

User 1 User 2

Thread 1 Network Thread 2

Kernel 2Kernel 1

* Distributed Systems, Spring 2004 44

RMI and RPC (performance)

The performance of RPC and RMI mechanisms is critical for
effective distributed systems.

Typical times for “null procedure call”:
Local procedure call < 1 microseconds
Remote procedure call ~ 10 milliseconds

'network time' (involving about 100 bytes transferred, at 100
megabits/sec.) accounts for only .01 millisecond; the remaining delays
must be in OS and middleware - latency, not communication time.

Factors affecting RPC/RMI performance
marshalling/unmarshalling + operation dispatch at the server
data copying:- application -> kernel space -> communication
buffers
thread scheduling and context switching:- including kernel
entry
protocol processing:- for each protocol layer
network access delays:- connection setup, network latency

Distributed Systems, Spring 2004 45

RPC delay against parameter size

1000 2000

RPC delay

Requested dat
size (bytes)

Packet
size

0

* Distributed Systems, Spring 2004 46

RMI and RPC
Most invocation middleware (Corba, Java RMI, HTTP) is
implemented over TCP

For universal availability, unlimited message size and reliable transfer
Sun RPC (used in NFS) is implemented over both UDP and TCP and
generally works faster over UDP

Research-based systems have implemented much more efficient
invocation protocols, E.g.

Firefly RPC (see www.cdk3.net/oss)
Amoeba's doOperation, getRequest, sendReply primitives in the
operating system (www.cdk3.net/oss)
LRPC [Bershad et. al. 1990] (Uses shared memory for interprocess communication,
while maintaining protection of the two processes; arguments copied only once (versus four
times for conventional RPC); Client threads can execute server code via protected entry
points only (uses capabilities); Up to 3 x faster for local invocations

Concurrent and asynchronous invocations
middleware or application doesn't block waiting for reply to
each invocation

Distributed Systems, Spring 2004 47

Message-Oriented Communication

Persistence and Synchronicity
Message-Oriented Transient (sockets, RMI)

Message-Oriented Persistent/Message Queuing

Distributed Systems, Spring 2004 48

Communication Alternatives
RPC and RMI hide communication and thus achieve access transparency

Client/Server computing is generally based on a model of synchronous
communication:

• Client and server have to be active at the time of communication

• Client issues request and blocks until it receives reply

• Server essentially waits only for incoming requests, and subsequently processes them

Drawbacks synchronous communication:

• Client cannot do any other work while waiting for reply

• Failures have to be dealt with immediately (the client is waiting)

• In many cases, the model is simply not appropriate (mail, news)

9

Distributed Systems, Spring 2004 49

Asynchronous Communication Middleware

Message-oriented middleware: Aims at high-level asynchronous
communication:

Processes send each other messages, which are queued

Asynchronous communication: Sender need not wait for immediate reply,
but can do other things

Synchronous communication: Sender blocks until the message arrives at
the receiving host or is actually delivered and processed by the receiver

Middleware often ensures fault tolerance

Distributed Systems, Spring 2004 50

Example Communication System
• Applications execute on hosts
• Communication servers are responsible for passing (and routing)
messages between hosts

• Each host offers an interface to the communication system through
which messages can be submitted for transmission

• Buffers at the hosts and at the communication servers

An electronic mailing system
Local
mail

server

Distributed Systems, Spring 2004 51

Persistent vs Transient Communication
Persistent communication: A message is stored at a communication
server as long as it takes to deliver it at the receiver (e.g., email)

Transient communication: A message is discarded by a
communication server as soon as it cannot be delivered at the next
server or at the receiver (e.g, TCP/IP)

Typically, all transport-level communication services offer only transient, a
communication server corresponds to a store-and-forward router

Distributed Systems, Spring 2004 52

Messaging Combinations

Persistent asynchronous
Message stored persistently at the
sending host or at the first
communication server

e.g., electronic mail systems

Persistent synchronous
Message stored persistently at the
receiving host or the connected
communication server (weaker)

Distributed Systems, Spring 2004 53

Messaging Combinations

Transient asynchronous
Transport-level datagram
services (such as UDP)

One-way RPC

Receipt-based transient synchronous
Sender blocks until the message is stored
in a local buffer at the receiving host

Distributed Systems, Spring 2004 54

Messaging Combinations

Delivery-based transient
synchronous
Sender blocks until the message is
delivered to the receiver for further
processing

Asynchronous RPC

Response-based transient
synchronous

Strongest form

Sender blocks until it receives a reply
message

RPC and RMI

10

Distributed Systems, Spring 2004 55

Communication Alternatives

Need for persistent communication services in particular when
there is large geographical distribution

(cannot assume that all processes are simultaneously executing)

Distributed Systems, Spring 2004 56

Outline

Message-Oriented Transient Communication

Transport-level sockets

Message-Passing Interface (MPI)

Message-Oriented Persistent Communication

Message Queuing Model

General Architecture

Example (IBM MQSeries: check the textbook)

Distributed Systems, Spring 2004 57

message

agreed portany port socketsocket

Internet address = 138.37.88.249Internet address = 138.37.94.248

other ports
client server

Berkeley Sockets

a message is transmitted between a socket in one process and a socket in
another

each socket is associated with a particular protocol, either UDP or TCP

Socket: a communication endpoint to which an application can write data to
be sent out over the network and from which incoming data may be read

Distributed Systems, Spring 2004 58

Sockets

UDP (connectionless)

A message passing abstraction that enables a sending process to send a single
message to a receiving process

The independent packets containing the message are called datagrams
The sender specifies the destination using a socket

TCP (connection-oriented)

A two-way stream abstraction that enables the communication of a stream of
data items with no message boundaries

Data are queued on arrival

Sender blocks when no data are available

Distributed Systems, Spring 2004 59

Berkeley Sockets

Socket primitives for TCP/IP.

Release the connectionClose

Receive some data over the connectionReceive

Send some data over the connectionSend

Actively attempt to establish a connectionConnect

Block caller until a connection request arrivesAccept

Announce willingness to accept connectionsListen

Attach a local address to a socketBind

Create a new communication endpointSocket

MeaningPrimitive

A process to receive a message, its socket must be bound to a local port and
one of the Internet addresses of the computer on which it runs

server

Distributed Systems, Spring 2004 60

Sockets

To send or receive messages first

Create a socket

Bind it to an (Internet address, local port)

Receive returns the address of the sender

11

Distributed Systems, Spring 2004 61

socket: creates a new communication endpoint for a specific transport protocol (the
local OS reserves resources to accommodate sending and receiving messages for the
specified protocol)

bind: associates a local address (e.g., the IP address of the machine + a port number)
with the newly created socket

listen: (only in the case of connection-oriented communication) non-blocking call; allows
the OS to reserve enough buffers for a specified max number of connections

accept: blocks the server until a connection request arrives. When a request arrives,
the OS creates a new socket and returns it to the caller. Then , the server can fork off
a process that will subsequently handle the actual communication through the new
connection.

Berkeley Sockets

Distributed Systems, Spring 2004 62

socket: (client)

connect: attempt to establish a connection; specifies the transport-
level address to which a connection request is to be sent

write/read: send/receive data

close: called by both the client and the server

Berkeley Sockets

Distributed Systems, Spring 2004 63

Sockets used for datagrams

Receiving a message

bind(s, ClientAddress)

sendto(s, "message", ServerAddress)

bind(s, ServerAddress)

amount = recvfrom(s, buffer, from)

s = socket(AF_INET, SOCK_DGRAM, 0)s = socket(AF_INET, SOCK_DGRAM, 0)

Communication
domain type

Sending a message
Socket

descriptor

To get a reply

ServerAddress and ClientAddress are socket addresses

Must be made known
to the sender

Distributed Systems, Spring 2004 64

Sockets used for streams

Requesting a connection Listening and accepting a connection

bind(s, ServerAddress);
listen(s, 5);

sNew = accept(s, ClientAddress);

n = read(sNew, buffer, amount)

s = socket(AF_INET, SOCK_STREAM,0)

connect(s, ServerAddress)

write(s, "message", length)

s = socket(AF_INET, SOCK_STREAM,0)

ServerAddress and ClientAddress are socket addresses

A pair of sockets must be connected

The receiver listens for a request for a connection, the sender asks for a
connection

Any available data is read immediately in the same order as it was written, no
indication of messages boundaries

Max number of
connection requests

Implicitly binds

Similar to
reading/writing

for files

Distributed Systems, Spring 2004 65

Sockets

Processes may be use the same socket for both sending and receiving messages

A process may use multiple ports to receive messages, but it cannot share ports
with any process in the same computer (except from processes using IP
multicast)

Any number of processes may send messages to the same port

Distributed Systems, Spring 2004 66

The Message-Passing Interface (MPI)

Suitable for COWs and MPPs

MPI designed for parallel applications and thus
tailored to transient communication

There are no communication servers

Assumes communication within a known group of
processes, a (group_ID, process_ID) uniquely
identifies a source or destination of a message

Provides a higher-level of abstraction than sockets

12

Distributed Systems, Spring 2004 67

The Message-Passing Interface (MPI)

Check if there is an incoming message, but do not blockMPI_irecv

Receive a message; block if there are noneMPI_recv

Pass reference to outgoing message, and wait until receipt startsMPI_issend

Pass reference to outgoing message, and continue (for local MPI)MPI_isend

(response-based transient synchronous, RPC) Send a message and
wait for replyMPI_sendrecv

(delivery-based transient synchronous) Send a message and wait until
receipt startsMPI_ssend

(blocking send) Send a message and wait until copied to local or
remote bufferMPI_send

(transient-asynchronous) Append outgoing message to a local send
bufferMPI_bsend

MeaningPrimitive

Some of the message-passing primitives of MPI

Supports diverse forms of buffering and synchronization (over 100 functions)

Distributed Systems, Spring 2004 68

Outline

Message-Oriented Transient Communication

Transport-level sockets

Message-Passing Interface (MPI)

Message-Oriented Persistent Communication

Message Queuing Model

General Architecture

Example (IBM MQSeries: check the textbook)

Distributed Systems, Spring 2004 69

Message-Oriented Middleware

Message-queuing systems or Message-Oriented Middleware (MOM)

Targeted to message transfers that take minutes instead of
seconds or milliseconds

In short: asynchronous persistent communication through support
of middleware-level queues
Queues correspond to buffers at communication servers.

Not aimed at supporting only end-users (as e.g., e-mail does).
Enable persistent communication between any processes

Distributed Systems, Spring 2004 70

Message-Queuing Model

Four combinations for loosely-coupled communications using queues.

Message can contain any data

Addressing by providing a system-wide unique name of the destination queue

Distributed Systems, Spring 2004 71

Message-Queuing Model

Basic interface to a queue in a message-queuing system.

Install a handler (as a callback function) to be automatically invoked when
a message is put into the specified queue.
Often implemented as a daemon on the receiver’s side

Notify

Check a specified queue for messages, and remove the first. Never block.Poll

Block until the specified queue is nonempty, and remove the first message
Variations allow searching for a specific message in the queue

Get

Call by the sender
Append a message to a specified queue
Non-blocking

Put

MeaningPrimitive

Distributed Systems, Spring 2004 72

General Architecture of a Message-Queuing System

Messages are put only into local to the sender queues - source queues
Messages can be read only from local queues

A message put into a queue contains the specification of a destination
queue

Message-queuing system: provides queues to senders and receivers;
transfers messages from their source to their destination queues.

Queues are distributed across the network ⇒ need to map queues to
network addresses

A (possibly distributed) database of queue names to network locations

Queues are managed by queue managers

13

Distributed Systems, Spring 2004 73

General Architecture of a Message-Queuing System

The relationship between queue-level addressing and network-level addressing

Distributed Systems, Spring 2004 74

General Architecture of a Message-Queuing System

Why routers?

Only the routers
need to be updated
when queues are
added or removed

Allow for secondary
processing of
messages (e.g., logging
for fault tolerance)

Used for
multicasting purposes

Act as message
brokers

Relays: special queue managers that operate as routers
and forward incoming messages to other queue managers
⇒ overlay network

Distributed Systems, Spring 2004 75

Message Brokers
Message broker: acts as an application-level gateway, coverts incoming
messages to a format that can be understood by the destination application

Contains a database of conversion rules

Distributed Systems, Spring 2004 76

IBM MQSeries

Check textbook

Distributed Systems, Spring 2004 77

Simple Mail transfer protocol (SMTP)
SMTP the standard mail protocol used by e-mail servers to route e-mails

SMTP relies on TCP/IP and DNS for transport and destination server
discovery

A client can access the closest mail server and receive mail using simple mail
access protocols such as POP and IMAP

Network News Transport Protocol (NNTP)

NNTP servers propagate news articles using “flood fill”

Each server has one or more peer and each article from a peer server or a
user is sent to all servers that haven’t yet seen the article

Distributed Systems, Spring 2004 78

Stream-Oriented
Communication

Streams
Quality of Service

Synchronization

14

Distributed Systems, Spring 2004 79

Support for Continuous Media

So far focus on transmitting discrete, that is time independent data

Continuous (representation) media: the temporal relationships between
data items fundamental to correctly interpreting what the data means

Examples: audio, video, animation, sensor data

Example: motion represented by a series of images, in which successive images
must be displayed at a uniform spacing T in time (30-40 msec per image)
Correct reproduction ⇒ showing the stills in the correct order and at a
constant frequency of 1/T images per sec

Discrete (representation) media: the temporal relationships between
data items not fundamental to correctly interpreting what the data
means

Example: text, still images, executable files

A data stream is a sequence of data units

Distributed Systems, Spring 2004 80

Transmission Modes

Continuous Data Stream: a connection oriented communication facility that
supports isochronous data transmission

Asynchronous transmission mode: data items are transmitted one after
the other but no further timing constraints

Discrete data streams, e.g., a file

(order)

Synchronous transmission mode: there is a maximum end-to-end delay
for each unit in a data stream

E.g., sensor data

(order & max delay)

Isochronous transmission mode: there is both a maximum and minimum
end-to-end delay for each unit in a data stream (called bounded (delay)
jitter)

(order & max delay & min delay)

E.g., multimedia systems (audio, video)

Different timing guarantees with respect to data transfer:

Distributed Systems, Spring 2004 81

Stream Types

Simple stream: only a single sequence of data

Complex stream: several related simple streams (substreams)

Relation between the substreams is often also time dependent

Example: stereo video transmitted using two substreams each for a single
audio channel

Data units from each substream to be communicated pairwise for the
effect of stereo

Example: transmitting a movie: one stream for the video, two streams for
the sound in stereo, one stream for subtitles

Distributed Systems, Spring 2004 82

Data Streams

Streams are unidirectional

Considered as a virtual connection between a source and a sink

Between (a) two process or (b) between two devices

Distributed Systems, Spring 2004 83

Data Streams
Multiparty communication: more than one source or sinks

Multiple sinks: the data streams is multicasted to several receivers

Problem when the receivers have different requirements with respect to
the quality of the stream

Filters to adjust the quality of the incoming stream differently for
outgoing streams

Distributed Systems, Spring 2004 84

Quality of Service

Quality of Service (Qos) for continuous data streams:
timeliness, volume and reliability

Difference between specification and implementation
of QoS

15

Distributed Systems, Spring 2004 85

• Loss sensitivity (bytes)
• Loss interval (µsec)
Maximum acceptable loss rate

• Burst loss sensitivity (data units)
How many consecutive data units may be lost

• Minimum delay noticed (µsec)
How long can the network delay delivery of a
data unit before the receiver notices the delay

• Maximum delay variation (µsec)
Maximum tolerated jitter

• Quality of guarantee
Indicates how firm are the guarantees

• Maximum data unit size (bytes)
• Token bucket rate (bytes/sec)

• Token bucket size (bytes)

• Maximum transmission rate
(bytes/sec)

Service RequiredCharacteristics of the Input

Flow Specification of QoS
One way to specify QoS is to use flow specifications: specify both the service
required and characteristics of the input

Input parameters can be guaranteed by traffic shaping

Who specifies the flow? (provide a set of predefined categories)

Distributed Systems, Spring 2004 86

Flow Specification of QoS
token-bucket model to express QoS

Token: fixed number of bytes (say k) that an application is allowed to pass
to the network

Basic idea: tokens are generated at a fixed rate

Tokens are buffered in a bucket of limited capacity

When the bucket is full, tokens are dropped

To pass N bytes, drop N/k tokens

Distributed Systems, Spring 2004 87

Implementing QoS

QoS specifications translate to resource reservations in the
underlying communication system

Resources: bandwidth, buffers, processing capacity

There is no standard way of (1) QoS specs, (2) describing
resources, (3) mapping specs to reservations.

Distributed Systems, Spring 2004 88

Implementing QoS
Resource reSerVation Protocol (RSVP) a transport-level control
protocol for resource reservation in network routers

Distributed Systems, Spring 2004 89

The principle of explicit synchronization on the level of data units.

Stream Synchronization
Given a complex stream, how do you keep the different substreams in synch?
Two forms: (a) synchronization between a discrete and a continuous data
stream and (b) synchronization between two continuous data streams

A process that simply executes read and write operations on several simple
streams ensuring that those operations adhere to specific timing and
synchronization constraints

Distributed Systems, Spring 2004 90

The principle of synchronization as supported by high-level interfaces.

Stream Synchronization

